Symmetry Breaking for Multi-Criteria Mapping and Scheduling on Multicores

Pranav Tendulkar
Peter Poplavko

Oded Maler

August 2013

Context

- Typical in parallel programming: spawn multiple identical tasks
- data parallelism
- obtain hyperperiod of a multi-periodic system
- duplicate tasks for fault-tolerance

Context

- Typical in parallel programming: spawn multiple identical tasks
- data parallelism
- obtain hyperperiod of a multi-periodic system
- duplicate tasks for fault-tolerance
- Often the platform have multiple identical processors.

Context

- Typical in parallel programming: spawn multiple identical tasks
- data parallelism
- obtain hyperperiod of a multi-periodic system
- duplicate tasks for fault-tolerance
- Often the platform have multiple identical processors.
- Hence, symmetry in the solution space.

Multi-criteria Optimization

minimize latency using minimal number of processors

Multi-criteria Optimization

minimize latency using minimal number of processors

Contribution

context:

static mapping and scheduling for programs with data-parallelism multi-criteria optimization using SMT solvers

Contribution

context:
static mapping and scheduling for programs with data-parallelism multi-criteria optimization using SMT solvers
symmetry breaking in solution space for identical tasks and processors

Contribution

context:
static mapping and scheduling for programs with data-parallelism multi-criteria optimization using SMT solvers
symmetry breaking in solution space for identical tasks and processors goal: increase the tractable problem size of SMT solvers
experiments : problem size increase from 20 to 50 tasks

Outline

(1) Motivation
(2) Application Model
(3) Problem Formulation-SMT

4 Symmetry Breaking
(5) Cost Space Exploration
(6) Experiments and Results
(7) Conclusions

Outline

(1) Motivation

(2) Application Model
(3) Problem Formulation - SMT

4 Symmetry Breaking
(5) Cost Space Exploration
(6) Experiments and Results
(1) Conclusions

Model of Computation

synchronous dataflow graphs (SDF)

by E. Lee and D. Messerschmitt in 1987
task graph + symbolic representation of data parallelism
signal-processing, video-coding applications
a 'standard' in academic multicore compilers:
Streamlt compiler of MIT

Model of Computation

synchronous dataflow graphs (SDF)

by E. Lee and D. Messerschmitt in 1987
task graph + symbolic representation of data parallelism
signal-processing, video-coding applications
a 'standard' in academic multicore compilers:
Streamlt compiler of MIT
we introduce split-join graphs : restriction of SDF
still covering perhaps 90% of use cases

Split-Join Graphs

a simple split-join graph example:

α : spawn and split
$1 / \alpha$: wait and join

Split-Join Graphs

Definition (Split-Join Graph)
$S=(V, E, d, \alpha),(V, E):$ DAG, $\quad V$:actors, E :channels $d: V \rightarrow \mathbb{R}_{+}:$actor execution time,
$\alpha: E \rightarrow \mathbb{Q}$: channel counter: split (>1), join (<1) or neutral $(=1)$

Split-Join Graphs

Definition (Split-Join Graph)
$S=(V, E, d, \alpha),(V, E): D A G, \quad V:$ actors, E :channels $d: V \rightarrow \mathbb{R}_{+}:$actor execution time,
$\alpha: E \rightarrow \mathbb{Q}:$ channel counter: split (>1), join (<1) or neutral $(=1)$

Split-Join Graphs

Definition (Split-Join Graph)
$S=(V, E, d, \alpha),(V, E):$ DAG, $\quad V$:actors, E :channels $d: V \rightarrow \mathbb{R}_{+}:$actor execution time,
$\alpha: E \rightarrow \mathbb{Q}$: channel counter: split (>1), join (<1) or neutral ($=1$)

Well-behaved Graphs

Definition (Well-behaved)
$S=(V, E, d, \alpha)$ is well-behaved if any complete path has balanced-parenthesis signature

Such a graph can be unfolded to a task graph.

Unfolding to Task Graph

V

Unfolding to Task Graph

V

Unfolding to Task Graph

V

Unfolding to Task Graph

Unfolding to Task Graph

Actors, Tasks, Lexicographic Order

split-join graph: actors e.g., A, B, C

Actors, Tasks, Lexicographic Order

 notation for actors: $v, v \in V$

Actors, Tasks, Lexicographic Order

notation for actors: $v, v \in V$

unfolded task graph: tasks e.g., $E_{0,1}, B, C_{2}$

Actors, Tasks, Lexicographic Order

 notation for actors: $v, v \in V$
notation for tasks: $u \in U$

Actors, Tasks, Lexicographic Order

 notation for actors: $v, v \in V$
notation for tasks: $u \in U$
$u=v_{h}, v \in V$ and h-hier. index, e.g., $v_{h}=E_{0,1}$

Actors, Tasks, Lexicographic Order

 notation for actors: $v, v \in V$
notation for tasks: $u \in U$ $U_{v}=\left\{v_{h}\right\}$: lexicographically ordered (\ll) set of instances of v $U_{E}: E_{0,0} \ll E_{0,1} \ll E_{1,0} \ll E_{1,1} \ll E_{2,0} \ll E_{2,1}$

Outline

(1) Motivation

(2) Application Model

(3) Problem Formulation-SMT
(4) Symmetry Breaking
(5) Cost Space Exploration
(6) Experiments and Results
(7) Conclusions

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold S into task graph $T=(U, \mathcal{E}, \delta)$

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold S into task graph $T=(U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
- Precedence
- Mutual Exclusion
- Buffer Capacity

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold S into task graph $T=(U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
- Precedence
- Mutual Exclusion
- Buffer Capacity (Extended Problem - see the paper)

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold S into task graph $T=(U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
- Precedence
- Mutual Exclusion
- Buffer Capacity (Extended Problem - see the paper)
- 4. Cost-space exploration using SMT solver.

Decision variables:

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold S into task graph $T=(U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
- Precedence
- Mutual Exclusion
- Buffer Capacity (Extended Problem - see the paper)
- 4. Cost-space exploration using SMT solver.

Decision variables:

- $\mu(u), u \in U$ - the mapping: processor $(1,2, \ldots, M)$ for u

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold S into task graph $T=(U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
- Precedence
- Mutual Exclusion
- Buffer Capacity (Extended Problem - see the paper)
- 4. Cost-space exploration using SMT solver.

Decision variables:

- $\mu(u), u \in U$ - the mapping: processor (1,2, ...,M) for u
- $s(u)$ - the schedule: start time of u

Constraints

Predicate $\varphi\left(u, u^{\prime}\right)$:
task u^{\prime} starts after the completion of task u

$$
\varphi\left(u, u^{\prime}\right): s\left(u^{\prime}\right) \geq s(u)+\delta(u)
$$

Constraints

Predicate $\varphi\left(u, u^{\prime}\right)$:
task u^{\prime} starts after the completion of task u

$$
\varphi\left(u, u^{\prime}\right): s\left(u^{\prime}\right) \geq s(u)+\delta(u)
$$

Precedence:

$$
\bigwedge_{\left(u, u^{\prime}\right) \in \mathcal{E}} \varphi\left(u, u^{\prime}\right)
$$

Constraints

Predicate $\varphi\left(u, u^{\prime}\right)$:
task u^{\prime} starts after the completion of task u

$$
\varphi\left(u, u^{\prime}\right): s\left(u^{\prime}\right) \geq s(u)+\delta(u)
$$

Precedence:

$$
\bigwedge_{\left(u, u^{\prime}\right) \in \mathcal{E}} \varphi\left(u, u^{\prime}\right)
$$

Mutual exclusion:

$$
\bigwedge_{u \neq u^{\prime} \in U}\left(\mu(u)=\mu\left(u^{\prime}\right)\right) \Rightarrow \varphi\left(u, u^{\prime}\right) \vee \varphi\left(u^{\prime}, u\right)
$$

Outline

(1) Motivation

(2) Application Model

(3) Problem Formulation - SMT

4 Symmetry Breaking
(5) Cost Space Exploration

6 Experiments and Results
(2) Conclusions

Task Symmetry

- all instances of given actor v are similar (symmetric)

Task Symmetry

- all instances of given actor v are similar (symmetric)

Task Symmetry

a schedule

a permuted schedule
task graph

- all instances of given actor v are similar (symmetric)
- permutation of symmetric tasks does not change the latency,
- ... but extends the solution space exponentially

Task Symmetry

- enforce the schedule to be compatible with lexicographic order: $s\left(C_{00}\right) \leq s\left(C_{01}\right) \leq s\left(C_{10}\right) \leq s\left(C_{11}\right)$

Task Symmetry

task graph

- enforce the schedule to be compatible with lexicographic order: $s\left(C_{00}\right) \leq s\left(C_{01}\right) \leq s\left(C_{10}\right) \leq s\left(C_{11}\right)$

Task Symmetry

schedule

- enforce the schedule to be compatible with lexicographic order: $s\left(C_{00}\right) \leq s\left(C_{01}\right) \leq s\left(C_{10}\right) \leq s\left(C_{11}\right)$
- Theorem: adding constraints $s(u) \leq s\left(u^{\prime}\right)$ for $u \ll u^{\prime}$ does not eliminate optimality

Proof Sketch

modify a feasible schedule such that:

$$
s\left(v_{0}\right) \leq s\left(v_{1}\right) \leq s\left(v_{2}\right) \leq \ldots
$$

prove that precedence constraints are satisfied
$\xrightarrow[\substack{\text { A } \\ 2 \\ 2}]{\sim}<$ here: for neutral channels $(\alpha=1)$, unfolded to $\left(v_{h}, v_{h}\right)$

$\downarrow \begin{gathered}\text { lexicographic } \\ \text { order }\end{gathered}$

start-time compatible

new hier. index; new precedence relation

Proof Sketch

modify a feasible schedule such that:

$$
s\left(v_{0}\right) \leq s\left(v_{1}\right) \leq s\left(v_{2}\right) \leq \ldots
$$

prove that precedence constraints are satisfied
$\underset{\substack{\text { B } \\ 2}}{\sim}$ here: for neutral channels $(\alpha=1)$, unfolded to $\left(v_{h}, v^{\prime}{ }_{h}\right)$

$\downarrow \begin{gathered}\text { lexicographic } \\ \text { order }\end{gathered}$

start-time
compatible

$\downarrow \begin{gathered}\text { new hier. index; } \\ \text { new precedence relation }\end{gathered}$

Proof Sketch

take successor [j]

Proof Sketch

take successor [j]

Proof Sketch

take successor [j]
by definition there exist $j+1$ same or earlier successors

Proof Sketch

take successor [j]
by definition there exist $j+1$ same or earlier successors

Proof Sketch

take successor [j]
by definition there exist $j+1$ same or earlier successors their original predecessors finish before successor [j]:

Proof Sketch

take successor [j]
by definition there exist $j+1$ same or earlier successors their original predecessors finish before successor [j]:

Proof Sketch

take successor [j]
by definition there exist $j+1$ same or earlier successors their original predecessors finish before successor [j]:

Proof Sketch

take successor [j]
by definition there exist $j+1$ same or earlier successors their original predecessors finish before successor [j]:
$j+1$ predecessors finish before, hence the earliest $j+1$ ones as well

Proof Sketch

take successor [j]
by definition there exist $j+1$ same or earlier successors their original predecessors finish before successor [j]:
$j+1$ predecessors finish before, hence the earliest $j+1$ ones as well predecessor [j] finishes before successor [j]

Processor Symmetry

task graph

Outline

(1) Motivation

(2) Application Model

(3) Problem Formulation-SMT

(4) Symmetry Breaking
(5) Cost Space Exploration
(6) Experiments and Results
(7) Conclusions

Exploring the Design Space

One SMT query for a given point $\left(C_{L}, C_{M}\right)$ in the cost space:

- C_{L} - latency
- C_{M} - processor count

- sat points
- unsat points
- unexplored points

Exploring the Design Space

One SMT query for a given point $\left(C_{L}, C_{M}\right)$ in the cost space:

- C_{L} - latency
- C_{M} - processor count

- sat points
- unsat points
- unexplored points
- Precedence and Mutual Exclusion Constraints
- Cost Constraints

$$
\bigwedge_{u \in U} s(u)+\delta(u) \leq C_{L} \wedge \bigwedge_{u \in U} \mu(u) \leq C_{M}
$$

Outline

(1) Motivation

(2) Application Model

(3) Problem Formulation-SMT

(4) Symmetry Breaking
(5) Cost Space Exploration
(6) Experiments and Results
(7) Conclusions

Synthetic-Graph Experiments

- Fix processor cost C_{M} and perform binary search for optimal C_{L}
- Increase α and measure increase in computation time
- With(out) breaking of task symmetry and processor symmetry

Synthetic-Graph Experiments

- Fix processor cost C_{M} and perform binary search for optimal C_{L}
- Increase α and measure increase in computation time
- With(out) breaking of task symmetry and processor symmetry
- Z3 solver v4.1 on i7 core at 1.73 GHz

Synthetic-Graph Experiments

-	no sym	$*$
nosk sym		
\cdots	proc sym $\cdots \cdots$	task \& proc sym

5-processor deployments

Pareto Exploration

without symmetry breaking
cost space $\left(C_{L}, C_{M}\right)$ exploration for $\alpha=30$ evaluate task and processor symmetry breaking

Pareto Exploration

without symmetry breaking

with symmetry breaking
cost space $\left(C_{L}, C_{M}\right)$ exploration for $\alpha=30$ evaluate task and processor symmetry breaking

Video Decoder

3D cost space $\left(C_{L}, C_{M}, C_{B}\right)$ exploration, C_{B} - total buffer size

MPEG video decoder:

Video Decoder

3D cost space (C_{L}, C_{M}, C_{B}) exploration, C_{B} - total buffer size

MPEG video decoder:

Conclusions

- Symbolic representation of data-parallel programs
- a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry

Conclusions

- Symbolic representation of data-parallel programs
- a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry
- Future work:

Conclusions

- Symbolic representation of data-parallel programs
- a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry
- Future work:
- More symmetry breaking, also approximation and heuristics
- More refined data communication: data transfer delays
- Pipelined scheduling
- Scheduling under uncertainty
- Multistage design flow

P2	A_{0} B_{0} C_{11} D_{1}						
P1	B_{1} C_{10} C_{01} C_{00}	D_{0}	E				
	Time						

P2	A_{0}	B_{0}	C_{00}	D_{0}			
P1		B_{1}	C_{01}	C_{10}	C_{11}	D_{1}	E

QUESTIONS?

