On the Quantitative Semantics of Regular Expressions over Real-Valued Signals

Alexey Bakhirkin Thomas Ferrère Oded Maler Dogan Ulus

Institute of Science and Technology

We Want to Ask Questions about Signals

- Real-valued.
- Piecewise-linear or piecewise-constant.
- Time is bounded.
- Question language - Signal Regular Expressions.

Signal Regular Expressions and Boolean Matching

Pre-Existing Work

$$
\varphi \rightarrow x \geq c|x \leq c|\langle\varphi\rangle_{[a, b]}\left|\varphi_{1} \cdot \varphi_{2}\right| \varphi^{*}\left|\varphi_{1} \wedge \varphi_{2}\right| \varphi_{1} \vee \varphi_{2}
$$

Basic question: Does the signal w match the expression φ on the interval $\left[t, t^{\prime}\right)$?

- $x \geq c$, if $t^{\prime}>t$ and $x \geq c$ everywhere on $\left[t, t^{\prime}\right)$;
- $\langle\varphi\rangle_{[a, b]}$, if w matches φ on $\left[t, t^{\prime}\right)$, and $a \leq t^{\prime}-t \leq b$;
- $\varphi \cdot \psi$, if there is $t^{\prime \prime}$ in $\left[t, t^{\prime}\right]$, s.t. w matches φ on $\left[t, t^{\prime \prime}\right)$ and ψ on [$t^{\prime \prime}, t^{\prime}$).
- φ^{*}, if there is k (infinite disjunction can be avoided), s.t. w matches $\varphi \cdot \varphi \cdot \ldots \cdot \varphi$ (k times).
- Boolean \wedge and \vee, as expected.

We ask: Where does the signal match the expression?
Find intervals $\left[t, t^{\prime}\right)$, where the signal w matches the expression φ.

Boolean Matching Example

Pre-Existing Work

Boolean semantics: Does w on $[0,6)$ match $x \geq 0 \cdot y \geq 0$? Yes.
We ask: Where does w match $x \geq 0 \cdot y \geq 0$?
On $\left[t, t^{\prime}\right)$, where $t<3$ and $t^{\prime}>2$.
If needed, can project the final answer on t.

Quantitative Matching

This Work

Basic question: How well does the signal w match (or does not much) the expression φ on the interval $\left[t, t^{\prime}\right)$?

Robustness of an expression on $\left[t, t^{\prime}\right)$:

- $x \geq c$, how far is x above c,
if $t^{\prime}>t$ then minimum of $x-c$ on $\left[t, t^{\prime}\right)$, otherwise $-\infty$;
- $\langle\varphi\rangle_{[a, b]}$, if $a \leq t^{\prime}-t \leq b$ then robustness of φ on $\left[t, t^{\prime}\right)$, otherwise $-\infty$.
- $\varphi \cdot \psi$,
$\max \left\{\min \left\{\rho\right.\right.$ of φ on $\left[t, t^{\prime \prime}\right), \rho$ of ψ on $\left.\left.\left[t^{\prime \prime}, t^{\prime}\right)\right\} \mid t^{\prime \prime} \in\left[t, t^{\prime}\right)\right\}$:
- φ^{*} supremum (turns into max) of robustness of φ^{k} for $k \geq 0$.
- For \wedge and \vee, min and max.

Again, we compute robustness for every interval.

Robustness Example

- What's the robustness of $x \geq 0$ on $[0,6) ?-0.5$.
-What's the robustness of $x \geq 0 \cdot y \geq 0$ on $[0,6)$? 0.5 . We have to take $t^{\prime \prime}=2.5$.

Note that we compute robustness for every interval.

Robustness Example

- What's the robustness of $x \geq 0$ on $[0,6)$? - 0.5 .
-What's the robustness of $x \geq 0 \cdot y \geq 0$ on $[0,6)$? 0.5 . We have to take $t^{\prime \prime}=2.5$.

Note that we compute robustness for every interval.

What Robustness Means

- We can shift every point of w by at most ρ, and it will still match φ.
- Assume that w matches φ on $[0,|w|)$, i.e., $\rho \geq 0$.
- Find the uniform distance to the closest signal that does not match φ.
- Robustness of φ on $[0,|w|)$ is at most this distance.

How to Compute Robustness

- Bottom-up over the expression structure.
- For every sub-expression, we want the surface:

Volume Representation

- Instead of the surface, on $\left[t, t^{\prime}\right), \rho=\cdots$.

Volume Representation

- Instead of the surface, on $\left[t, t^{\prime}\right), \rho=\cdots$.
- Compute the "half-space" under it, on $\left[t, t^{\prime}\right), \rho<\cdots$

Volume Representation

- Instead of the surface, on $\left[t, t^{\prime}\right), \rho=\cdots$.
- Compute the "half-space" under it, on $\left[t, t^{\prime}\right), \rho<\cdots$
- Represent the robustness of φ as a set of polyhedra P_{φ} that fill the space under the surface.
- For $\varphi \cdot \psi, \varphi \wedge \psi, \varphi \vee \psi$, etc., combine P_{φ} and P_{ψ} with polyhedral operations.

Robustness of $x \geq 0$

- Fill the volume with zones by recursively finding local minima.
- Straightforward to adapt to $x \geq c$ and $x \leq c$.
- Piecewise-linear is similar, needs convex polyhedra and a couple of extra steps.

Robustness of $\varphi \cdot \psi$

- Represent $\max \left\{\min \left\{\rho\left(\varphi,\left[t, t^{\prime \prime}\right)\right), \rho\left(\psi,\left[t^{\prime \prime}, t^{\prime}\right)\right)\right\} \mid t^{\prime \prime} \in\left[t, t^{\prime}\right]\right\}$.
- Given P_{φ} (over $t, t^{\prime \prime}, \rho$) and P_{ψ} (over $t^{\prime \prime}, t^{\prime}, \rho$).
- Insersection represents the minimum.
$P_{\varphi} \wedge P_{\psi}$ represents $\min \left\{\rho\left(\varphi,\left[t, t^{\prime \prime}\right)\right), \rho\left(\psi,\left[t^{\prime \prime}, t^{\prime}\right)\right)\right\}$.
- Projection represents maximum over a dimension. $\exists t^{\prime \prime} . P_{\varphi} \wedge P_{\psi} \wedge t^{\prime \prime} \in\left[t, t^{\prime}\right]$ represents $\rho\left(\varphi \cdot \psi,\left[t, t^{\prime}\right)\right)$.

Other Expressions

- $\langle\varphi\rangle_{[a, b]}: P_{\varphi} \wedge a \leq t^{\prime}-t \leq b$.
- $\varphi \wedge \psi: P_{\varphi} \wedge P_{\psi}$.
- $\varphi \vee \psi: P_{\varphi} \cup P_{\psi}$.
- $\varphi^{*}: \varepsilon \vee \varphi \vee \varphi^{2} \vee \varphi^{3} \cdots$ until it stabilizes (it will).

Kleene Star is Bounded

For every signal and expression φ, exists k (depends on the signal), s.t. $\varphi \vee \varphi^{2} \vee \cdots \vee \varphi^{k}$ is not less robust than
$\varphi \vee \varphi^{2} \vee \cdots \vee \varphi^{k} \vee \varphi^{k+1}$.
Intuitively:

- When computing robustness of φ^{k}, we (look for the best way to) split the signal into k segments.
- Timing constrains in φ have resolution, they cannot distinguish between "very short" segments.
- On "very short" segments φ and φ^{2} have the same robustness.
- For large enough k, some segments become short enough that splitting into $k+1$ segments does not increase the robustness.

Experiments

Find a ringing pattern in a signal.
$\langle x \leq 0.2\rangle_{\leq 0.05} \cdot\langle 0.1 \leq x \leq 0.9\rangle_{\leq 0.05} \cdot\langle 0.7 \leq x \leq 1.3\rangle_{[0.3,1]} \cdot\langle 0.9 \leq x \leq 1.1\rangle_{[3,6]}$

With piecewise-constant interpolation:

Input length	10 K	20 K	40 K
Execution Time (sec)	3.88	7.80	15.5
Number of output zones	156 K	315 K	631 K

Future Work

- Optimization. Don't compute robustness for unnecessary expressions and intervals.
Low-hanging fruit:
- Propagate time constraints from top to bottom.
- Discard regions with robustness below a threshold.

Less low hanging: quantize robustness.

Future Work

- Optimization. Don't compute robustness for unnecessary expressions and intervals.
- Time robustness. Allow to violate time constraints at a cost.
- Multi-dimensional robustness. Don't add apples to oranges.

Thanks

