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Motivation

Context

Typical in parallel programming: spawn multiple identical tasks

data parallelism

obtain hyperperiod of a multi-periodic system

duplicate tasks for fault-tolerance

Often the platform have multiple identical processors.

Hence, symmetry in the solution space.
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Motivation

Multi-criteria Optimization

minimize latency using minimal number of processors
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Motivation

Contribution

context:

static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors

goal: increase the tractable problem size of SMT solvers

experiments : problem size increase from 20 to 50 tasks
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Application Model

Model of Computation

synchronous dataflow graphs (SDF)
by E. Lee and D. Messerschmitt in 1987

task graph + symbolic representation of data parallelism

signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:
StreamIt compiler of MIT

we introduce split-join graphs : restriction of SDF
still covering perhaps 90% of use cases
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Application Model

Split-Join Graphs

a simple split-join graph example:

α : spawn and split

1/α: wait and join
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Application Model

Split-Join Graphs

Definition (Split-Join Graph)

S = (V ,E ,d , α), (V ,E) : DAG, V :actors, E :channels
d : V → R+ : actor execution time,
α : E → Q : channel counter: split (> 1), join (< 1) or neutral (= 1)
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Application Model

Well-behaved Graphs

Definition (Well-behaved)

S = (V ,E ,d , α) is well-behaved if any complete path has
balanced-parenthesis signature

Such a graph can be unfolded to a task graph.
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Application Model

Unfolding to Task Graph
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Application Model

Actors, Tasks, Lexicographic Order

split-join graph: actors e.g., A, B, C

notation for actors: v , v ∈ V

notation for tasks: u ∈ U
Uv = {vh} : lexicographically ordered (�) set of instances of v

UE : E0,0 � E0,1 � E1,0 � E1,1 � E2,0 � E2,1
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Problem Formulation - SMT
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Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)
3. Generate the mapping and scheduling constraints:

Precedence
Mutual Exclusion
Buffer Capacity (Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:
µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u
s(u) - the schedule: start time of u
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Problem Formulation - SMT

Constraints

Predicate ϕ(u,u′):
task u′ starts after the completion of task u

ϕ(u,u′) : s(u′) ≥ s(u) + δ(u)

Precedence: ∧
(u,u′)∈E

ϕ(u,u′)

Mutual exclusion:∧
u 6=u′∈U

(µ(u) = µ(u′))⇒ ϕ(u,u′) ∨ ϕ(u′,u)
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Symmetry Breaking

Task Symmetry
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Proof Sketch

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 19 / 30



Symmetry Breaking

Proof Sketch

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 19 / 30



Symmetry Breaking

Proof Sketch

take successor [ j ]

by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [ j ]:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [ j ] finishes before successor [ j ]
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Symmetry Breaking

Processor Symmetry
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Cost Space Exploration

Exploring the Design Space

One SMT query for a given point (CL, CM ) in the cost space:
CL - latency
CM - processor count

sat points unsat points unexplored points

Precedence and Mutual Exclusion Constraints
Cost Constraints∧

u∈U

s(u) + δ(u) ≤ CL ∧
∧

u∈U

µ(u) ≤ CM
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Experiments and Results

Outline

1 Motivation

2 Application Model

3 Problem Formulation - SMT

4 Symmetry Breaking

5 Cost Space Exploration

6 Experiments and Results

7 Conclusions

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 24 / 30



Experiments and Results

Synthetic-Graph Experiments

Fix processor cost CM and perform binary search for optimal CL

Increase α and measure increase in computation time
With(out) breaking of task symmetry and processor symmetry

Z3 solver v4.1 on i7 core at 1.73GHz

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 25 / 30



Experiments and Results

Synthetic-Graph Experiments

Fix processor cost CM and perform binary search for optimal CL

Increase α and measure increase in computation time
With(out) breaking of task symmetry and processor symmetry
Z3 solver v4.1 on i7 core at 1.73GHz

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 25 / 30



Experiments and Results

Synthetic-Graph Experiments
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Experiments and Results

Pareto Exploration
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Experiments and Results

Video Decoder

3D cost space (CL,CM ,CB) exploration, CB - total buffer size
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Symbolic representation of data-parallel programs
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Framework for multi-criteria optimal deployment
Symmetry breaking: prove task symmetry and
use processor symmetry

Future work:
More symmetry breaking, also approximation and heuristics
More refined data communication: data transfer delays
Pipelined scheduling
Scheduling under uncertainty
Multistage design flow
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