
Symmetry Breaking for Multi-Criteria Mapping and
Scheduling on Multicores

Pranav Tendulkar Peter Poplavko Oded Maler

Verimag, FRANCE

August 2013

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 1 / 30

Motivation

Context

Typical in parallel programming: spawn multiple identical tasks

data parallelism

obtain hyperperiod of a multi-periodic system

duplicate tasks for fault-tolerance

Often the platform have multiple identical processors.

Hence, symmetry in the solution space.

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 2 / 30

Motivation

Context

Typical in parallel programming: spawn multiple identical tasks

data parallelism

obtain hyperperiod of a multi-periodic system

duplicate tasks for fault-tolerance

Often the platform have multiple identical processors.

Hence, symmetry in the solution space.

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 2 / 30

Motivation

Context

Typical in parallel programming: spawn multiple identical tasks

data parallelism

obtain hyperperiod of a multi-periodic system

duplicate tasks for fault-tolerance

Often the platform have multiple identical processors.

Hence, symmetry in the solution space.

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 2 / 30

Motivation

Multi-criteria Optimization

minimize latency using minimal number of processors

C00

C01

C10

C11

B0

B1

A0

D0

D1

E0

A0 B0 B1 C00 C01 C10 C11 D0 D1 E0

Time

P1

latency

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 3 / 30

Motivation

Multi-criteria Optimization

minimize latency using minimal number of processors

C00

C01

C10

C11

B0

B1

A0

D0

D1

E0

A0 B0 C00 C01 D0 E0

B1 C10 C11 D1

Time

P1

P2

latency

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 3 / 30

Motivation

Contribution

context:

static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors

goal: increase the tractable problem size of SMT solvers

experiments : problem size increase from 20 to 50 tasks

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 4 / 30

Motivation

Contribution

context:

static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors

goal: increase the tractable problem size of SMT solvers

experiments : problem size increase from 20 to 50 tasks

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 4 / 30

Motivation

Contribution

context:

static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors

goal: increase the tractable problem size of SMT solvers

experiments : problem size increase from 20 to 50 tasks

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 4 / 30

Motivation

Outline

1 Motivation

2 Application Model

3 Problem Formulation - SMT

4 Symmetry Breaking

5 Cost Space Exploration

6 Experiments and Results

7 Conclusions

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 5 / 30

Application Model

Outline

1 Motivation

2 Application Model

3 Problem Formulation - SMT

4 Symmetry Breaking

5 Cost Space Exploration

6 Experiments and Results

7 Conclusions

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 6 / 30

Application Model

Model of Computation

synchronous dataflow graphs (SDF)
by E. Lee and D. Messerschmitt in 1987

task graph + symbolic representation of data parallelism

signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:
StreamIt compiler of MIT

we introduce split-join graphs : restriction of SDF
still covering perhaps 90% of use cases

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 7 / 30

Application Model

Model of Computation

synchronous dataflow graphs (SDF)
by E. Lee and D. Messerschmitt in 1987

task graph + symbolic representation of data parallelism

signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:
StreamIt compiler of MIT

we introduce split-join graphs : restriction of SDF
still covering perhaps 90% of use cases

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 7 / 30

Application Model

Split-Join Graphs

a simple split-join graph example:

α : spawn and split

1/α: wait and join

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 8 / 30

Application Model

Split-Join Graphs

Definition (Split-Join Graph)

S = (V ,E ,d , α), (V ,E) : DAG, V :actors, E :channels
d : V → R+ : actor execution time,
α : E → Q : channel counter: split (> 1), join (< 1) or neutral (= 1)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 9 / 30

Application Model

Split-Join Graphs

Definition (Split-Join Graph)

S = (V ,E ,d , α), (V ,E) : DAG, V :actors, E :channels
d : V → R+ : actor execution time,
α : E → Q : channel counter: split (> 1), join (< 1) or neutral (= 1)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 9 / 30

Application Model

Split-Join Graphs

Definition (Split-Join Graph)

S = (V ,E ,d , α), (V ,E) : DAG, V :actors, E :channels
d : V → R+ : actor execution time,
α : E → Q : channel counter: split (> 1), join (< 1) or neutral (= 1)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 9 / 30

Application Model

Well-behaved Graphs

Definition (Well-behaved)

S = (V ,E ,d , α) is well-behaved if any complete path has
balanced-parenthesis signature

Such a graph can be unfolded to a task graph.

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 10 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11 / 30

Application Model

Actors, Tasks, Lexicographic Order

split-join graph: actors e.g., A, B, C

notation for actors: v , v ∈ V

notation for tasks: u ∈ U
Uv = {vh} : lexicographically ordered (�) set of instances of v

UE : E0,0 � E0,1 � E1,0 � E1,1 � E2,0 � E2,1

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12 / 30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v , v ∈ V

notation for tasks: u ∈ U
Uv = {vh} : lexicographically ordered (�) set of instances of v

UE : E0,0 � E0,1 � E1,0 � E1,1 � E2,0 � E2,1

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12 / 30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v , v ∈ V

unfolded task graph: tasks e.g., E0,1, B, C2

notation for tasks: u ∈ U
Uv = {vh} : lexicographically ordered (�) set of instances of v

UE : E0,0 � E0,1 � E1,0 � E1,1 � E2,0 � E2,1

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12 / 30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v , v ∈ V

notation for tasks: u ∈ U

Uv = {vh} : lexicographically ordered (�) set of instances of v

UE : E0,0 � E0,1 � E1,0 � E1,1 � E2,0 � E2,1

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12 / 30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v , v ∈ V

notation for tasks: u ∈ U

u = vh, v ∈ V and h - hier. index, e.g., vh = E0,1

Uv = {vh} :
lexicographically ordered (�) set of instances of v

UE : E0,0 � E0,1 � E1,0 � E1,1 � E2,0 � E2,1

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12 / 30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v , v ∈ V

notation for tasks: u ∈ U
Uv = {vh} : lexicographically ordered (�) set of instances of v

UE : E0,0 � E0,1 � E1,0 � E1,1 � E2,0 � E2,1

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12 / 30

Problem Formulation - SMT

Outline

1 Motivation

2 Application Model

3 Problem Formulation - SMT

4 Symmetry Breaking

5 Cost Space Exploration

6 Experiments and Results

7 Conclusions

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 13 / 30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)
3. Generate the mapping and scheduling constraints:

Precedence
Mutual Exclusion
Buffer Capacity (Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:
µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u
s(u) - the schedule: start time of u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14 / 30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)

3. Generate the mapping and scheduling constraints:
Precedence
Mutual Exclusion
Buffer Capacity (Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:
µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u
s(u) - the schedule: start time of u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14 / 30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)
3. Generate the mapping and scheduling constraints:

Precedence
Mutual Exclusion
Buffer Capacity

(Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:
µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u
s(u) - the schedule: start time of u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14 / 30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)
3. Generate the mapping and scheduling constraints:

Precedence
Mutual Exclusion
Buffer Capacity (Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:
µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u
s(u) - the schedule: start time of u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14 / 30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)
3. Generate the mapping and scheduling constraints:

Precedence
Mutual Exclusion
Buffer Capacity (Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:

µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u
s(u) - the schedule: start time of u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14 / 30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)
3. Generate the mapping and scheduling constraints:

Precedence
Mutual Exclusion
Buffer Capacity (Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:
µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u

s(u) - the schedule: start time of u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14 / 30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph T = (U, E , δ)
3. Generate the mapping and scheduling constraints:

Precedence
Mutual Exclusion
Buffer Capacity (Extended Problem - see the paper)

4. Cost-space exploration using SMT solver.

Decision variables:
µ(u),u ∈ U - the mapping: processor (1,2,. . . ,M) for u
s(u) - the schedule: start time of u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14 / 30

Problem Formulation - SMT

Constraints

Predicate ϕ(u,u′):
task u′ starts after the completion of task u

ϕ(u,u′) : s(u′) ≥ s(u) + δ(u)

Precedence: ∧
(u,u′)∈E

ϕ(u,u′)

Mutual exclusion:∧
u 6=u′∈U

(µ(u) = µ(u′))⇒ ϕ(u,u′) ∨ ϕ(u′,u)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 15 / 30

Problem Formulation - SMT

Constraints

Predicate ϕ(u,u′):
task u′ starts after the completion of task u

ϕ(u,u′) : s(u′) ≥ s(u) + δ(u)

Precedence: ∧
(u,u′)∈E

ϕ(u,u′)

Mutual exclusion:∧
u 6=u′∈U

(µ(u) = µ(u′))⇒ ϕ(u,u′) ∨ ϕ(u′,u)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 15 / 30

Problem Formulation - SMT

Constraints

Predicate ϕ(u,u′):
task u′ starts after the completion of task u

ϕ(u,u′) : s(u′) ≥ s(u) + δ(u)

Precedence: ∧
(u,u′)∈E

ϕ(u,u′)

Mutual exclusion:∧
u 6=u′∈U

(µ(u) = µ(u′))⇒ ϕ(u,u′) ∨ ϕ(u′,u)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 15 / 30

Symmetry Breaking

Outline

1 Motivation

2 Application Model

3 Problem Formulation - SMT

4 Symmetry Breaking

5 Cost Space Exploration

6 Experiments and Results

7 Conclusions

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 16 / 30

Symmetry Breaking

Task Symmetry

C00

C01

C10

C11

B0

B1

A

D0

D1

E

task graph

B1 C10 C01 C00 D0 E

A0 B0 C11 D1

Time

P1

P2

a schedule

B0 C11 C00 C01 D0 E

A0 B1 C10 D1

Time

P1

P2

a permuted schedule

all instances of given actor v are similar (symmetric)

permutation of symmetric tasks does not change the latency,
. . . but extends the solution space exponentially

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 17 / 30

Symmetry Breaking

Task Symmetry

C00

C01

C10

C11

B0

B1

A

D0

D1

E

task graph

B1 C10 C01 C00 D0 E

A0 B0 C11 D1

Time

P1

P2

a schedule

B0 C11 C00 C01 D0 E

A0 B1 C10 D1

Time

P1

P2

a permuted schedule

all instances of given actor v are similar (symmetric)

permutation of symmetric tasks does not change the latency,
. . . but extends the solution space exponentially

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 17 / 30

Symmetry Breaking

Task Symmetry

C00

C01

C10

C11

B0

B1

A

D0

D1

E

task graph

B1 C10 C01 C00 D0 E

A0 B0 C11 D1

Time

P1

P2

a schedule

B0 C11 C00 C01 D0 E

A0 B1 C10 D1

Time

P1

P2

a permuted schedule

all instances of given actor v are similar (symmetric)
permutation of symmetric tasks does not change the latency,
. . . but extends the solution space exponentially

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 17 / 30

Symmetry Breaking

Task Symmetry

C00

C01

C10

C11

B0

B1

A

D0

D1

E

task graph

B1 C10 C01 C00 D0 E

A0 B0 C11 D1

Time

P1

P2

schedule

B1 C01 C10 C11 D1 E

A0 B0 C00 D0

Time

P1

P2

compatible schedule

enforce the schedule to be compatible with lexicographic order:
s(C00) ≤ s(C01) ≤ s(C10) ≤ s(C11)

Theorem: adding constraints s(u) ≤ s(u′) for u � u′ does not
eliminate optimality

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 18 / 30

Symmetry Breaking

Task Symmetry

C00

C01

C10

C11

B0

B1

A

D0

D1

E

task graph

B1 C10 C01 C00 D0 E

A0 B0 C11 D1

Time

P1

P2

schedule

B1 C01 C10 C11 D1 E

A0 B0 C00 D0

Time

P1

P2

compatible schedule

enforce the schedule to be compatible with lexicographic order:
s(C00) ≤ s(C01) ≤ s(C10) ≤ s(C11)

Theorem: adding constraints s(u) ≤ s(u′) for u � u′ does not
eliminate optimality

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 18 / 30

Symmetry Breaking

Task Symmetry

C00

C01

C10

C11

B0

B1

A

D0

D1

E

task graph

B1 C10 C01 C00 D0 E

A0 B0 C11 D1

Time

P1

P2

schedule

B1 C01 C10 C11 D1 E

A0 B0 C00 D0

Time

P1

P2

compatible schedule

enforce the schedule to be compatible with lexicographic order:
s(C00) ≤ s(C01) ≤ s(C10) ≤ s(C11)

Theorem: adding constraints s(u) ≤ s(u′) for u � u′ does not
eliminate optimality

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 18 / 30

Symmetry Breaking

Proof Sketch

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 19 / 30

Symmetry Breaking

Proof Sketch

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 19 / 30

Symmetry Breaking

Proof Sketch

take successor [j]

by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [j]:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]

by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [j]:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]
by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [j]:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]
by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [j]:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]
by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [j]:

j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]
by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [j]:

j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]
by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [j]:

j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]
by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [j]:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well

predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Proof Sketch

take successor [j]
by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [j]:
j + 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j] finishes before successor [j]

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20 / 30

Symmetry Breaking

Processor Symmetry

C00

C01

C10

C11

B0

B1

A

D0

D1

E

task graph

A

B1

B0 C00

C10

C01

C11

D0

D1

E

Time

P1

P2

P3

schedule

A

B1

B0 C00

C10

C01

C11

D0

D1

E

Time

P1

P2

P3

swap P1 and P2

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 21 / 30

Cost Space Exploration

Outline

1 Motivation

2 Application Model

3 Problem Formulation - SMT

4 Symmetry Breaking

5 Cost Space Exploration

6 Experiments and Results

7 Conclusions

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 22 / 30

Cost Space Exploration

Exploring the Design Space

One SMT query for a given point (CL, CM) in the cost space:
CL - latency
CM - processor count

sat points unsat points unexplored points

Precedence and Mutual Exclusion Constraints
Cost Constraints∧

u∈U

s(u) + δ(u) ≤ CL ∧
∧

u∈U

µ(u) ≤ CM

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 23 / 30

Cost Space Exploration

Exploring the Design Space

One SMT query for a given point (CL, CM) in the cost space:
CL - latency
CM - processor count

sat points unsat points unexplored points

Precedence and Mutual Exclusion Constraints
Cost Constraints∧

u∈U

s(u) + δ(u) ≤ CL ∧
∧

u∈U

µ(u) ≤ CM

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 23 / 30

Experiments and Results

Outline

1 Motivation

2 Application Model

3 Problem Formulation - SMT

4 Symmetry Breaking

5 Cost Space Exploration

6 Experiments and Results

7 Conclusions

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 24 / 30

Experiments and Results

Synthetic-Graph Experiments

Fix processor cost CM and perform binary search for optimal CL

Increase α and measure increase in computation time
With(out) breaking of task symmetry and processor symmetry

Z3 solver v4.1 on i7 core at 1.73GHz

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 25 / 30

Experiments and Results

Synthetic-Graph Experiments

Fix processor cost CM and perform binary search for optimal CL

Increase α and measure increase in computation time
With(out) breaking of task symmetry and processor symmetry
Z3 solver v4.1 on i7 core at 1.73GHz

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 25 / 30

Experiments and Results

Synthetic-Graph Experiments

0 10 20 30 40 50

0

500

1,000

timeout

α

E
xp

lo
ra

tio
n

Ti
m

e
(s

ec
on

ds
)

no sym task sym
proc sym task & proc sym

5-processor deployments

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 26 / 30

Experiments and Results

Pareto Exploration

0 5 10 15 20 25 30
Latency

0

5

10

15

20

25

30

Pr
oc

es
so

rs

Sat Points Unsat Points Pareto Curve

0

7

14

21

28

35

42

49

56

without symmetry breaking

0 5 10 15 20 25 30
Latency

0

5

10

15

20

25

30

Pr
oc

es
so

rs

Sat Points Unsat Points Pareto Curve

0

7

14

21

28

35

42

49

56

with symmetry breaking

cost space (CL,CM) exploration for α = 30

evaluate task and processor symmetry breaking

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 27 / 30

Experiments and Results

Pareto Exploration

0 5 10 15 20 25 30
Latency

0

5

10

15

20

25

30

Pr
oc

es
so

rs

Sat Points Unsat Points Pareto Curve

0

7

14

21

28

35

42

49

56

without symmetry breaking

0 5 10 15 20 25 30
Latency

0

5

10

15

20

25

30

Pr
oc

es
so

rs

Sat Points Unsat Points Pareto Curve

0

7

14

21

28

35

42

49

56

with symmetry breaking

cost space (CL,CM) exploration for α = 30

evaluate task and processor symmetry breaking

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 27 / 30

Experiments and Results

Video Decoder

3D cost space (CL,CM ,CB) exploration, CB - total buffer size

MPEG video decoder:

Latency(.10 3)

8
12

16
20

24

Bu
ffe

r S
ize

150

200

250

300

350

400

Pr
oc

es
so

r

0

20

40

60

80

100

120

140

[5,367,91]

[24,276,1]

[14,276,122]

[14,333,62]

[10,323,122]

[17,182,122]

[7,205,122]

[24,182,1]

[19,182,31]

[10,229,31]

without symmetry constraints with symmetry constraints

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 28 / 30

Experiments and Results

Video Decoder

3D cost space (CL,CM ,CB) exploration, CB - total buffer size

MPEG video decoder:

Latency(.10 3)

8
12

16
20

24

Bu
ffe

r S
ize

150

200

250

300

350

400

Pr
oc

es
so

r

0

20

40

60

80

100

120

140

[5,367,91]

[24,276,1]

[14,276,122]

[14,333,62]

[10,323,122]

[17,182,122]

[7,205,122]

[24,182,1]

[19,182,31]

[10,229,31]

without symmetry constraints with symmetry constraints

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 28 / 30

Conclusions

Conclusions

Symbolic representation of data-parallel programs
a useful subclass of SDF model

Framework for multi-criteria optimal deployment
Symmetry breaking: prove task symmetry and
use processor symmetry

Future work:
More symmetry breaking, also approximation and heuristics
More refined data communication: data transfer delays
Pipelined scheduling
Scheduling under uncertainty
Multistage design flow

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 29 / 30

Conclusions

Conclusions

Symbolic representation of data-parallel programs
a useful subclass of SDF model

Framework for multi-criteria optimal deployment
Symmetry breaking: prove task symmetry and
use processor symmetry
Future work:

More symmetry breaking, also approximation and heuristics
More refined data communication: data transfer delays
Pipelined scheduling
Scheduling under uncertainty
Multistage design flow

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 29 / 30

Conclusions

Conclusions

Symbolic representation of data-parallel programs
a useful subclass of SDF model

Framework for multi-criteria optimal deployment
Symmetry breaking: prove task symmetry and
use processor symmetry
Future work:
More symmetry breaking, also approximation and heuristics
More refined data communication: data transfer delays
Pipelined scheduling
Scheduling under uncertainty
Multistage design flow

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 29 / 30

Conclusions

B1 C10 C01 C00 D0 E

A0 B0 C11 D1

Time

P1

P2

B1 C01 C10 C11 D1 E

A0 B0 C00 D0

Time

P1

P2

QUESTIONS?

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 30 / 30

	Motivation
	Application Model
	Problem Formulation - SMT
	Symmetry Breaking
	Cost Space Exploration
	Experiments and Results
	Conclusions

