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Context

@ Typical in parallel programming: spawn multiple identical tasks

o data parallelism
@ obtain hyperperiod of a multi-periodic system
@ duplicate tasks for fault-tolerance
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Context

@ Typical in parallel programming: spawn multiple identical tasks

o data parallelism
@ obtain hyperperiod of a multi-periodic system
@ duplicate tasks for fault-tolerance

@ Often the platform have multiple identical processors.

@ Hence, symmetry in the solution space.
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Motivation

Multi-criteria Optimization

minimize latency using minimal number of processors

latency
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Contribution

context:
static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers
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Contribution

context:
static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors
goal: increase the tractable problem size of SMT solvers

experiments : problem size increase from 20 to 50 tasks
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Application Model

Model of Computation

synchronous dataflow graphs (SDF)
by E. Lee and D. Messerschmitt in 1987
task graph + symbolic representation of data parallelism
signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:

Streamlt compiler of MIT
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Model of Computation

synchronous dataflow graphs (SDF)
by E. Lee and D. Messerschmitt in 1987
task graph + symbolic representation of data parallelism
signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:

Streamlt compiler of MIT

we introduce split-join graphs : restriction of SDF

still covering perhaps 90% of use cases
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Split-Join Graphs

a simple split-join graph example:

@ a

O,

®

« : spawn and split
1/a: wait and join
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Split-Join Graphs

Definition (Split-Join Graph)

S=(V,E,d,a), (V,E): DAG, V:actors, E:channels

d: V — R, : actor execution time,

a: E — Q: channel counter: split (> 1), join (< 1) or neutral (= 1)

Tendulkar, Poplavko, Maler Symmetry Breaking for mapping/scheduling 9/30




Split-Join Graphs

Definition (Split-doin Graph)

S=(V,E,d,a), (V,E): DAG, V:actors, E:channels

d: V — Ry : actor execution time,

o E — Q : channel counter: split (> 1), join (< 1) or neutral (= 1)

a source

complete path
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Split-Join Graphs

Definition (Split-doin Graph)

S=(V,E,d,a), (V,E): DAG, V:actors, E:channels

d: V — Ry : actor execution time,

a: E — Q : channel counter: split (> 1), join (< 1) or neutral (= 1)

3
1 @
. _. 3
balanced-parenthesis:
(1,3,2,1/2,1/3)
AN
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Well-behaved Graphs

Definition (Well-behaved)

S =(V,E,d,«a)is well-behaved if any complete path has
balanced-parenthesis signature

Such a graph can be unfolded to a task graph.
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Application Model

Unfolding to Task Graph
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Unfolding to Task Graph




Application Model

Actors, Tasks, Lexicographic Order

split-join graph: actors e.g., A, B, C

3 2 1/2 1/3
OSSP EMOS0
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Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v, v ¢ V

3 2 1/2 13
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Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v, v ¢ V
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Application Model

Actors, Tasks, Lexicographic Order

notation for actors: v, v e V

3 2 1/2 1/3
O PO

notation for tasks: u ¢ U
U= vp, ve Vandh-hier. index, e.g., vy = Eg 4
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Actors, Tasks, Lexicographic Order

notation for actors: v, v ¢ V

@;Qp (= (DX 0

notation for tasks: u € U
U, = {vn} : lexicographically ordered (<) set of instances of v

Ue:Ehow<BEpi < Epo< Ei1 < Bpg < By
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Outline

e Problem Formulation - SMT
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Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:
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Problem Formulation - SMT

Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

@ 1. Check whether S is well-behaved

@ 2. Unfold Sinto task graph T = (U, &, 6)
@ 3. Generate the mapping and scheduling constraints:

e Precedence
e Mutual Exclusion
o Buffer Capacity (Extended Problem - see the paper)

@ 4. Cost-space exploration using SMT solver.

Decision variables:
@ u(u),u € U - the mapping: processor (1,2,...,M) for u
@ s(u) - the schedule: start time of u \/
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Problem Formulation - SMT

Constraints

Predicate p(u, U/):
task U’ starts after the completion of task u

o(u, ) : s(u") > s(u) + d(u)
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Problem Formulation - SMT

Constraints
Predicate p(u, U/):
task U’ starts after the completion of task u

o(u, ) : s(u") > s(u) + d(u)

Precedence:

N elud)

(u,u")e€

Mutual exclusion:
N () = () = e(u, u) v o(u, u)

u#u'elU \/
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e Symmetry Breaking
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Task Symmetry
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a schedule

task graph

@ all instances of given actor v are similar (symmetric)
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Task Symmetry
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a schedule a permuted schedule

task graph
@ all instances of given actor v are similar (symmetric)

@ permutation of symmetric tasks does not change the latency,
.but extends the solution space exponentially \/
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Task Symmetry
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schedule

task graph

@ enforce the schedule to be compatible with lexicographic order:
S(Coo) < s(Cot) < s(Cro) < s(Ci1)

vV
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Task Symmetry
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Task Symmetry

./ .\ P2| [As | B [Cn] D] P2| [A [ By [Cu] Dy ]

‘Bw‘cm‘cm‘cco‘Do‘E‘ P1 ‘Bw‘Cm‘Cw‘Cn‘Dw‘E‘

.<.\./ Time \ Time

schedule compatible schedule

task graph

@ enforce the schedule to be compatible with lexicographic order:
S(Coo) < s(Cot) < s(Cro) < s(Ci1)

@ Theorem: adding constraints s(u) < s(v') for u < U’ does not
eliminate optimality
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Proof Sketch

modify a feasible schedule such that:
s(vo) £s(vy) €s(vy) < ...
prove that precedence constraints are satisfied

lexicographic start-time new hier. index;
order compatible new precedence relation
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Symmetry Breaking

Proof Sketch
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Symmetry Breaking

Proof Sketch
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Symmetry Breaking

Proof Sketch
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Symmetry Breaking

Proof Sketch
[ o ] ] o | |1[0].] |' [0] |
[ 1 | ] 1 ] O[] J o 11
2 ][ 2 (2] 3% ]

-
13 3| \_‘@_‘ 53] |+— [j1=13]
L4 [ ] 4 ] 34] | o aia]
5 5 [ sisr] | 30s] |

take successor | J |

by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor |/ |:

j+ 1 predecessors finish before, hence the earliest j + 1 ones as well
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Symmetry Breaking

Proof Sketch
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take successor | J |

by definition there exist j + 1 same or earlier successors

their original predecessors finish before successor [ |:

j+ 1 predecessors finish before, hence the earliest j + 1 ones as well
predecessor [ j | finishes before successor | J |
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Symmetry Breaking

Processor Symmetry
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Outline

e Cost Space Exploration
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Exploring the Design Space

One SMT query for a given point (C;, Cy) in the cost space:
@ C; - latency
@ Cy - processor count
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\ e sat points = unsat points e unexplored points \
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Exploring the Design Space

One SMT query for a given point (C;, Cy) in the cost space:
@ C; - latency
@ Cy - processor count
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| PSSR EEeY
| L _ hAes
\ e sat points = unsat points e unexplored points \
@ Precedence and Mutual Exclusion Constraints
@ Cost Constraints
A\ s() +6(u) < G A\ p(u) < Cu A

uel uel
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Outline

e Experiments and Results
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Synthetic-Graph Experiments

@ Fix processor cost Cy, and perform binary search for optimal C;
@ Increase « and measure increase in computation time
@ With(out) breaking of task symmetry and processor symmetry

vV
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Synthetic-Graph Experiments

A
(DD (2) )

@ Fix processor cost Cy, and perform binary search for optimal C;
@ Increase « and measure increase in computation time

@ With(out) breaking of task symmetry and processor symmetry
@ Z3 solver v4.1 on i7 core at 1.73GHz

vV
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Synthetic-Graph Experiments

)
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Exploration Time (sec

1,000

500

timeout

0 10 20 30 40

«

-e- nosym ——  task sym
—=—proc sym--+-task & proc sym

5-processor deployments
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Experiments and Results

Pareto Exploration

Processors

Latency

(e sat points = Unsat Points — Pareto Curve|

without symmetry breaking

cost space (C;, Cy) exploration for « = 30
evaluate task and processor symmetry breaking
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Experiments and Results

Pareto Exploration
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evaluate task and processor symmetry breaking
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Experiments and Results

Video Decoder

3D cost space (C;, Cy, Cg) exploration, Cg - total buffer size

MPEG video decoder:
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Experiments and Results

Video Decoder

3D cost space (C;, Cy, Cg) exploration, Cg - total buffer size

‘ A& without symmetry constraints e with symmetry constraints‘

MPEG video decoder:

i |

5507501

[7.205,1221 >

{[17,182,122]

Z

Processor
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Conclusions

Conclusions

@ Symbolic representation of data-parallel programs
o a useful subclass of SDF model

@ Framework for multi-criteria optimal deployment

@ Symmetry breaking: prove task symmetry and
use processor symmetry
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Conclusions

Conclusions

@ Symbolic representation of data-parallel programs
o a useful subclass of SDF model

@ Framework for multi-criteria optimal deployment

Symmetry breaking: prove task symmetry and
use processor symmetry

Future work:

More symmetry breaking, also approximation and heuristics

More refined data communication: data transfer delays

Pipelined scheduling

Scheduling under uncertainty

Multistage design flow \/
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Conclusions
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