Compositional Timing Analysis

Ramzi Ben Salah Marius Bozga Oded Maler

CNRS - VERIMAG
Grenoble, France

2009

Apology

» The message of this paper is not easy to communicate

» |t represents many years of work (theory and
implementation)

» |t is based on a very intuitive ideas concerning a
fundamental problem in hierarchical system design

» But technically it consists of a series of transformations on
timed automata which are hard to follow

» Even for the authors
» | will do my best

A Motivating and Challenging Example

» Consider a living cell which at some level of abstraction
can be viewed as a soup where zillions of complex
molecules move and interact

» At this levels one can analyze, for example, the effect of
injecting some new molecule on the dynamics of
concentrations of the other molecules

» When we analyze a tissue consisting of many such cells, it
is impractical to compose many detailed cell models

» At the higher level we want a simpler model where a cell is
a module exchanging some signals with its neighbors

Less Fascinating but Still Interesting Motivations

» Low-level physical transistor model is abstracted into a
model with a relatively-small number of state variables
used in a higher level model of..

» A transistor level circuit which is, in turn, abstracted into a
gate or standard cell model which is used in a higher level
model of..

» A digital circuit which realizes some micro-architecture
element ...

> ...

» Hardware, software, internet, world, universe...

Principles of Hierarchical Design/Analysis
Methodology

» Complex systems are made of subsystems (components,
modules)

» These subsystems, in turn, are made of subsystems
> ...

» At a given level of abstraction a component admits a model
M with some level of granularity

» Moving to the next higher level where the component is
composed with other components, we would like to replace
M by a more abstract model M

A Wish List for the Reduced Model M’

» It should be much less complex than M (less state
variables, simplified dynamics)
» Otherwise the analysis of the higher-level system will
explode
» To achieve that, M’ should abstract away from many
internal details
» Consequently M’ is less precise than M

» On the other hand M’ should be sufficiently faithful to the
interface behavior of M

» So that if we substitute M’ for M in the high-level model the
reduced model will not deviate much from the detailed one

» It is desirable to derive M’ from M automatically

On the Semantics of being Less Precise

» Two different approaches to relate the concrete and
abstract models:
» Metric based (physics, traditional engineering):

» Model reduction: a system of differential equations with n
variables is replaced by a system with m < n variables

» Underlying this approach is the notion that the observable
trajectories of M’ are close to those of M

» Set theoretic non determinism (CS, verification):

» Since in M’ some variables are projected away, the system
becomes more non deterministic and admits more
behaviors than M

» This is expressed by the inclusion of (observed) behaviors
L(M) C L(M")

» This means that whatever you prove (correctness or
worst-case performance) using M’ holds as well for M

» This is the approach that we use

More Technically Speaking

» We propose a fully-automated and tool-supported
methodology for deriving M’ from M for the case of
networks of timed components

» M is a product of timed automata representing an acyclic
network of timed components; It has one clock per
component

» M realizes a (non-deterministic) timed transducer, it maps
timed input behaviors to sets of timed output behaviors

» M’ is a timed automaton with less states and less clocks

» M’ over-approximates M as a timed transducer: for any

input, the set of outputs M’ produces includes all the
outputs produced by M

Timed Components

» A timed component is a device that reacts to a timed
stream of input events by emitting a timed stream of output
events

» Each output event is emitted some time after the input
event that triggered it

» Timed components can model:
Execution time of a software module

» Propagation delay in a digital circuit

» Time to transmit a packet in a network
» Time to respond to web query

v

(Acyclic) Networks of Timed Components

» Output of one component is an input for others
» Digital circuits, precedence between tasks, etc.

I S
| {E#D AT
L

» We want to build an abstract model of the network as a
component that over-approximates its timed I/O behavior

Intuition on the Nature of the Abstraction |

» Consider two timed components By and B, each reacting
to an input event within some ¢ € [/;, u;] time, connected in
a network

I\ T
RS

e

N

e € [,]
- 21

R \l\‘ cp =0

0 ty +lp o+ up

6 € [, up]
2T

» In the detailed model z; will take place within [/, uq] time
after x while z, within [k, up] after z4

» Clock ¢ is an auxiliary clock that measures the time since
input event x

Intuition on the Nature of the Abstraction Il

» We discard internal clocks ¢y and ¢, and project timing
constraints on input clock ¢

[
L

» In the abstract model z, may happen at any
t € [h + b, uy + uo] regardless of the time of z

— IS

RN AN
LN N N N

LIANS

o ot 4ty o I+l v +up

The Steps of the Abstraction Technique

+C r C m
Ax = Ay” = Ay = Ax = Ax, = AY,

» Augment a network modeled by timed automaton Ax with
auxiliary clocks triggered by input events to obtain A}C

» Perform reachability computation on A}é to obtain the
equivalent interpreted timed automaton A’

» Project the timing constraints in .4’ on the input clocks C
to obtain A$ whose qualitative semantics is exact but its
timed semantics is an over approximation

» Project the transition labels in A)C(on the interface variable
to obtain Ay,

» Minimize Ay, wrt to observable actions to obtain A)’Zo

Adding Input Clocks

This is the hardest and most original part of our work
Every input event generates a new clock upon its arrival
The input event triggers a wave of reactions in the network

Since the network is acyclic and every component has a
finite upper bound on its reaction time, each event goes out
of the system within finite time

When the event leaves the system, its clock can be reused
for other events

» Hence we can do with a finite number of clocks

» All the machinery of TA analysis is adapted to handle these
dynamic clocks, monitor the life and death of events...

vV v v Y

v

Reachability/Simulation Graph and Interpreted Timed
Automaton

>

The standard technique to analyze timed automata using
symbolic states of the form (g, Z) where q is a discrete
state and Z is a subset of the clock space (zone)

It leads to an equivalent automaton with an additional
property: all paths are realizable under the timing
constraints

Relaxing the timing constraints of this automaton the
qualitative untimed semantics is preserved

Applying this analysis to the automaton augmented with
input clocks, we add redundant constraints to the
computed zones that do not affect the behavior

But after projection on the auxiliary clocks these
constraints are those that remain

Output transitions now become conditioned upon the time
elapsed since the events that triggered them

The Other Steps

» Projection

» Hiding all the internal non-observable actions making them
silent transitions

» Minimizing the obtained automaton by merging states that
admit the same observable behaviors

» This is more involved than in untimed systems because we
have also to merge zones (invariants and guards)

» A lot of work: 65K lines of C++ code inside the IF toolbox

» A front-end language: digital circuits made of gates with
bi-bounded delay

Applications

» The reduced model can be an accompanying specification
(contract) of the component, like specifying the response
characteristic of electrical components

» Can be used to analyze large networks by divide and
conquer

» Pick a subnetwork M which can still be analyzed using TA
techniques, create the abstraction M’ and compose it with
the rest of the network

» Pick a subnetwork of that and so on

» We demonstrate how it can be applied to systems beyond
the capabilities of current tools

Example: Wave Pipelining

» A technique for improving the throughput of sequential
circuits beyond a synchronous approach

» A second wave of inputs may arrive before the previous
wave has been completely processed

» Circuit has 36 logic gates with bi-bounded delays, each
modeled by a timed automaton with one clock

» What is the highest frequency in which waves do not
interfere? (assuming input is periodic with some jitter)

Wave Pipelining: non Compositional Approach

» First we apply a non-compositional approach directly to a
product of 36 timed automata

» The longest delay path is 1086

» We compose the circuit with an input generator of period
1200 and jitter of 10 which generates only one wave
through the circuit

» Analysis takes 7 minutes to obtain a reachability graph with
more than 26K symbolic states and 50K transitions

» Reducing the input period to 1000 to allow two
simultaneous waves, the analysis gets stuck

Wave Pipelining: Compositional Approach

>

The circuits admits 5 instances of the sub-circuit A, two
connected to the primary inputs

Compose A with input generator of period 247 and jitter
10; May induce 2 simultaneous waves in the circuit

Our abstraction reduces the reachability graph from
213/321 states/transtions to 34 /58 with output jitter 32
We compose the third copy of A with such an input
generator and reduce the obtained graph from 270/411 to
36,/62 and output jitter of 54...

At the end we show no interference; reducing the input
frequency from 247 to 246 we detect interference

Conclusions

» We have developed a new technique for compositional
timing analysis using timed automata

» The essence of the technique is to use the internal clocks
of the components to eliminate infeasible behaviors and
then discard these clocks

» The technique can be particulary useful when the number
of simultaneous excitation waves in the network is much
smaller than the number of components

» We used the technique to analyze system of a size much
much beyond the capabilities of existing tools

» There is still a long way to go..

A Personal Opinion on Timed Systems

» The level of abstraction provided by timed automata is
extremely important

» It deserves to be one of the foundations of any theory of
embedded systems

» Unfortunately one has to cross heavy definitions with large
n-tuples to get to the point

» Consequently the domain attracts mostly pure
theoreticians who care more about theorems than about
the poor engineers (real or imaginary) that can benefit from
the insights of the model

» | am not sure the situation will change after this talk, but all
this work has been guided by optimism

Thank You

