Symmetry Breaking for Multi-Criteria Mapping and Scheduling on Multicores

Pranav Tendulkar Peter Poplavko Oded Maler

August 2013

4 **A b b b b b b**

Context

- Typical in parallel programming: spawn multiple identical tasks
 - data parallelism
 - obtain hyperperiod of a multi-periodic system
 - duplicate tasks for fault-tolerance

Context

- Typical in parallel programming: spawn multiple identical tasks
 - data parallelism
 - obtain hyperperiod of a multi-periodic system
 - duplicate tasks for fault-tolerance
- Often the platform have multiple identical processors.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Context

- Typical in parallel programming: spawn multiple identical tasks
 - data parallelism
 - obtain hyperperiod of a multi-periodic system
 - duplicate tasks for fault-tolerance
- Often the platform have multiple identical processors.
- Hence, symmetry in the solution space.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Multi-criteria Optimization

minimize latency using minimal number of processors

3/30

Tendulkar, Poplavko, Maler

Multi-criteria Optimization

minimize latency using minimal number of processors

Tendulkar, Poplavko, Maler

Symmetry Breaking for mapping/scheduling

Contribution

context:

static mapping and scheduling for programs with data-parallelism multi-criteria optimization using SMT solvers

• • • • • • • • • • • • •

Contribution

context:

static mapping and scheduling for programs with data-parallelism multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors

• • • • • • • • • • • •

Contribution

context:

static mapping and scheduling for programs with data-parallelism multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors goal: increase the tractable problem size of SMT solvers experiments : problem size increase from 20 to 50 tasks

• • • • • • • • • • • •

Outline

- Application Model
- Problem Formulation SMT
 - Symmetry Breaking
- 5 Cost Space Exploration
- Experiments and Results
 - Conclusions

Outline

Motivation

Application Model

- Problem Formulation SMT
- 4 Symmetry Breaking
- 5 Cost Space Exploration
- Experiments and Results
 - Conclusions

Model of Computation

synchronous dataflow graphs (SDF)

by E. Lee and D. Messerschmitt in 1987 task graph + symbolic representation of data parallelism signal-processing, video-coding applications

a 'standard' in academic multicore compilers:

StreamIt compiler of MIT

• • • • • • • • • • • • •

Model of Computation

synchronous dataflow graphs (SDF)

by E. Lee and D. Messerschmitt in 1987 task graph + symbolic representation of data parallelism signal-processing, video-coding applications

a 'standard' in academic multicore compilers:

Streamlt compiler of MIT

we introduce split-join graphs : restriction of SDF

still covering perhaps 90% of use cases

a simple split-join graph example:

 α : spawn and split

 $1/\alpha$: wait and join

Definition (Split-Join Graph)

- $S = (V, E, d, \alpha), (V, E)$: DAG, V:actors, E:channels
- $d: V \rightarrow \mathbb{R}_+$: actor execution time,
- $\alpha: E \to \mathbb{Q}$: channel counter: split (> 1), join (< 1) or neutral (= 1)

Definition (Split-Join Graph)

$S = (V, E, d, \alpha), (V, E)$: DAG, V:actors, E:channels

- $d: V \rightarrow \mathbb{R}_+$: actor execution time,
- $\alpha: E \to \mathbb{Q}$: channel counter: split (> 1), join (< 1) or neutral (= 1)

Definition (Split-Join Graph)

 $S = (V, E, d, \alpha), (V, E)$: DAG, V:actors, E:channels $d: V \rightarrow \mathbb{R}_+$: actor execution time,

 $\alpha: E \to \mathbb{Q}$: channel counter: split (> 1), join (< 1) or neutral (= 1)

< ロ > < 同 > < 回 > < 回 >

Well-behaved Graphs

Definition (Well-behaved)

 $S = (V, E, d, \alpha)$ is well-behaved if any complete path has balanced-parenthesis signature

Such a graph can be unfolded to a task graph.

2

-

D

1/3

∃ >

æ

split-join graph: actors e.g., A, B, C

• • • • • • • • • • • • •

notation for actors: $v, v \in V$

• • • • • • • • • • • • •

ъ.

notation for actors: $v, v \in V$

unfolded task graph: tasks e.g., E_{0,1}, B, C₂

Symmetry Breaking for mapping/scheduling

notation for actors: $v, v \in V$

notation for tasks: $u \in U$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

notation for actors: $v, v \in V$

notation for tasks: $u \in U$

 $u = v_h$, $v \in V$ and h - hier. index, e.g., $v_h = E_{0,1}$

notation for actors: $v, v \in V$

notation for tasks: $u \in U$ $U_v = \{v_h\}$: lexicographically ordered (\ll) set of instances of v U_E : $E_{0,0} \ll E_{0,1} \ll E_{1,0} \ll E_{1,1} \ll E_{2,0} \ll E_{2,1}$

• • • • • • • • • • • •

Outline

Application Model

- Problem Formulation SMT
 - Symmetry Breaking
- 5 Cost Space Exploration
- Experiments and Results
 - Conclusions

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold *S* into task graph $T = (U, \mathcal{E}, \delta)$

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold *S* into task graph $T = (U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity

• • • • • • • • • • • • •

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold *S* into task graph $T = (U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem see the paper)

• • • • • • • • • • • • •

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold *S* into task graph $T = (U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem see the paper)
- 4. Cost-space exploration using SMT solver.

Decision variables:

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold *S* into task graph $T = (U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem see the paper)
- 4. Cost-space exploration using SMT solver.

Decision variables:

• $\mu(u), u \in U$ - the mapping: processor (1,2,...,*M*) for *u*

< ロ > < 同 > < 回 > < 回 >

Given a split-join graph S, we perform the following steps:

- 1. Check whether S is well-behaved
- 2. Unfold *S* into task graph $T = (U, \mathcal{E}, \delta)$
- 3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem see the paper)
- 4. Cost-space exploration using SMT solver.

Decision variables:

- $\mu(u), u \in U$ the mapping: processor (1,2,...,*M*) for *u*
- *s*(*u*) the schedule: start time of *u*

< ロ > < 同 > < 回 > < 回 >

Constraints

Predicate $\varphi(u, u')$: task u' starts after the completion of task u

$$arphi(u,u'): oldsymbol{s}(u') \geq oldsymbol{s}(u) + \delta(u)$$

B + 4 B +

Constraints

Predicate $\varphi(u, u')$: task u' starts after the completion of task u

$$\varphi(u, u')$$
 : $s(u') \ge s(u) + \delta(u)$

Precedence:

 $\bigwedge_{(u,u')\in\mathcal{E}}\varphi(u,u')$

< ロ > < 同 > < 回 > < 回 >

Constraints

Predicate $\varphi(u, u')$: task u' starts after the completion of task u

$$\varphi(u, u') : s(u') \ge s(u) + \delta(u)$$

Precedence:

$$\bigwedge_{u,u')\in\mathcal{E}}\varphi(u,u')$$

(

Mutual exclusion:

$$\bigwedge_{u\neq u'\in U} (\mu(u)=\mu(u')) \Rightarrow \varphi(u,u') \lor \varphi(u',u)$$

Outline

- Motivation
- 2 Application Model
- Problem Formulation SMT

Symmetry Breaking

- 5 Cost Space Exploration
- 6 Experiments and Results
 - Conclusions

3 > 4 3

• all instances of given actor v are similar (symmetric)

• • • • • • • • • • • •

• all instances of given actor v are similar (symmetric)

• • • • • • • • • • • •

ъ

- all instances of given actor v are similar (symmetric)
- permutation of symmetric tasks does not change the latency,
- ... but extends the solution space exponentially

• enforce the schedule to be compatible with lexicographic order: $s(C_{00}) \le s(C_{01}) \le s(C_{10}) \le s(C_{11})$

• • • • • • • • • • • • •

• enforce the schedule to be compatible with lexicographic order: $s(C_{00}) \le s(C_{01}) \le s(C_{10}) \le s(C_{11})$

- enforce the schedule to be compatible with lexicographic order: $s(C_{00}) \le s(C_{01}) \le s(C_{10}) \le s(C_{11})$
- Theorem: adding constraints s(u) ≤ s(u') for u ≪ u' does not eliminate optimality

• • • • • • • • • • • •

modify a feasible schedule such that: $s(v_0) \le s(v_1) \le s(v_2) \le ...$

prove that precedence constraints are satisfied

 \checkmark here: for neutral channels (α = 1), unfolded to (v_h, v'_h)

lexicographic order

start-time compatible

new hier. index; new precedence relation

modify a feasible schedule such that: $s(v_0) \le s(v_1) \le s(v_2) \le ...$

prove that precedence constraints are satisfied

 \checkmark here: for neutral channels (α = 1), unfolded to (v_h, v'_h)

take successor [j]

イロト イヨト イヨト イヨト

take successor [j]

take successor [j]

by definition there exist j + 1 same or earlier successors

< ロ > < 同 > < 回 > < 回 >

< ロ > < 同 > < 回 > < 回 >

take successor [*j*] by definition there exist j + 1 same or earlier successors

< ロ > < 同 > < 回 > < 回 >

take successor [j]

by definition there exist j + 1 same or earlier successors their original predecessors finish before successor [j]:

< ロ > < 同 > < 回 > < 回 >

take successor [j]

by definition there exist j + 1 same or earlier successors their original predecessors finish before successor [j]:

< ロ > < 同 > < 回 > < 回 >

take successor [j]

by definition there exist j + 1 same or earlier successors their original predecessors finish before successor [j]:

< ロ > < 同 > < 回 > < 回 >

take successor [j]

by definition there exist j + 1 same or earlier successors their original predecessors finish before successor [j]: j + 1 predecessors finish before, hence the earliest j + 1 ones as well

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

take successor [j]

by definition there exist j + 1 same or earlier successors their original predecessors finish before successor [j]: j + 1 predecessors finish before, hence the earliest j + 1 ones as well predecessor [j] finishes before successor [j]

Processor Symmetry

æ

ヘロト 人間 とくほとくほど

Outline

- Motivation
- 2 Application Model
- Problem Formulation SMT
- 4 Symmetry Breaking
- 5 Cost Space Exploration
- 6 Experiments and Results
- Conclusions

3 > 4 3

Exploring the Design Space

One SMT query for a given point (C_L, C_M) in the cost space:

- C_L latency
- C_M processor count

sat points
unsat points
unexplored points

Exploring the Design Space

One SMT query for a given point (C_L, C_M) in the cost space:

- C_L latency
- C_M processor count

- Precedence and Mutual Exclusion Constraints
- Cost Constraints

$$\bigwedge_{u \in U} \mathbf{s}(u) + \delta(u) \leq C_L \land \bigwedge_{u \in U} \mu(u) \leq C_M$$

Outline

- Motivation
- 2 Application Model
- 3 Problem Formulation SMT
- 4 Symmetry Breaking
- 5 Cost Space Exploration
- Experiments and Results
- Conclusions

-

Synthetic-Graph Experiments

- Fix processor cost C_M and perform binary search for optimal C_L
- Increase α and measure increase in computation time
- With(out) breaking of task symmetry and processor symmetry

Synthetic-Graph Experiments

- Fix processor cost C_M and perform binary search for optimal C_L
- Increase α and measure increase in computation time
- With(out) breaking of task symmetry and processor symmetry
- Z3 solver v4.1 on i7 core at 1.73GHz

Synthetic-Graph Experiments

26/30

Pareto Exploration

without symmetry breaking

cost space (C_L, C_M) exploration for $\alpha = 30$ evaluate task and processor symmetry breaking

< 6 b

H 16

Pareto Exploration

with symmetry breaking

• • • • • • • • • •

without symmetry breaking

cost space (C_L, C_M) exploration for $\alpha = 30$ evaluate task and processor symmetry breaking

Video Decoder

3D cost space (C_L, C_M, C_B) exploration, C_B - total buffer size

MPEG video decoder:

• • • • • • • • • • • •

Video Decoder

3D cost space (C_L, C_M, C_B) exploration, C_B - total buffer size

MPEG video decoder:

- Symbolic representation of data-parallel programs
 - a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry

• • • • • • • • • • • • •

- Symbolic representation of data-parallel programs
 - a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry
- Future work:

- Symbolic representation of data-parallel programs
 - a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry
- Future work:
- More symmetry breaking, also approximation and heuristics
- More refined data communication: data transfer delays
- Pipelined scheduling
- Scheduling under uncertainty
- Multistage design flow

• • • • • • • • • • • •

QUESTIONS?

2

Tendulkar, Poplavko, Maler

Symmetry Breaking for mapping/scheduling

30 / 30