Symmetry Breaking for Multi-Criteria Mapping and
Scheduling on Multicores

Pranav Tendulkar Peter Poplavko Oded Maler

%I‘I’IBG

Verimag, FRANCE

August 2013

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 1/30

Context

@ Typical in parallel programming: spawn multiple identical tasks

o data parallelism
@ obtain hyperperiod of a multi-periodic system
@ duplicate tasks for fault-tolerance

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 2/30

Context

@ Typical in parallel programming: spawn multiple identical tasks

o data parallelism
@ obtain hyperperiod of a multi-periodic system
@ duplicate tasks for fault-tolerance

@ Often the platform have multiple identical processors.

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 2/30

Context

@ Typical in parallel programming: spawn multiple identical tasks

o data parallelism
@ obtain hyperperiod of a multi-periodic system
@ duplicate tasks for fault-tolerance

@ Often the platform have multiple identical processors.

@ Hence, symmetry in the solution space.

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 2/30

Motivation

Multi-criteria Optimization

minimize latency using minimal number of processors

latency

A [By [By [Coo][Con [Co]Cii [Do [D1 [Eo

P1

\ Time

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling

3/30

Motivation

Multi-criteria Optimization

minimize latency using minimal number of processors

latency

P2 (B [Colcn]Di]
P1 Ao‘Bo‘coo‘cm‘Do‘Eo V

| Time

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 3/30

Contribution

context:
static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 4/30

Contribution

context:
static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 4/30

Contribution

context:
static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors
goal: increase the tractable problem size of SMT solvers

experiments : problem size increase from 20 to 50 tasks

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 4/30

Outline

0 Motivation

9 Application Model

e Problem Formulation - SMT
e Symmetry Breaking

e Cost Space Exploration

e Experiments and Results

e Conclusions \/

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 5/30

Outline

9 Application Model

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 6/30

Application Model

Model of Computation

synchronous dataflow graphs (SDF)
by E. Lee and D. Messerschmitt in 1987
task graph + symbolic representation of data parallelism
signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:

Streamlt compiler of MIT

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling

7/30

Model of Computation

synchronous dataflow graphs (SDF)
by E. Lee and D. Messerschmitt in 1987
task graph + symbolic representation of data parallelism
signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:

Streamlt compiler of MIT

we introduce split-join graphs : restriction of SDF

still covering perhaps 90% of use cases

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 7/30

Split-Join Graphs

a simple split-join graph example:

@ a

O,

®

« : spawn and split
1/a: wait and join

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 8/30

Split-Join Graphs

Definition (Split-Join Graph)

S=(V,E,d,a), (V,E): DAG, V:actors, E:channels

d: V — R, : actor execution time,

a: E — Q: channel counter: split (> 1), join (< 1) or neutral (= 1)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 9/30

Split-Join Graphs

Definition (Split-doin Graph)

S=(V,E,d,a), (V,E): DAG, V:actors, E:channels

d: V — Ry : actor execution time,

o E — Q : channel counter: split (> 1), join (< 1) or neutral (= 1)

a source

complete path

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 9/30

Split-Join Graphs

Definition (Split-doin Graph)

S=(V,E,d,a), (V,E): DAG, V:actors, E:channels

d: V — Ry : actor execution time,

a: E — Q : channel counter: split (> 1), join (< 1) or neutral (= 1)

3
1 @
. _. 3
balanced-parenthesis:
(1,3,2,1/2,1/3)
AN

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 9/30

Well-behaved Graphs

Definition (Well-behaved)

S =(V,E,d,«a)is well-behaved if any complete path has
balanced-parenthesis signature

Such a graph can be unfolded to a task graph.

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 10/30

Application Model

Unfolding to Task Graph

—
3 .00

/{ C 1

\s__z'

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Application Model

Unfolding to Task Graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 11/30

Unfolding to Task Graph

Application Model

Actors, Tasks, Lexicographic Order

split-join graph: actors e.g., A, B, C

3 2 1/2 1/3
OSSP EMOS0

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12/30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v, v ¢ V

3 2 1/2 13
O 04@{9 "o~ 0!

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12/30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v, v e V

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12/30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v, v ¢ V

3 2 1/2 3
O 04!9@9 "o~ 0!

notation for tasks: u € U

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12/30

Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v, v e V

3 2 1/2 1/3
O PO

notation for tasks: u ¢ U
U= vp, ve Vandh-hier. index, e.g., vy = Eg 4

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12/30

Actors, Tasks, Lexicographic Order

notation for actors: v, v ¢ V

@;Qp (= (DX 0

notation for tasks: u € U
U, = {vn} : lexicographically ordered (<) set of instances of v

Ue:Ehow<BEpi < Epo< Ei1 < Bpg < By

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 12/30

Outline

e Problem Formulation - SMT

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 13/30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14/30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

@ 1. Check whether S is well-behaved
@ 2. Unfold Sinto task graph T = (U, &, 6)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14/30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

@ 1. Check whether S is well-behaved
@ 2. Unfold S into task graph T = (U, £,9)
@ 3. Generate the mapping and scheduling constraints:

e Precedence
o Mutual Exclusion
o Buffer Capacity

14 /30

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

@ 1. Check whether S is well-behaved
@ 2. Unfold S into task graph T = (U, £,9)
@ 3. Generate the mapping and scheduling constraints:

e Precedence
e Mutual Exclusion
o Buffer Capacity (Extended Problem - see the paper)

14 /30

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

@ 1. Check whether S is well-behaved

@ 2. Unfold Sinto task graph T = (U, &, 6)
@ 3. Generate the mapping and scheduling constraints:

e Precedence
e Mutual Exclusion
o Buffer Capacity (Extended Problem - see the paper)

@ 4. Cost-space exploration using SMT solver.

Decision variables:

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14/30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

@ 1. Check whether S is well-behaved

@ 2. Unfold Sinto task graph T = (U, &, 6)
@ 3. Generate the mapping and scheduling constraints:

e Precedence
e Mutual Exclusion
o Buffer Capacity (Extended Problem - see the paper)

@ 4. Cost-space exploration using SMT solver.

Decision variables:
@ u(u),u € U - the mapping: processor (1,2,...,M) for u

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14/30

Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

@ 1. Check whether S is well-behaved

@ 2. Unfold Sinto task graph T = (U, &, 6)
@ 3. Generate the mapping and scheduling constraints:

e Precedence
e Mutual Exclusion
o Buffer Capacity (Extended Problem - see the paper)

@ 4. Cost-space exploration using SMT solver.

Decision variables:
@ u(u),u € U - the mapping: processor (1,2,...,M) for u
@ s(u) - the schedule: start time of u \/

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 14/30

Problem Formulation - SMT

Constraints

Predicate p(u, U/):
task U’ starts after the completion of task u

o(u,) : s(u") > s(u) + d(u)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 15/30

Problem Formulation - SMT

Constraints

Predicate p(u, U/):
task U’ starts after the completion of task u

o(u,) : s(u") > s(u) + d(u)

Precedence:

N elud)

(u,u")e€

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 15/30

Problem Formulation - SMT

Constraints
Predicate p(u, U/):
task U’ starts after the completion of task u

o(u,) : s(u") > s(u) + d(u)

Precedence:

N elud)

(u,u")e€

Mutual exclusion:
N () = () = e(u, u) v o(u, u)

u#u'elU \/

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 15/30

Outline

e Symmetry Breaking

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 16/30

Task Symmetry

r\ | ST

‘Bw‘Cwo‘Cm‘Coo‘Do‘ E‘

a schedule

task graph

@ all instances of given actor v are similar (symmetric)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 17 /30

Task Symmetry

\sw\cm\cm\cco\oom Pl [B[Cu[CulGu[D] £]

(k./ o

a schedule a permuted schedule

task graph

@ all instances of given actor v are similar (symmetric)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 17 /30

Task Symmetry

‘81‘010‘00“COO‘D0‘E‘ P1 ‘BU‘CH‘COO‘COI‘DO‘E‘

.<0\./ m—

a schedule a permuted schedule

task graph
@ all instances of given actor v are similar (symmetric)

@ permutation of symmetric tasks does not change the latency,
.but extends the solution space exponentially \/

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 17 /30

Task Symmetry

./.\ P2| [A[B[Cu[D]

‘Bw‘cm‘cm‘coo‘Do‘ E‘

schedule

task graph

@ enforce the schedule to be compatible with lexicographic order:
S(Coo) < s(Cot) < s(Cro) < s(Ci1)

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 18/30

Task Symmetry

./ .\ P2| [As | B [Cn] D] P2| [A [By [Cu] Dy]

‘Bw‘cm‘cm‘cco‘Do‘E‘ P1 ‘Bw‘Cm‘Cw‘Cn‘Dw‘E‘

(k,/ -

schedule compatible schedule

task graph

@ enforce the schedule to be compatible with lexicographic order:
S(Coo) < s(Cot) < s(Cro) < s(Ci1)

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 18/30

Task Symmetry

./ .\ P2| [As | B [Cn] D] P2| [A [By [Cu] Dy]

‘Bw‘cm‘cm‘cco‘Do‘E‘ P1 ‘Bw‘Cm‘Cw‘Cn‘Dw‘E‘

.<.\./ Time \ Time

schedule compatible schedule

task graph

@ enforce the schedule to be compatible with lexicographic order:
S(Coo) < s(Cot) < s(Cro) < s(Ci1)

@ Theorem: adding constraints s(u) < s(v') for u < U’ does not
eliminate optimality

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 18/30

Proof Sketch

modify a feasible schedule such that:
s(vo) £s(vy) €s(vy) < ...
prove that precedence constraints are satisfied

lexicographic start-time new hier. index;
order compatible new precedence relation

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling

19/30

Proof Sketch

modify a feasible schedule such that:
s(vo) £s(vy) €s(vy) < ...
prove that precedence constraints are satisfied

lexicographic start-time new hier. index;
order compatible new precedence relation

Lo | o |
— HH

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 19/30

Symmetry Breaking

Proof Sketch
Lo | o | [201] {20 |
e I EEERERN
| 2|| 2 | 2021] [o2] |
HEE | 3 | EER R EEIR e
| 4

[3041 | | 4141 |

I_Ip IESEEER

take successor [/ |

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
o] Jo | [0] [2101]
B | 1] [or] | T |
[2 || 2 | 2121 [9] 0f2] |
13 | 3 | [23]} 53] |+— [j1-3]
| 4

[3041 | | 4141 |

|_| IESI R EER

take successor |/ |

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
o] Jo | [0] [2101]
B | 1] [or] | T |
[2 || 2 | 2121 [9] 0f2] |
13 | 3 | [23]} 53] |+— [j1-3]
| 4

[3041 | [4l41 |

IESENEEH

take successor | J |
by definition there exist j + 1 same or earlier successors

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
Lo | o | [201 |] 200 |
[1 | 1] [o | | 21 |
[2 || 2 [212] |9 o2] |
3 | 3 | 4Bl }ef s3] |«—1j1=13]
| 4

4| L3141 [{ a4 |

IECENECH

take successor | J |
by definition there exist j + 1 same or earlier successors

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
Lo | o | [201 || 200] |
[1 | 1] [o] | | 11 |
[2 || 2 [212] |9 o2] |
3 | 3 | 4Bl }ef s3] |«—1j1=13]
| 4

4| L3141 [{ a4 |

IECENECH

take successor | J |
by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor [|:

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
Lo | o | [2001 | [2f0] |
[1 [1] [o] | | a1 |
N | 212] |9 o2 |

_| 3 | 3 | 4[3]=fans 5[3] | *— [j1=13]
| B[2] 3[4] | 2 4l4]
T [sir] 13050]

take successor [J |

by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor |/ |:

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
[o]] o | 1[0]. 0]
[T 1] RERY; S
N Iz[zr'l':?om

T3] 3| 4[3]={*=p 5[3] [¢— [jI=13]
| 2 B[7] 3[4] | 2 4l4]
I G ECH

take successor [J |

by definition there exist j + 1 same or earlier successors
their original predecessors finish before successor |/ |:

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
[o]] o | |1[0].] |' [0] |
[1 |] 1] O[] J o 11
2][2 (2] 3%]

-
13 3| _‘@_‘ 53] |+— [j1=13]
L4 [] 4] 34] | o aia]
5 5 [sisr] | 30s] |

take successor | J |

by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor |/ |:

j+ 1 predecessors finish before, hence the earliest j + 1 ones as well

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Proof Sketch
Lo | o | L2001 | [2100]
I I Lot |] a1 |
| 2|| 2 (221]y [o2l]
3 | 3 | [T} =F 53] | «— 1j1=13]
| 4

4| | 3041 | | 441 |

IECENECH

take successor | J |

by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [|:

j+ 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [j | finishes before successor | J |

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 20/30

Symmetry Breaking

Processor Symmetry

./ Elololo]
k./ b [ilale] [ale] n o
Time ‘ Time

schedule swap P1 and P2

task graph

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 21/30

Outline

e Cost Space Exploration

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 22/30

Exploring the Design Space

One SMT query for a given point (C;, Cy) in the cost space:
@ C; - latency
@ Cy - processor count

[
R
|

I I

I I

| +

I I

I I
Lo o= P PO

]]

I I

I |

I *

I I

I I

I I

|
-
L & oL L

R+ ¢

\ e sat points = unsat points e unexplored points \

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 23/30

Exploring the Design Space

One SMT query for a given point (C;, Cy) in the cost space:
@ C; - latency
@ Cy - processor count

| | : L+ BRI
| F--4--- I IR o SR
| | i 4 ¢ ¢- IR
| PSSR EEeY
| L _ hAes
\ e sat points = unsat points e unexplored points \
@ Precedence and Mutual Exclusion Constraints
@ Cost Constraints
A\ s() +6(u) < G A\ p(u) < Cu A

uel uel

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 23/30

Outline

e Experiments and Results

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 24/30

Synthetic-Graph Experiments

@ Fix processor cost Cy, and perform binary search for optimal C;
@ Increase « and measure increase in computation time
@ With(out) breaking of task symmetry and processor symmetry

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 25/30

Synthetic-Graph Experiments

A
(DD (2))

@ Fix processor cost Cy, and perform binary search for optimal C;
@ Increase « and measure increase in computation time

@ With(out) breaking of task symmetry and processor symmetry
@ Z3 solver v4.1 on i7 core at 1.73GHz

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 25/30

Synthetic-Graph Experiments

)

onds

Exploration Time (sec

1,000

500

timeout

0 10 20 30 40

«

-e- nosym —— task sym
—=—proc sym--+-task & proc sym

5-processor deployments

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling

50

26/30

Experiments and Results

Pareto Exploration

Processors

Latency

(e sat points = Unsat Points — Pareto Curve|

without symmetry breaking

cost space (C;, Cy) exploration for « = 30
evaluate task and processor symmetry breaking

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 27/30

Experiments and Results

Pareto Exploration

30 56 30
49 49
25 25
a2 42
g 2 35 g 2 35
g g
g g 28
g g
14 14
5 5
. ;
Latency Latency
(e sat points = Unsat Points —— Pareto Curve| e Sat Points = Unsat Points — Pareto Curve|
without symmetry breaking with symmetry breaking

cost space (C;, Cy) exploration for « = 30
evaluate task and processor symmetry breaking

vV

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 27/30

Experiments and Results

Video Decoder

3D cost space (C;, Cy, Cg) exploration, Cg - total buffer size

MPEG video decoder:

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 28/30

Experiments and Results

Video Decoder

3D cost space (C;, Cy, Cg) exploration, Cg - total buffer size

‘ A& without symmetry constraints e with symmetry constraints‘

MPEG video decoder:

i |

5507501

[7.205,1221 >

{[17,182,122]

Z

Processor

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling

DA

28/30

Conclusions

Conclusions

@ Symbolic representation of data-parallel programs
o a useful subclass of SDF model

@ Framework for multi-criteria optimal deployment

@ Symmetry breaking: prove task symmetry and
use processor symmetry

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 29/30

Conclusions

Conclusions

@ Symbolic representation of data-parallel programs
o a useful subclass of SDF model

@ Framework for multi-criteria optimal deployment

@ Symmetry breaking: prove task symmetry and
use processor symmetry

@ Future work:

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 29/30

Conclusions

Conclusions

@ Symbolic representation of data-parallel programs
o a useful subclass of SDF model

@ Framework for multi-criteria optimal deployment

Symmetry breaking: prove task symmetry and
use processor symmetry

Future work:

More symmetry breaking, also approximation and heuristics

More refined data communication: data transfer delays

Pipelined scheduling

Scheduling under uncertainty

Multistage design flow \/

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 29/30

Conclusions

P2| [A | B [C[D | P2| [A | Bo [Cun| Do |

P1 ‘B1‘C10‘CO1‘COO‘DO‘E‘ P1 ‘51‘001‘010‘011‘01‘E‘
‘ Time ‘ Time
QUESTIONS?

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 30/30

	Motivation
	Application Model
	Problem Formulation - SMT
	Symmetry Breaking
	Cost Space Exploration
	Experiments and Results
	Conclusions

