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Preamble

I Je ne suis pas un biologist et je vais parler en anglais so
“theory” is my strongest link to this school

I The intended messages in my talk are:

II 1) Dynamical systems are important for Biology

I 2) Those dynamical systems are not necessarily those that
you learned about in school

I 3) Some inspiration for biological models should come more
from Informatics and Engineering and less from Physics

I 4) In particular, methodologies for exploring the behavior of
under-determined (open) dynamic models
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Organization

I Part I
I Dynamical systems in Biology
I Discrete-Event Dynamical Systems (Automata)
I What is Verification

I Part II
I Applying Verification to Continuous and Hybrid Systems
I Parameter-Space Exploration
I Reachability Computation



Dynamical Systems are Important

I Not news for biologists with a mathematical background

I J.J. Tyson, Bringing cartoons to life, Nature 445, 823, 2007:

I

I “Open any issue of Nature and you will find a diagram
illustrating the molecular interactions purported to underlie
some behavior of a living cell.

I The accompanying text explains how the link between
molecules and behavior is thought to be made.

I For the simplest connections, such stories may be convincing,
but as the mechanisms become more complex, intuitive
explanations become more error prone and harder to believe.”



In other Words

I What is the relation (if any) between

and



Systems and Behaviors

I Left: a model of a dynamical system which explains the
mechanism in question

I Right: some experimentally observed behavior supposed to
have some relation to the behaviors that the dynamical model
generates

I What is this relation exactly?

I Current practice leaves a lot to be desired (at least for
theoreticians)



An Illustrative Joke

I An engineer, a physicist and a mathematician are traveling in
a train in Scottland. Suddenly they see a black sheep

I Hmmm, says the engineer, I didn’t know that sheeps in
Scottland are black

I No my friend, corrects him the physicist, some sheeps in
Scottland are black

I To be more precise, says the mathematician, there is a sheep
in Scottland having at least one black side

I A discipline is roughly characterized by the number of logical
quantifiers ∃ ∀ (and their alternations) its members feel
comfortable with

I By the way what would a biologist say?

I In the Scottish sheep the agouti isoform is first expressed at
E10.5 in neural crest-derived ventral cells of the second
branchial arch
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Dynamical Systems, a Good Idea

I The quote from Tyson goes on like this:

I “A better way to build bridges from molecular biology to
cell physiology is to recognize that a network of interacting
genes and proteins is ..

I .. a dynamic system evolving in space and time according to
fundamental laws of reaction, diffusion and transport

I These laws govern how a regulatory network, confronted by
any set of stimuli, determines the appropriate response of a
cell

I This information processing system can be described in
precise mathematical terms,

I .. and the resulting equations can be analyzed and
simulated to provide reliable, testable accounts of the
molecular control of cell behavior”

I No news for engineers..
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Models in Engineering

I To build complex systems other than by trial and error you
need models

I Regardless of the language or tool used to build a model, at
the end there is some kind of dynamical system

I A mathematical entity that generates behaviors which are
progression of states and events in time

I Sometimes you can reason about such systems analytically

I But typically you simulate the model on the computer and
generate behaviors

I If the model is related to reality you will learn something
from the simulation about the actual behavior of the system

I Major difference: in engineering, the components are often
well-understood and we need the simulation only because the
outcome of their interaction is hard to predict
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My Point: Systems Biology ≈ Dynamical Systems, but..

I To make progress in Systems Biology one needs to upgrade
descriptive “models” by dynamic models with stronger
predictive power and refutability

I Classical models of dynamical systems and classical analysis
techniques tailored for them are not sufficient for effective
modeling and analysis of biological phenomena

I Models, insights and computer-based analysis tools developed
within Informatics (aka Computer Science) can help

I The whole systems thinking in CS is much more evolved and
sophisticated than in physics and large parts of math

I This is true of other engineering disciplines such as circuit
design or control systems
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What “Is” Informatics ?

I Informatics is the study of discrete-event dynamical
systems (automata, transition systems

I A natural point of view for for people working on modeling
and verification of “reactive systems”

I Less so for data-intensive software developers and users

I This fact is sometimes obscured by fancy formalisms:

I Petri nets, process algebras, rewriting systems, temporal
logics, Turing machines, programs

I All honorable topics with intrinsic beauty, sometimes even
applications and deep insights

I But in an inter-disciplinary context they should be distilled to
their essence to make sense to potential users..

I ..rather than intimidate them
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Dynamical Systems in General

I The following abstract features of dynamical systems are
common to both continuous and discrete systems:

I State variables whose set of valuations determine the state
space

I A time domain along which these values evolve

I A dynamic law: how state variables evolve over time,
possibly under the influence of external factors

I System behaviors are progressions of states in time

I Knowing an initial state x [0] the model can predict, to some
extent, the value of x [t]
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Types of Dynamical Systems

I Dynamic system models differ from each other according to
their concrete details:

I State variables: numbers or more abstract types

I Time domain: metric (dense or discrete) or logical

I The form of the dynamical law (constrained, of course, by the
state variables and time domain)

I The type of available analysis (analytic, simulation)

I Other features (open/closed, type of non-determinism, spatial
extension)



Classical Dynamical Systems

I State variables: real numbers (location, velocity, energy,
voltage, concentration)

I Time domain: the real time axis R or a discretization of it

I Dynamic law: differential equations

ẋ = f (x , u)

or their discrete-time approximations

x [t + 1] = f (x [t], u[t])

I Behaviors: trajectories in the continuous state space

I Typically presented in the form of a collection of waveforms,
mappings from time to the state-space

I What you would construct using tools like Matlab Simulink,
Modelica, etc.
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Discrete-Event Dynamical Systems (Automata)

I An abstract discrete state space

I State variables need not have a numerical meaning

I A logical time domain defined by the events (order but not
metric)

I Dynamics defined by transition rules: input event a takes the
system from state s to state s′

I Behaviors are sequences of states and/or events

I Composition of large systems from small ones using:
different modes of interaction: synchronous/asynchronous,
state-based/event-based

I What you will build using tools like Raphsody or Stateflow (or
even C programs or digital HDL)
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Preview: Timed and Hybrid Systems

I Mixing discrete and continuous dynamics

I Hybrid automata: automata with a different continuous
dynamics in each state

I Transitions = mode switchings (valves, thermostats, gears,
genes)

I Timed systems: an intermediate level of abstraction

I Timed Behaviors = discrete events embedded in metric time,
Boolean signals, Gantt charts

I Used implicitly by everybody doing real-time, scheduling,
embedded, planning in professional and real life

I Formally: timed automata (automata with clock variables)
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Automata: Modeling and Analysis

I Automata model processes viewed as sequences of steps:
software, hardware, ATMs, user interfaces administrative
procedures, cooking recipes, smart phones...

I Unlike continuous systems there are no simple analytical tools
to determine long-term behavior

I We can simulate and sometimes do formal verification:

I Check whether all behaviors of a system, exposed to some
uncontrolled inputs, exhibit some qualitative behavior:

I Never reach some part of the state space; Always follow some
sequential pattern of behavior...

I These temporal properties include transients and are much
richer than classical steady states or limit cycles

I Tools for the verification of huge systems by sophisticated
graph algorithms
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Illustration: The Coffee Machine

I Consider a machine that takes money and distributes drinks

I The system is built from two subsystems, one that takes care
of financial matters, and one which handles choice and
preparation of drinks

I They communicate by sending messages

M1

5

4

6

M2

drink-ready

st-tea

st-coffee

3

2

1

coin-in

cancel

coin-out

7

8

9

req-coffee

req-tea

reset

ok

done



Remark: Signalling

I Modern systems separate information-processing from the
physical interface

I An inserted coin, a pushed button or a full cup are physical
events translated by sensors into uniform low-energy signals

I These signals are treated as information, without thinking too
much about their material realization

I Unless you are a low-level hardware designer
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Automaton Models

I The two systems are models as automata

I transitions are triggered by external events and events coming
from the other subsystem

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

done/

0 1

coin-in/ ok

cancel/coin-out, reset

M1



The Global Model

I The behavior of the whole system is captured by a
composition (product) M1 ‖ M2 of the components

I States are elements of the Cartesian product of the respective
sets of states, indicating the state of each component

I Some transitions are independent and some are synchronized,
taken by the two components simultaneously

I Behaviors of the systems are paths in this transition graph

done/

0 1

coin-in/ ok

cancel/coin-out, reset

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

M1



Normal Behaviors

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Customer puts coin, then sees the bus arriving, cancels and
gets the coin back

0A coin-in 1B cancel coin-out 0A

I Customer inserts coin, requests coffee, gets it and the systems
returns to initial state

0A coin-in 1B req-coffee st-coffee 1C drink-ready 0A



An Abnormal Behavior

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Suppose the customer presses the cancel button after the
coffee starts being prepared..

0A coin-in 1B req-coffee st-coffee 1C cancel coin-out 0C

drink-ready 0A

I Not so attractive for the owner of the machine



Fixing the Bug
I When M2 starts preparing coffee it emits a lock signal
I When M1 received this message it enters a new state where

cancel is refused

M1

0 1

coin-in/ ok

2

lock/

cancel/coin-out, reset

done/

drink-ready/done

drink-ready/done

A

C

B

D

reset/

req-coffee/st-coffee,lock

req-tea/st-tea,lock

M2

ok/

0A 1B

drink-ready/

2C

2D

coin-in/

cancel/coin-out req-tea/st-tea

req-coffee/st-coffee

drink-ready/



The Moral of the Story I

I Many complex systems can be modeled as a composition of
interacting automata

I Behaviors of the system correspond to paths in the global
transition graph of the system

I The size of this graph is exponential in the number of
components (state explosion, curse of dimensionality)

I These paths are labeled by input events representing
influences of the external environment

I Each input sequence may generate a different behavior

I We want to make sure that a system responds correctly to all
conceivable inputs

I That it behaves properly in any environment (robustness)
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The Moral of the Story II

I How to ensure that a system behaves properly in the presence
of all conceivable inputs and parameters?

I Each individual input sequence may induce a different
behavior. We can simulate each but cannot do it exhaustively

I Verification is a collection of automatic and semi-automatic
methods to analyze all the paths in the graph

I And this type of analysis and way of looking at phenomena is
our potential contribution to Biology
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Our Modest Contribution

I We develop analysis methods and tools that take
under-determination seriously

I Either by systematic sampling of the uncertainty space

I Either by exhaustive set-based simulation methods that
compute “tubes” of trajectories the contain all the behaviors
under all choices in the uncertainty space

x0x0
x0

I and identifying the range of model parameters that lead to
certain classes of behaviors

I Hopefully such tools will help increasing the meaningfulness of
dynamic models and provide for their composition



Part II: Exploring Under-Determined Continuous Systems

I A system admits a dynamics x [t + 1] = f (x [t], p, u[t]) where:

I p is a vector of parameter values

I Experiments do not characterize their exact values (they may
vary among cells)

I u[t] is an external disturbance signal indicating possible
dynamic variations in the environment outside the model

I To generate a simulated behavior from an under-determined
model you need to fix:

I initial state x0, a point p in the parameter space, and a
disturbance profile u[t]



Dynamical Models

I What does a simulator need to produce

I A trace:
x [0], x [1], x [2], . . .

I For deterministic systems the dynamic rule is a function
f : X → X

I The rule allows the simulator to proceed from one state to
another

x [i + 1] = f (x [i ])

I You just have to fix the initial state x [0]



Static/Punctual Under-Determination

I Some systems may have a unique initial state (reboot)

I Otherwise, to produce a trace you need to fix x [0]

I Without this information, the system is under-determined
and cannot generate a trace

I It has an empty slot that needs to be filled by some point in
x ∈ X0 ⊆ Rn, the set of all possible initial states

I Hence we call it punctual under-determination



Reminder: Models and Reality

I Whenever our models are supposed to represent something
non-trivial they are just approximations

I This is evident for anybody working in modeling concrete
physical systems

I It is less so for those working on the functionality of digital
hardware or software

I There you have strong deterministic abstractions (logical
gates, program instructions)

I A common way to pack our ignorance in a compact way is to
introduce parameters ranging in some parameter space



Examples:

I Biochemical reactions in cells following the mass action law

I Many parameters related to the affinity between molecules

I Cannot be deduced from first principles, only measured by
isolated experiments under different conditions

I Voltage level modeling and simulation of circuits

I A lot of variability in transistor characteristics depending on
production batch, place in the chip, temperature, etc.

I Timing performance analysis of a new application (task
graph) on a new multi-core architecture

I Precise execution times of tasks are not known before the
application is written and the architecture is built
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Parameterize Dynamical Systems

I The dynamics f becomes a template with some empty slots
to be filled by parameter values

I Taken from some parameter space P ⊆ Rm

I Each p instantiates f into a concrete function fp that can be
used to produce traces

I Parameters like initial states are instances of punctual
under-determination: you choose them only once when
starting the simulation



So What?

I So you have a model which is under-determined, or
equivalently an infinite number of models

I For simulation you need to determine, to make a choice to
pick a point p in the parameter space

I The simulation shows you something about one possible
behavior of the system, or a behavior of one possible system

I But another choice of parameter values could have produced a
completely different behavior

I Ho do you live with that?



Possible Attitudes

I The answer depends on many factors

I One is the responsibility of the modeler/simulator

I What are the consequences of not taking under-determination
seriously

I Is there a penalty for jumping into conclusions based on one
or few simulations?

I Another factor is the mathematical and real natures of the
system you are dealing with

I And as usual, it may depend on culture, background and
tradition in the industrial or academic community
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Non Responsibility: a Caricature

I Suppose you are a scientist not engineer, say biologist

I You conduct experiments and observe traces

I You propose a model and tune the parameters until you
obtain a trace similar to the one observed experimentally

I These are nominal values of the parameters

I Then you can publish a paper about your model

I Except for picky reviewers there are no real consequences for
neglecting under-determination

I The situation is different if some engineering is involved
(pharmacokinetics, synthetic biology)

I Or if you want others to compose their models with yours
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Justified Nominal Value

I You can get away with using a nominal value if your system is
very continuous and well-behaving

I Points in the neighborhood of p generate similar traces

I There are also mathematical techniques (bifurcation diagrams,
etc.) that can tell you sometimes what happens when you
change parameters

I This smoothness is easily broken by mode switching

I Another justification for ignoring parameter variability:

I When the system is adaptive anyway to deviations from
nominal behavior (control, feedback)
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Taking Under-Determination More Seriously: Sampling

I One can sample the parameter space with or without
probabilistic assumptions

I Make a grid in the parameter space (exponential in the
number of parameters)

I Or pick parameter values at random according to some
distribution

I In the sequel I illustrate a technique (due to A. Donze) for
adaptive search in the parameter space

I Sensitivity information from the numerical simulator tells you
where to refine the coverage

I Arbitrary dimensionality of the state space, but no miracles
against the dimensionality of the parameter space
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Sensitivity-based Exploration I

I We want to prove all trajectories from X0 do not reach a bad
set of states

I Take x0 ∈ X0 and build a ball B0 around it that covers X0

X0

I Simulate from x0 and generate a sequence of balls B0,B1, . . .

I Bi contains all points reachable from B0 in i steps



Sensitivity-based Exploration II

I After k steps, three things may happen:

I 1. No ball intersects bad set and the system is safe
(over-approximation)

I 2. The concrete trajectory intersects the bad set and the
system is unsafe

I 3. Ball Bk intersects the bad set but we do not know if it is a
real or spurious behavior



Sensitivity-based Exploration III

I In the latter case we refine the coverage and repeat the
process for two smaller balls

x2x1

I Can prove correctness using a finite number of simulations,
focusing on the interesting values

I Can approximate the boundary between parameter values that
yield some qualitative behaviors and values that do not



The Breach Toolboox

I Parameter-space exploration for arbitrary continuous
dynamical systems relative to quantitative temporal
properties

I Applied to embedded control systems, analog circuits,
biochemical reactions

I Available for download



Dynamic Under-Determination

I The system is modeled as open, exposed to external
disturbances

I Dynamics of the form

x [i + 1] = f (x [i ], v [i ])

I The natural way to represent the influence of other
unmodeled subsystems and the external environment

I Under-determination becomes dynamic: to produce a trace
you need to give the value of v at every step in time, a
signal/sequence v [1], . . . , v [k]

I A priory a much larger space to sample from: dimension mk
compared to m for static

I One can use a nominal value: constant, step, periodic signal,
random noise, etc.
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Taking Under-Determination More Seriously: Sampling

I A method due to T. Dang:

I Use ideas from robotic motion planning (RRT) to generate
inputs that yield a good coverage of the reachable state space

I Applied to analog circuits



Taking Under-Determination More Seriously: Verification

I Paranoid worst-case formal verification attitude:

I If we say something about the system it should be provably
true for all choices of p, x [0] and v [1], . . . , v [k]

I Instead of doing a simple simulation you do set-based
simulation, computing tubes of trajectories covering
everything

I Breadth-first rather than depth-first exploration
x0

I Advantages: works also for hybrid (switched) systems

I Limitations: manipulates geometric objects in high dimension
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State of the Art

I Linear and piecewise-linear dynamics ∼ 200 variables using
algorithms of C. Le Guernic and A. Girard

I Nonlinear dynamics with 10− 20 variables - an ongoing
research activity

I Implemented into the SpaceEx tool developed under the
direction of G. Frehse

I Available on http://spaceex.imag.fr with web interface,
model editor, visualization and more

I Waiting for more beta testers

http://spaceex.imag.fr


The State-Space Explorer (SpaceEx)



Example Lac Operon (T. Dang)

Ṙa = τ − µ ∗ Ra − k2RaOf + k−2(χ− Of )− k3RaI
2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ− Of )

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI
2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE



Back to the Big Picture

I Biology needs (among other things) more dynamic models to
form verifiable predictions

I These models can benefit from the accumulated
understanding of dynamical system within informatics and
cannot rely only on 19th century mathematics

I The views of dynamical system developed within informatics
are, sometimes, more adapted to the complexity and
heterogeneity of Biological phenomena

I Biological modeling should be founded on various types of
dynamical models: continuous, discrete, hybrid and timed

I These models should be strongly supported by computerized
analysis tools offering a range of capabilities from simulation
to verification and synthesis
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Back to the Big Picture

I Systems Biology should combine insights from:

I Engineering disciplines: modeling and analysis of very complex
man-made systems (chips, control systems, software,
networks, cars, airplanes, chemical plants)

I Physics: experience in mathematical modeling of natural
systems with measurement constraints

I Mathematics and Informatics as a unifying theoretical
framework



Thank You


