How the Timed Automaton Lost its Tail (and Clocks)

Oded Maler

Joint work with Jean-Francois Kempf and Marius Bozga

CNRS - VERIMAG
Grenoble, France

FORMATS
Aalborg 2011
Returning to the Scene of the Crime

- I am happy to present this work in Aalborg where it started two years ago by discussions with Kim Larsen.
- Initial goal was to do timing analysis by statistical methods on duration probabilistic automata.
- But then we had some ideas to compute probabilities using density transformers, extensions of the zone transformers used in the verification of timed automata:
 - OM, Kim Larsen and Bruce Krogh: On Zone-Based Analysis of Duration Probabilistic Automata, Infinity 2010.
 - Similar to Vicario et al. and Alur and Bernadsky.
- The present clock-free work is a byproduct of trying to implement the ideas.
- Let us start with an intuitive introduction to the context.
Processes that Take Time

- Processes that take some time to conclude after having started, for example:
 - Propagation delay between *send* and *receive*
 - Execution time of a program
 - Duration of a step in a manufacturing process

- Mathematically they are simple timed automata:

A waiting state \(\overline{p} \); a *start* transition which resets a clock \(x \) to measure time elapsed in active state \(p \)

An *end* transition guarded by a temporal condition \(\phi(x) \)

Condition \(\phi \) can be **true** (no constraint), \(x = d \) (deterministic), \(x \in [a, b] \) (non-deterministic) or probabilistic
Composition

- Such processes can be combined:
- Sequentially to represent precedence relations between tasks, for example p precedes q:

$$
\begin{align*}
\begin{array}{c}
p \quad \text{start} \quad x := 0 \\
p \quad \phi(x) \quad \text{end}
\end{array}
\end{align*}
$$

- In parallel to express partially-independent processes, sometimes competing with each other:
Levels of Abstraction: Untimed

- Untimed (asynchronous) approach:
- Each process may take between zero and infinity time
- Consequently any interleaving in \((a \cdot b) \parallel c\) is possible
Timed automata and similar formalisms assume a lower and (finite) upper bound for the duration of each step.

The arithmetics of time eliminates some paths:

Since $4 < 6$, a must precede c and the set of possible paths is reduced to $a \cdot (b|c) = abc + acb$.

But how likely is abc to occur?
But how likely is \(abc \) to occur?

The durations of the steps is a vector
\[
(y_a, y_b, y_c) \in Y = [2, 4] \times [6, 20] \times [6, 9]
\]

Event \(b \) precedes \(c \) only when \(y_a + y_b < y_c \)

Since \(y_a + y_b \) ranges in \([8, 24]\) and \(y_c \in [6, 9] \), it is less likely than \(c \) preceding \(b \)
Interpreting temporal guards probabilistically as uniform distribution over $[a, b]$ gives precise quantitative meaning to this intuition.

Using this model we can compute probabilities of paths as volumes in the duration space.

We can discard low-probability paths, compute expected performance of schedulers, etc.

This talk explains how to do it gradually:
1. A single sequential process
2. Multiple independent processes
3. Processes executing under scheduler coordination
Sequential Stochastic Processes I

- $S = P^1 || \cdots || P^n$ of n sequential stochastic processes
- A process is a sequence of steps with probabilistic duration
- A step cannot start before its predecessor terminates
- Two scenarios:
 - Independent executions
 - Coordinated execution: resource conflicts on some steps, resolved by a scheduler that guarantees mutual exclusion
- We want to compare the (expected) performance of scheduling policies for the second scenario
- We start with the first for didactic reasons
Bounded Uniform Distributions

- A *uniform* distribution inside an interval $I = [a, b]$ is characterized by a density ψ defined as

$$\psi(y) = \begin{cases}
\frac{1}{b-a} & \text{if } a \leq y < b \\
0 & \text{otherwise}
\end{cases}$$

- Or in terms of distribution:

$$F(y) = \int_0^y \psi(\tau) d\tau = \begin{cases}
0 & \text{if } y < a \\
(y - a)/(b - a) & \text{if } a \leq y \leq b \\
1 & \text{if } b \leq y
\end{cases}$$
A sequential stochastic process: $P = (\mathcal{I}, \Psi)$:

- $\mathcal{I} = \{I_j\}_{j \in K}$ where $I_j = [a_j, b_j]$ is the interval of possible durations of step P_j
- $\Psi = \{\psi_j\}_{j \in K}$ is a sequence of densities with each ψ_j uniform over I_j
- We consider finite acyclic processes with $K = \{1, \ldots, k\}$

Automaton view:
Duration Space

- A finite sequence of *independent* uniform random variables \(\{y_j\}_{j \in K} \) ranging over a *duration space* \(D \), consisting of vectors

\[
y = (y_1, \ldots, y_k) \in D = I_1 \times \cdots \times I_k \subseteq \mathbb{R}^k
\]

with density

\[
\psi(y_1, \ldots, y_k) = \psi_1(y_1) \cdots \psi_k(y_k)
\]

- A point \(y \in D \) induces a *unique* behavior of the system

\[
\xi_y = y_1 \ e_1 \ y_2 \ e_2 \ \cdots \ y_k \ e_k
\]

where \(y_j \in I_j \) is the *duration* of step \(P_j \) and \(e_j \) is the *termination event*
Volume and Probability

- The timed language of the process $L = \{\xi_y : y \in D\}$
- The untimed (qualitative) language $L = \{e_1 e_2 \cdots e_k\}$
- The probability of any subset of L is the relative volume of the subset of D that generates it.
- For example, the probability to terminate before deadline r:
- The volume of $D \land (y_1 + \cdots + y_k < r)$ divided by the volume of D
From Durations to Time Stamps

- A timed word $\xi_y = y_1 \ e_1 \ y_2 \ e_2 \cdots y_k \ e_k$ can be written as a sequence of time-stamped events

 $\xi_t = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k)$

- where $t_j = y_1 + \cdots + y_j$ is the absolute time of e_j

 $y_j = t_j - t_{j-1}$

- A coordinate transformation $t = Ty$ and $y = T' t$ between the duration space D and the time-stamp space C

 $T = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

 $T' = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$

- These transformations preserve volume. We do our calculations on the time-stamp space C which is a zone defined by

 $\varphi_C : \bigwedge_{j \in K} a_j \leq t_j - t_{j-1} \leq b_j$
Processes in Parallel

- Consider n processes $S = P^1||\cdots||P^n = \{(I^i, \psi^i)\}_{i=1}^n$
- Notations: P^i_j (step j of process i), $l^i_j = [a^i_j, b^i_j]$ and ψ^i_j
- All processes have the same number k of steps
- Event alphabet $\Sigma = \{e^1_1, e^1_2, \ldots, e^n_{k-1}, e^n_k\}$
- A global behavior corresponds to a point in the global duration space

$$y = (y^1_1, y^1_2, \ldots, y^n_{k-1}, y^n_k) \in \mathcal{D} = \prod_{i=1}^n \prod_{j=1}^k l^i_j \subset \mathbb{R}^{nk}$$

or equivalently to a point t in the time-stamp space

$$t = (t^1_1, t^1_2, \ldots, t^n_{k-1}, t^n_k) \in \mathcal{C} = T\mathcal{D}$$

where T is a block diagonal matrix.
Global Behaviors

▶ Merging local behaviors \(L = L_1^{1} \| \cdots \| L_n^{n} \)

\[
\begin{array}{c}
\text{w} = e_1^1 e_2^1 e_2^2 e_3^3 e_2^1 e_1^1 e_1^3 e_2^2 e_3^3 e_3^3
\end{array}
\]

▶ Qualitative behavior: equivalence class of all timed behaviors with the same \textit{order} of events

▶ All potentially possible behaviors are part of the \textit{shuffle} (interleavings) of the local languages \(L = L_1^{1} \| \cdots \| L_n^{n} \)
Automaton View

A qualitative behavior is the set of all runs that go through the same path in the global (product) automaton

\[w = e_1^1 \ e_2^1 \ e_2^2 \ e_1^2 \ e_3^1 \ e_2^1 \ e_3^2 \ e_2^3 \ e_3^3 \]
In state (q_3^1, q_2^2) there is a race between e_3^1 and e_2^2.

The winner depends on which termination condition (transition guard) is satisfied first.

Which reduces to the relation between t_3^1 and t_2^2.

Races
We formulate the following question:

- Compute the probability of a qualitative behavior w, i.e., the probability that events occur in a particular order.
- Two-stage solution: characterize the subset Z_w of the time-stamp space C that yields w.
- Compute the volume of this subset divided by the volume of C.
- This will be expressed by a constraint $\varphi_C \land \varphi_w$ with

$$\varphi_C : \bigwedge_{i \in \mathbb{N}} \bigwedge_{j \in \mathbb{K}} a^i_j \leq t^i_j - t^i_{j-1} \leq b^i_j$$
Zone of a Qualitative Behavior

- Example: \(w = e_1^1 e_2^1 e_2^2 e_1^3 e_2^3 e_1^2 e_3^3 e_2^3 e_3^3 e_3^3 \)

\[\varphi_w : \varphi_C \land t_1^1 < t_1^2 < t_2^2 < t_3^2 < t_1^2 < t_3^1 < t_3^3 < t_3^1 \]

- Some constraints are implied by \(\varphi_C \) and transitivity
- The minimal set of inter-process constraints that characterize \(w \):

\[\varphi_w : \varphi_C \land (t_1^1 < t_1^2) \land (t_2^2 < t_3^1 \land (t_2^1 < t_1^2) \land (t_3^1 < t_2^2) \land (t_3^2 < t_3^1) \]

![Diagram showing the zone of a qualitative behavior with processes and events]

\(P_1 \quad e_1^1 \quad e_2^1 \quad e_2^2 \quad e_1^3 \quad e_2^3 \quad e_1^2 \quad e_3^3 \quad e_2^3 \quad e_3^3 \)

\(P_2 \quad e_1^1 \quad e_2^1 \quad e_2^2 \quad e_2^3 \quad e_1^3 \quad e_3^3 \quad e_3^3 \)

\(P_3 \quad e_1^1 \quad e_3^3 \quad e_2^3 \quad e_3^3 \)

\(P \quad e_1^1 \quad e_2^2 \quad e_1^3 \quad e_2^3 \quad e_1^2 \quad e_3^3 \quad e_3^3 \)
Incremental Construction

- Constraints can be computed *incrementally* as we move along the *prefix* of a qualitative behavior.
- For every w the probability of all behaviors having w as a prefix is $p(w) = |Z_w|/|C|$
- $\varphi_c : \varphi_C$
- $\varphi_{e_1} : \varphi_c \land (t_1^1 < t_1^2) \land (t_1^1 < t_1^3)$
- $\varphi_{e_1 e_1} : \varphi_c \land (t_1^1 < t_1^2) \land (t_1^2 < t_1^3) \land (t_1^2 < t_1^1)$
- When a new event occurs Z_w is split among its successors satisfying
 \[
 \sum_{e} |Z_w e| = |Z_w|
 \]
Integration: Back to School

- The volume of Z_w is computed by integration
- A concrete example: 3 one-step processes

$$D = C = [2, 5] \times [3, 4] \times [4, 7]$$

- To compute the probability that P^1 makes the first step

$$\varphi_{e_1^1} : (2 \leq t_1^1 \leq 5) \land (3 \leq t_1^2 \leq 4) \land (4 \leq t_1^3 \leq 7) \land (t_1^1 < t_1^2) \land (t_1^1 < t_1^3)$$

- We choose integration order (order of variable elimination)

$$t_1^3 < t_1^2 < t_1^1 :$$

$$|Z_{e_1^1}| = \int_2^3 \int_{\max(3,t_1^1)}^4 \int_{\max(4,t_1^1)}^7 dt_1^3 dt_1^2 dt_1^1$$
Integration: Back to School

To compute

\[\int_{2}^{3} \int_{\max(3, t_1)}^{4} \int_{\max(4, t_1)}^{7} dt_1^3 dt_1^2 dt_1^1 \]

we split \(I_1 \) as \([2, 5] = [2, 3] \cup [3, 4] \cup [4, 5]\)

\[
\left[\int_{2}^{3} \int_{3}^{4} \int_{4}^{7} + \int_{3}^{4} \int_{t_1}^{4} \int_{4}^{7} + \int_{4}^{5} \int_{t_1}^{4} \int_{t_1}^{7} \right] dt_1^3 dt_1^2 dt_1^1 \\
= 3 + \frac{3}{2} + 0 = \frac{9}{2}
\]

Dividing by \(|C| = 9 \) gives a probability of \(1/2 \) for \(e_1^1 \) winning the first race.
Integration over Zones

- First, we use DBM to check if a zone is empty.
- Then in n dimensions there are $n!$ possible orders of integration.
- Each order yields different splits and different forms of intermediate objects.

Orders of magnitude differences in complexity.
Our heuristic so far is to eliminate “later” variables first.
Theorem 1

- The probability of a qualitative behavior in a system of acyclic stochastic sequential processes with uniform probabilistic durations is computable.
- From this we can also compute the expected makespan (total termination time).
- In any behavior of the form $w = w' e^i_k$ process P^i is the last to terminate and the total termination time is t^i_k.
- The expected termination time is
 \[
 \mathbb{E}(\Theta) = \frac{1}{|C|} \sum_{i=1}^{n} \sum_{w=w' e^i_k} \int_{Z_w} t^i_k.
 \]
- Corollary: expected makespan is computable.
Confluent Paths

- This can be, of course, computed much more efficiently
- All qualitative behaviors that pass through a global state $q = (q^1_{j_1}, \ldots, q^n_{j_n})$ are characterized by

$$\varphi_q : \varphi_c \land \bigwedge_{i=1}^{n} \bigwedge_{i' \neq i} t^i_{j_i-1} < t^{i'}_{j_i'},$$

- We can forget the order among past events (paths to q)

$$t^1_2 < t^2_3 \land t^2_2 < t^1_3$$
Confluent Paths

- The qualitative behaviors where P^i makes the last step correspond to the zone Z^i characterized by

$$
\varphi^i : \varphi_c \land \bigwedge_{i' \neq i} t_{i'}^i < t_k
$$

- The expected termination time is

$$
\mathbb{E}(\Theta) = \frac{1}{|C|} \sum_{i=1}^{n} \int_{Z^i} t_k^i
$$
Coordinated Execution

- This concludes the warm-up, now we move to serious stuff.
- We assume that steps of different processes can be in *conflict* as they require the same bounded resource.
- A scheduler should decide to whom to give the resource first based on some policy.
- Starting P_j is not automatic upon the termination of P_{j-1}.
- We modify the process automaton by inserting a *waiting state* \bar{q}_j^i between q_{j-1}^i and q_j^i.
- The automaton can leave this state only when it receives a *start* command s_j^i from a scheduler.
A Running Example

- Two 3-step processes, a conflict between P_2^1 and P_2^2
- A forbidden state (q_2^1, q_2^2) that no scheduler allows in
Non-Determinism Resolved by Schedulers

- Before the scheduling policy is defined, the system is not probabilistically correct
- It is “open”, mixing probability with measure-free non-determinism (CS style)
- A scheduling policy eliminates this non-determinism and replaces it by determinism
- A point in the duration space induces a unique behavior
- We will compute probabilities and expected makespan using an extension of the volume-based technique
- We use non-lazy schedulers that do not block a process from using a resource unless another process will benefit from its waiting
Types of Schedulers

- One can consider various types of schedulers varying between two extremes
- *Laissez faire*: a liberal FIFO scheduler that gives a resource which is in conflict to the first task that requires it
- *Control freak*: a priority relation for each resource in conflict. Conflicting tasks are always executed according to this order
- *In between*: the decision of the scheduler to allow a task to take a resource is based on the *global* state of the system
The FIFO Scheduler

- Advantage: natural, no need to think
- Disadvantage: a step of another process which is on the critical path may arrive later and will have to wait
Strict Priority Scheduler

- Advantage: a more global view can keep the resource free for a critical task
- Disadvantage: hard to compute, not adaptive to actual durations, cannot use opportunities
Conditional Priority

- Advantage: the most general and adaptive and hence contains the optimal scheduler;
- Disadvantage: even harder to compute and requires more runtime information to realize
Computing Volumes

- We adapt the path labeling and volume computation procedures for coordinated execution.
- We illustrate on the FIFO schedulers but it extends easily to other schedulers.
- In fact, FIFO schedulers may admit more possible scenarios than priority based schedulers and hence the computation is harder.
- The crucial point in the coordinated execution scenario:
 - The value of t^i_j may sometimes depend on its predecessor t^i_{j-1} and sometimes on $t^i'_{j'}$ where $P^i_{j'}$ is a process that is in conflict with $P^i_{j'}$.
Conflict Outcome

- In a conflict between two processes P^1 and P^2 there are 4 possible outcomes depending on:
 - Who wins and uses the resource first? For FIFO schedulers this depends on who terminates before the step preceding the conflict.
 - Is the loser delayed? Does it become enabled before or after the winner terminates the conflicting step.
 - Each scenario can be expressed as a zone in the time stamp space.
 - Such a zone corresponds to a polytope in the duration space which has the same volume.
Case 1: P^1 Wins but P^2 is Not Delayed

- $t_1^1 < t_1^2$
- $t_2^1 < t_1^2$

- $t_2^2 + a_2^2 < t_1^2 < t_1^2 + b_2^2$
Case 2: P^1 Wins and P^2 is Delayed

- $t^1_1 < t^2_1$
 - $t^2_1 < t^1_2$

- $t^1_2 + a^2_2 < t^2_2 < t^1_2 + b^2_2$
Computing Probabilities

- The qualitative behaviors are partitioned into equivalence classes
- Each class is characterized by the utilization scenario of each of the shared resources:
 - At what order it is utilized and which steps are delayed
 - For each class we construct a zone in the time-step space having the same volume as the subset of the duration space that induces it
- The coordinate transformation from D to C becomes piecewise-linear
- A priori, a severe combinatorial explosion but in practice many zones are empty because the scenarios violate duration and precedence constraints
Implementation

- A prototype tool:
 - Computes the zone for each utilization scenario, using the DBM library of IF to simplify and check emptiness
 - Performs integration over the non-empty zones to compute probabilities and expected termination time
 - Integration uses high-precision arithmetic (GMP library) to avoid rounding errors
- A heuristic to determine the order of variable elimination integration based on a fast estimation of their ranges
- Preliminary performance observations: can solve (in < 3 minutes) problems with
 \((n, k) = (1, 63*), (2, 12), (4, 6), (5, 4)\) with two or three conflicts
Future Work

- Improve the algorithm for integration over zones
- Extend to other distributions
- To avoid explosion, develop a fat-first exploration procedure that stops when the accumulated probability crosses some threshold
- It needs a quick volume estimation procedure
- Extend the approach to cyclic systems and infinite behaviors: define suitable performance measures and compute their steady-states
- From analysis to synthesis: derive controller which are average-case optimal
- Compare and combine with Monte-Carlo simulation