
Compositional Timing Analysis

Ramzi Ben Salah Marius Bozga Oded Maler

CNRS - VERIMAG
Grenoble, France

2009



Apology

I The message of this paper is not easy to communicate
I It represents many years of work (theory and

implementation)
I It is based on a very intuitive ideas concerning a

fundamental problem in hierarchical system design
I But technically it consists of a series of transformations on

timed automata which are hard to follow
I Even for the authors
I I will do my best



A Motivating and Challenging Example

I Consider a living cell which at some level of abstraction
can be viewed as a soup where zillions of complex
molecules move and interact

I At this levels one can analyze, for example, the effect of
injecting some new molecule on the dynamics of
concentrations of the other molecules

I When we analyze a tissue consisting of many such cells, it
is impractical to compose many detailed cell models

I At the higher level we want a simpler model where a cell is
a module exchanging some signals with its neighbors

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

C



Less Fascinating but Still Interesting Motivations

I Low-level physical transistor model is abstracted into a
model with a relatively-small number of state variables
used in a higher level model of..

I A transistor level circuit which is, in turn, abstracted into a
gate or standard cell model which is used in a higher level
model of..

I A digital circuit which realizes some micro-architecture
element ...

I ...
I Hardware, software, internet, world, universe...



Principles of Hierarchical Design/Analysis
Methodology

I Complex systems are made of subsystems (components,
modules)

I These subsystems, in turn, are made of subsystems
I ...
I At a given level of abstraction a component admits a model

M with some level of granularity
I Moving to the next higher level where the component is

composed with other components, we would like to replace
M by a more abstract model M ′



A Wish List for the Reduced Model M ′

I It should be much less complex than M (less state
variables, simplified dynamics)

I Otherwise the analysis of the higher-level system will
explode

I To achieve that, M ′ should abstract away from many
internal details

I Consequently M ′ is less precise than M
I On the other hand M ′ should be sufficiently faithful to the

interface behavior of M
I So that if we substitute M ′ for M in the high-level model the

reduced model will not deviate much from the detailed one
I It is desirable to derive M ′ from M automatically



On the Semantics of being Less Precise

I Two different approaches to relate the concrete and
abstract models:

I Metric based (physics, traditional engineering):
I Model reduction: a system of differential equations with n

variables is replaced by a system with m < n variables
I Underlying this approach is the notion that the observable

trajectories of M ′ are close to those of M
I Set theoretic non determinism (CS, verification):

I Since in M ′ some variables are projected away, the system
becomes more non deterministic and admits more
behaviors than M

I This is expressed by the inclusion of (observed) behaviors
L(M) ⊆ L(M ′)

I This means that whatever you prove (correctness or
worst-case performance) using M ′ holds as well for M

I This is the approach that we use



More Technically Speaking

I We propose a fully-automated and tool-supported
methodology for deriving M ′ from M for the case of
networks of timed components

I M is a product of timed automata representing an acyclic
network of timed components; It has one clock per
component

I M realizes a (non-deterministic) timed transducer, it maps
timed input behaviors to sets of timed output behaviors

I M ′ is a timed automaton with less states and less clocks
I M ′ over-approximates M as a timed transducer: for any

input, the set of outputs M ′ produces includes all the
outputs produced by M



Timed Components

I A timed component is a device that reacts to a timed
stream of input events by emitting a timed stream of output
events

I Each output event is emitted some time after the input
event that triggered it

t

i

o
i o

I Timed components can model:
I Execution time of a software module
I Propagation delay in a digital circuit
I Time to transmit a packet in a network
I Time to respond to web query



(Acyclic) Networks of Timed Components

I Output of one component is an input for others
I Digital circuits, precedence between tasks, etc.

o1

o2

i1

i2

i1

o1

i2

o2
M

M′

I We want to build an abstract model of the network as a
component that over-approximates its timed I/O behavior



Intuition on the Nature of the Abstraction I
I Consider two timed components B1 and B2 each reacting

to an input event within some t ∈ [li , ui ] time, connected in
a network

[l1, u1 ]

B1x

B2
[l2, u2 ]

z1

z2

s0

s1

s2

s3

x ↑
ĉ := 0
c1 := 0

c1 ∈ [l1, u1 ]
z1 ↑
c2 := 0

z2 ↑
c2 ∈ [l2, u2 ]

0 t1 + l2

l1 u1
t1

t1 + u2

I In the detailed model z1 will take place within [l1, u1] time
after x while z2 within [l2, u2] after z1

I Clock ĉ is an auxiliary clock that measures the time since
input event x



Intuition on the Nature of the Abstraction II
I We discard internal clocks c1 and c2 and project timing

constraints on input clock ĉ

[l1, u1 ]

B1x

B2
[l2, u2 ]

z1

z2

s0

s1

s2

s3

x ↑
ĉ := 0
c1 := 0

c1 ∈ [l1, u1 ]
z1 ↑c2 := 0

z2 ↑
c2 ∈ [l2, u2 ]

s0

s1

s2

s3

x ↑
ĉ := 0

ĉ ∈ [l1, u1 ]
z1 ↑

ĉ ∈ [l1 + l2, u1 + u2 ]
z2 ↑

I In the abstract model z2 may happen at any
t ∈ [l1 + l2, u1 + u2] regardless of the time of z1

0

u1l1

l1 + l2 u1 + u2

0 t1 + l2

l1 u1
t1

t1 + u2



The Steps of the Abstraction Technique

AX ⇒ A+Ĉ
X ⇒ Ar

X ⇒ AĈ
X ⇒ AXio ⇒ Am

Xio

I Augment a network modeled by timed automaton AX with
auxiliary clocks triggered by input events to obtain A+Ĉ

X

I Perform reachability computation on A+Ĉ
X to obtain the

equivalent interpreted timed automaton Ar
X

I Project the timing constraints in Ar
X on the input clocks Ĉ

to obtain AĈ
X whose qualitative semantics is exact but its

timed semantics is an over approximation
I Project the transition labels in AĈ

X on the interface variable
to obtain AXio

I Minimize AXio wrt to observable actions to obtain Am
Xio



Adding Input Clocks

I This is the hardest and most original part of our work
I Every input event generates a new clock upon its arrival
I The input event triggers a wave of reactions in the network
I Since the network is acyclic and every component has a

finite upper bound on its reaction time, each event goes out
of the system within finite time

I When the event leaves the system, its clock can be reused
for other events

I Hence we can do with a finite number of clocks
I All the machinery of TA analysis is adapted to handle these

dynamic clocks, monitor the life and death of events...



Reachability/Simulation Graph and Interpreted Timed
Automaton

I The standard technique to analyze timed automata using
symbolic states of the form (q, Z ) where q is a discrete
state and Z is a subset of the clock space (zone)

I It leads to an equivalent automaton with an additional
property: all paths are realizable under the timing
constraints

I Relaxing the timing constraints of this automaton the
qualitative untimed semantics is preserved

I Applying this analysis to the automaton augmented with
input clocks, we add redundant constraints to the
computed zones that do not affect the behavior

I But after projection on the auxiliary clocks these
constraints are those that remain

I Output transitions now become conditioned upon the time
elapsed since the events that triggered them



The Other Steps

I Projection
I Hiding all the internal non-observable actions making them

silent transitions
I Minimizing the obtained automaton by merging states that

admit the same observable behaviors
I This is more involved than in untimed systems because we

have also to merge zones (invariants and guards)
I A lot of work: 65K lines of C++ code inside the IF toolbox
I A front-end language: digital circuits made of gates with

bi-bounded delay



Applications

I The reduced model can be an accompanying specification
(contract) of the component, like specifying the response
characteristic of electrical components

I Can be used to analyze large networks by divide and
conquer

I Pick a subnetwork M which can still be analyzed using TA
techniques, create the abstraction M ′ and compose it with
the rest of the network

I Pick a subnetwork of that and so on
I We demonstrate how it can be applied to systems beyond

the capabilities of current tools



Example: Wave Pipelining
I A technique for improving the throughput of sequential

circuits beyond a synchronous approach
I A second wave of inputs may arrive before the previous

wave has been completely processed

A

A

A

A

A

A

I Circuit has 36 logic gates with bi-bounded delays, each
modeled by a timed automaton with one clock

I What is the highest frequency in which waves do not
interfere? (assuming input is periodic with some jitter)



Wave Pipelining: non Compositional Approach

I First we apply a non-compositional approach directly to a
product of 36 timed automata

I The longest delay path is 1086
I We compose the circuit with an input generator of period

1200 and jitter of 10 which generates only one wave
through the circuit

I Analysis takes 7 minutes to obtain a reachability graph with
more than 26K symbolic states and 50K transitions

I Reducing the input period to 1000 to allow two
simultaneous waves, the analysis gets stuck



Wave Pipelining: Compositional Approach
I The circuits admits 5 instances of the sub-circuit A, two

connected to the primary inputs
I Compose A with input generator of period 247 and jitter

10; May induce 2 simultaneous waves in the circuit
I Our abstraction reduces the reachability graph from

213/321 states/transtions to 34/58 with output jitter 32
I We compose the third copy of A with such an input

generator and reduce the obtained graph from 270/411 to
36/62 and output jitter of 54...

I At the end we show no interference; reducing the input
frequency from 247 to 246 we detect interference

A

A

A

A

A

A



Conclusions

I We have developed a new technique for compositional
timing analysis using timed automata

I The essence of the technique is to use the internal clocks
of the components to eliminate infeasible behaviors and
then discard these clocks

I The technique can be particulary useful when the number
of simultaneous excitation waves in the network is much
smaller than the number of components

I We used the technique to analyze system of a size much
much beyond the capabilities of existing tools

I There is still a long way to go..



A Personal Opinion on Timed Systems

I The level of abstraction provided by timed automata is
extremely important

I It deserves to be one of the foundations of any theory of
embedded systems

I Unfortunately one has to cross heavy definitions with large
n-tuples to get to the point

I Consequently the domain attracts mostly pure
theoreticians who care more about theorems than about
the poor engineers (real or imaginary) that can benefit from
the insights of the model

I I am not sure the situation will change after this talk, but all
this work has been guided by optimism



Thank You


