
Power Aware Combinational Synthesis
HVC 2015

Jan Láńık∗, Oded Maler∗

∗CNRS and The University of Grenoble

19th November 2015

1 / 22



Motivation

Power consumption of integrated chips is an issue.

Our work: yet another attempt to reduce power consumption at
the gate level.

2 / 22



Switching power dissipation at a gate

P =
1

2
V 2
ddCiEi f

Vdd . . . supply voltage

Ci . . . capacitance connected to the output of gate i

Ei . . . switching activity (number of switches per cycle)
of gate i

f . . . clock frequency

Our method: Optimizing for small average Ei during the hardware
synthesis.

3 / 22



Hardware synthesis

Hardware analog of a compilation in software

High level description Silicon realization

Optimizations for speed, space and power

Many intermediate steps

Many degrees of freedom

4 / 22



Our place in the synthesis flow

Synthesis of combinatorial logic from arbitrary boolean
functions to technology independent network of AND gates
and inverters

Optimizing for minimal (expected) switching in the gates

Without compromising space/speed optimization

5 / 22



AIG (AND-Inverter graph)

An acyclic directed graph

Nodes = AND and NOT gates

Efficient representation for manipulating Boolean functions

Not canonical (unlike BDDs)

Used for optimization and verification

6 / 22



AIG within synthesis flow

1) multilevel logic specification
a

b

c

X = a · b

Y = b̄ + c y

Z = X + Y z

3) Technology dependent representation
a

b

c y

z

2ANDXU37

2ORZA15

INVBC5
2NANDXU6

2) AIG
a

b

c

y

z

7 / 22



AND cones in AIG

Referred by an inverter

Referred twice

We want to optimize AIGs by re-arranging AND cones.

8 / 22



2 ways to realize 8AND by 2ANDs

x1

x2

x3

x4
x5

x6

x7

x8

0→ 1

0→ 1
0→ 1

0→ 1
1→ 0

1→ 0
1→ 0

1→ 0

0→ 1

0→ 1

1→ 0

1→ 0

0→ 1

1→ 0

0→ 0

x1

x5

x2

x6
x3

x7

x4

x8

0→ 1

1→ 0
0→ 1

1→ 0
0→ 1

1→ 0
0→ 1

1→ 0

0→ 0

0→ 0

0→ 0

0→ 0

0→ 0

0→ 0

0→ 0

we assume synchronized design, 0 time delay

1 switch = change of value at a gate output

gate values determined by input values

9 / 22



Input stream and switching

BUT - a circuit see more than one transition during it’s
lifetime

input stream = sequence of values as they are applied to the
circuit inputs

we need a ‘typical sequence’

Input stream + Internal structure = Actual switching

10 / 22



Where to get an input stream

A (long) input stream can be derived from simulation of the
design

Such streams are commonly used for functional verification
and quantitative evaluation of the circuit

If we have a probabilistic model for the input, we can use it to
generate an input stream

11 / 22



Optimization and evaluation flow

12 / 22



AND Cone optimization

An AND cone is semantically equivalent to an n-input AND
gate

Goal: find 2AND realization for the given cone
with a minimal switching w.r.t. the learning
sequence

Constrained to minimal-depth 2AND (timing)

13 / 22



AND Cone optimization methods

Solution:
1 Enumerative

Growing too fast
Realistic only for small cones (up to approximately 8 inputs).

2 Layer based approximation

Optimal on ”layers”
Globally suboptimal

14 / 22



Layer based cone synthesis

layer-optimal

Each pairing of input signals into an AND gate produces certain
switching number. Minimizing the switchings in the first level
corresponds to minimal perfect matching in a weighted graph
[O(n3),Edmons65].

15 / 22



Evaluation scenarios

We evaluate on 2 classes of examples:
1 Synthetic products of Markov chains

different forms of interaction/correlation between variables
another parameter characterizes the amount of
randomness/determinism

2 A model of a simple instruction decoder

16 / 22



Synthetic models

0 1

ai
1− ai

bi

1− bi

Variables depend just on the previous value

Cascades - variables ordered, depending on the previous one
or two

Partitioned variables - variables forms internally dependent
clusters

Arbitrary sparse network of dependencies

17 / 22



Synthetic models results

Independent Cascades

Partitioned Sparse
18 / 22



Calculator example

Buttons are not pressed
randomly

Some sequences doesn’t
make sense

Some operations are used
more often (that’s why plus
is bigger)

We build a Markov chain
describing which button is
going to get pressed based
on reasonable assumptions

19 / 22



Mini instruction decoder

start set op op set loaded

store

plm:LOADM

1−plm:LOAD

padd :SET ADD

psub:SET SUB

pmul :SET MUL

pdiv :SET DIV

plm:LOADM

1−plm:LOAD

psm:EVAL

1−psm:EVAL

STORE

plm = 0.1 padd = 0.4 psub = 0.3
pmul = 0.2 pdiv = 0.1 psm = 0.1

20 / 22



Decoder results

A comparison of the number of switchings in the optimized
instruction compared to 20 other arbitrary realizations. The height
of bars shows how much switching can be saved using the
optimized circuit compared to that realization.

21 / 22



Conclusion

Main contributions

Level-optimal AIG switching optimization method

Evaluation on synthetic and toy hardware model

Efficiency related to input randomness

Issues

Non-optimality of level-based - seems to be only theoretical

Small AND cones in many examples

Other steps further down may kill the savings - we are working
on a tighter integration in the ABC synthesis tool [A.
Mischenko]

Thank you!

22 / 22


