
How the Timed Automaton Lost its Tail
(and Clocks)

Oded Maler

Joint work with Jean-Francois Kempf and Marius Bozga

CNRS - VERIMAG
Grenoble, France

FORMATS
Aalborg 2011

Returning to the Scene of the Crime

I I am happy to present this work in Aalborg where it started
two years ago by discussions with Kim Larsen

I Initial goal was to do timing analysis by statistical
methods on duration probabilistic automata

I But then we had some ideas to compute probabilities
using density transformers, extensions of the zone
transformers used in the verification of timed automata:

I OM, Kim Larsen and Bruce Krogh: On Zone-Based
Analysis of Duration Probabilistic Automata, Infinity 2010

I Similar to Vicario et al. and Alur and Bernadsky
I The present clock-free work is a byproduct of trying to

implement the ideas
I Let us start with an intuitive introduction to the context

Processes that Take Time

I Processes that take some time to conclude after having
started, for example:

I Propagation delay between send and receive
I Execution time of a program
I Duration of a step in a manufacturing process

I Mathematically they are simple timed automata:

x := 0
φ(x)
end

start
p p p

I A waiting state p; a start transition which resets a clock x
to measure time elapsed in active state p

I An end transition guarded by a temporal condition φ(x)

I Condition φ can be true (no constraint), x = d
(deterministic), x ∈ [a,b] (non-deterministic) or probabilistic

Composition
I Such processes can be combined:
I Sequentially to represent precedence relations between

tasks, for example p precedes q:

q x := 0
φ(x)
end

start
qq

x := 0
φ(x)
end

start
p p x := 0

φ(x)
end

start
qq

x := 0
φ(x)
end

start
p p p

p

I In parallel to express partially-independent processes,
sometimes competing with each other

2̄ E1 2 3

1

2̄

[a1, b1]

[c1, d1] [c2, d2] [c3, d3]

Levels of Abstraction: Untimed

I Untimed (asynchronous) approach:
I Each process may take between zero and infinity time
I Consequently any interleaving in (a · b)||c is possible

a b

a b

a b

c c cc

Levels of Abstraction: Timed
I Timed automata and similar formalisms assume a lower

and (finite) upper bound for the duration of each step

xb ∈ [6,20]/b

xb ∈ [6,20]/b

xb ∈ [6,20]/b

xa ∈ [2,4]/a

xa ∈ [2,4]/a

xa ∈ [2,4]/a

xc ∈ [6,9]/c xc ∈ [6,9]/c xc ∈ [6,9]/cxc ∈ [6,9]/c

I The arithmetics of time eliminates some paths:
I Since 4 < 6, a must precede c and the set of possible

paths is reduced to a · (b||c) = abc + acb
I But how likely is abc to occur?

Levels of Abstraction: Timed

I But how likely is abc to occur?
xb ∈ [6,20]/b

xb ∈ [6,20]/b

xb ∈ [6,20]/b

xa ∈ [2,4]/a

xa ∈ [2,4]/a

xa ∈ [2,4]/a

xc ∈ [6,9]/c xc ∈ [6,9]/c xc ∈ [6,9]/cxc ∈ [6,9]/c

I The durations of the steps is a vector
(ya, yb, yc) ∈ Y = [2,4]× [6,20]× [6,9]

I Event b precedes c only when ya + yb < yc

I Since ya + yb ranges in [8,24] and yc ∈ [6,9], it is less
likely than c preceding b

Probabilistic Interpretation of Timing Uncertainty

I Interpreting temporal guards probabilistically as uniform
distribution over [a,b] gives precise quantitative meaning
to this intuition

I Using this model we can compute probabilities of paths as
volumes in the duration space

I We can discard low-probability paths, compute expected
performance of schedulers, etc.

I This talk explains how to do it gradually
1. A single sequential process
2. Multiple independent processes
3. Processes executing under scheduler coordination

Sequential Stochastic Processes I

I S = P1|| · · · ||Pn of n sequential stochastic processes
I A process is a sequence of steps with probabilistic duration
I A step cannot start before its predecessor terminates
I Two scenarios:

I Independent executions
I Coordinated execution: resource conflicts on some steps,

resolved by a scheduler that guarantees mutual exclusion
I We want to compare the (expected) performance of

scheduling policies for the second scenario
I We start with the first for didactic reasons

Bounded Uniform Distributions

I A uniform distribution inside an interval I = [a,b] is
characterized by a density ψ defined as

ψ(y) =

{
1/(b − a) if a ≤ y < b
0 otherwise

a b a b

I Or in terms of distribution:

F (y) =

∫ y

0
ψ(τ)dτ =

0 if y < a
(y − a)/(b − a) if a ≤ y ≤ b
1 if b ≤ y

Sequential Stochastic Processes II

I A sequential stochastic process: P = (I,Ψ):
I I = {Ij}j∈K where Ij = [aj ,bj] is the interval of possible

durations of step Pj

I Ψ = {ψj}j∈K is a sequence of densities with each ψj
uniform over Ij

I We consider finite acyclic processes with K = {1, . . . , k}
I Automaton view:

q1 q2
ek

qk
e1 e2 · · ·

ej−1

x := 0
qj

yj := ψj

x = yj

ej

Duration Space

I A finite sequence of independent uniform random variables
{yj}j∈K ranging over a duration space D, consisting of
vectors

y = (y1, . . . , yk) ∈ D = I1 × · · · × Ik ⊆ Rk

with density

ψ(y1, . . . , yk) = ψ1(y1) · · ·ψk (yk)

I A point y ∈ D induces a unique behavior of the system

ξy = y1 e1 y2 e2 · · · yk ek

where yj ∈ Ij is the duration of step Pj and ej is the
termination event

Volume and Probability
I The timed language of the process L = {ξy : y ∈ D}
I The untimed (qualitative) language L = {e1 e2 · · · ek}
I The probability of any subset of L is the relative volume of

the subset of D that generates it
I For example, the probability to terminate before deadline r :
I The volume of D ∧ (y1 + · · ·+ yk < r) divided by the

volume of D

a1 b1

a2

b2

y1 + y2 < r

From Durations to Time Stamps

I A timed word ξy = y1 e1 y2 e2 · · · yk ek
can be written as a sequence of time-stamped events

ξt = (e1, t1), (e2, t2), . . . , (ek , tk)

I where
tj = y1 + · · ·+ yj is the absolute time of ej
yj = tj − tj−1

I A coordinate transformations t = Ty and y = T ′t between
the duration space D and the time-stamp space C

T =

 1 0 0
1 1 0
1 1 1

 T ′ =

 1 0 0
−1 1 0

0 −1 1

I These transformations preserve volume. We do our

calculations on the time-stamp space C which is a zone
defined by

ϕC :
∧
j∈K

aj ≤ tj − tj−1 ≤ bj

Processes in Parallel

I Consider n processes S = P1|| · · · ||Pn = {(I i,Ψi)}ni=1
I Notations: P i

j (step j of process i), I i
j = [ai

j ,b
i
j] and ψi

j
I All processes have the same number k of steps
I Event alphabet Σ = {e1

1,e
1
2, . . . ,e

n
k−1,e

n
k}

I A global behavior corresponds to a point in the global
duration space

y = (y1
1 , y

1
2 , . . . , y

n
k−1, y

n
k) ∈ D =

n∏
i=1

k∏
j=1

I i
j ⊂ Rnk

or equivalently to a point t in the time-stamp space

t = (t1
1 , t

1
2 , . . . , t

n
k−1, t

n
k) ∈ C = TD

where T is a block diagonal matrix.

Global Behaviors

I Merging local behaviors L = L1|| · · · ||Ln

P
e1

1 e2
1 e2

2 e3
1 e3

2 e1
2 e1

3 e2
3 e3

3

P1

P2

P3

e2
2

e3
3e3

2e3
1

e1
1

e2
1

e1
3

e2
3

e1
2

w = e1
1 e2

1 e2
2 e3

1 e2
3 e1

2 e1
3 e3

2 e3
3

I Qualitative behavior: equivalence class of all timed
behaviors with the same order of events

I All potentially possible behaviors are part of the shuffle
(interleavings) of the local languages L = L1|| · · · ||Ln

Automaton View
I A qualitative behavior is the set of all runs that go through

the same path in the global (product) automaton

e1
1

e2
1

e1
2

e2
3

e1
3

e2
2

q2
1 q2

2
q2

3
e2

1 e2
2 e2

3

q1
1

q1
2

q1
3

e1
1

e1
2

e1
3

w = e1
1 e2

1 e2
2 e3

1 e2
3 e1

2 e1
3 e3

2 e3
3

Races

e1
1

e2
1

e1
2

e2
3

e1
3

e2
2

q2
1 q2

2
q2

3
e2

1 e2
2 e2

3

q1
1

q1
2

q1
3

e1
1

e1
2

e1
3

e1
3

q1
3 , q

2
2

x2 = y2
2

e2
2

x1 = y1
3

I In state (q1
3 ,q

2
2) there is a race between e1

3 and e2
2

I The winner depends on which termination condition
(transition guard) is satisfied first

I Which reduces to the relation between t1
3 and t2

2

Probability of Qualitative Behavior

I We formulate the following question:
I Compute the probability of a qualitative behavior w , ie the

probability that events occur in a particular order
I Two-stage solution: characterize the subset Zw of the

time-stamp space C that yields w
I Compute the volume of this subset divided by the volume

of C
I This will be expressed by a constraint ϕC ∧ ϕw with

ϕC :
∧
i∈N

∧
j∈K

ai
j ≤ t i

j − t i
j−1 ≤ bi

j

Zone of a Qualitative Behavior

I Example: w = e1
1 e2

1 e2
2 e3

1 e2
3 e1

2 e1
3 e3

2 e3
3

ϕw : ϕC ∧ t1
1 < t2

1 < t2
2 < t3

1 < t2
3 < t1

2 < t1
3 < t3

2 < t3
3

I Some constraints are implied by ϕC and transitivity
I The minimal set of inter-process constraints that

characterize w :

ϕw : ϕC∧(t1
1 < t2

1)∧(t2
2 < t3

1)∧(t3
2 < t1

2)∧(t1
3 < t2

3)∧(t2
3 < t3

3)

P
e1

1 e2
1 e2

2 e3
1 e3

2 e1
2 e1

3 e2
3 e3

3

e1
2 e1

3

e2
3e2

2e2
1

e3
3e3

2e3
1

P1

P2

P3

e1
1

Incremental Construction
I Constraints can be computed incrementally as we move

along the prefix of a qualitative behavior
I For every w the probability of all behaviors having w as a

prefix is p(w) = |Zw |/|C|
I ϕε : ϕC
I ϕe1

1
: ϕC ∧ (t1

1 < t2
1) ∧ (t1

1 < t3
1)

I ϕe1
1e2

1
: ϕC ∧ (t1

1 < t2
1) ∧ (t2

1 < t3
1) ∧ (t2

1 < t1
2)

e1
1

e2
1

e3
1

e1
1 e1

2

e2
1

e3
1

I When a new event occurs Zw is split among its successors
satisfying ∑

e

|Zw e| = |Zw |

Integration: Back to School

I The volume of Zw is computed by integration
I A concrete example: 3 one-step processes

D = C = [2,5]× [3,4]× [4,7]

I To compute the probability that P1 makes the first step

ϕe1
1

:
(2 ≤ t1

1 ≤ 5) ∧ (3 ≤ t2
1 ≤ 4) ∧ (4 ≤ t3

1 ≤ 7)∧
(t1

1 < t2
1) ∧ (t1

1 < t3
1)

I We choose integration order (order of variable elimination)
t3
1 ≺ t2

1 ≺ t1
1 :

|Ze1
1
| =

∫ 3

2

∫ 4

max(3,t1
1)

∫ 7

max(4,t1
1)

dt3
1 dt2

1 dt1
1

Integration: Back to School

I To compute ∫ 3

2

∫ 4

max(3,t1
1)

∫ 7

max(4,t1
1)

dt3
1 dt2

1 dt1
1

we split I1
1 as [2,5] = [2,3] ∪ [3,4] ∪ [4,5]

[∫ 3

2

∫ 4

3

∫ 7

4
+

∫ 4

3

∫ 4

t1
1

∫ 7

4
+

∫ 5

4

∫ 4

t1
1

∫ 7

t1
1

]
dt3

1 dt2
1 dt1

1

= 3 + 3
2 + 0 = 9

2

I Dividing by |C| = 9 gives a probability of 1/2 for e1
1 winning

the first race

Integration over Zones

I First, we use DBM to check if a zone is empty
I Then in n dimensions there are n! possible orders of

integration
I Each order yields different splits and different forms of

intermediate objects
x2

x1

b2

b1

a2

a1

A

C

x2

x1

b2

b1

a2

a1

D

B

E

1 ≺ 2 2 ≺ 1

I Orders of magnitude differences in complexity
I Our heuristic so far is to eliminate “later” variables first

Theorem 1

I The probability of a qualitative behavior in a system of
acyclic stochastic sequential processes with uniform
probabilistic durations is computable

I From this we can also compute the expected makespan
(total termination time)

I In any behavior of the form w = w ′ei
k process P i is the last

to terminate and the total termination time is t i
k

I The expected termination time is

E(Θ) =
1
|C|

n∑
i=1

∑
w=w ′ei

k

∫
Zw

t i
k .

I Corollary: expected makespan is computable

Confluent Paths
I This can be, of course, computed much more efficiently
I All qualitative behaviors that pass through a global state

q = (q1
j1
, . . . ,qn

jn) are characterized by

ϕq : ϕC ∧
n∧

i=1

∧
i ′ 6=i

t i
ji−1 < t i′

ji′

I We can forget the order among past events (paths to q)

e1
3

e1
2

e2
2 q1

3 q2
3

e2
3

t1
2 < t2

3 ∧ t2
2 < t1

3

Confluent Paths
I The qualitative behaviors where P i makes the last step

correspond to the zone Z i characterized by

ϕi : ϕC ∧
∧
i ′ 6=i

t i′
k < t i

k

e2
3

e1
3

I The expected termination time is

E(Θ) =
1
|C|

n∑
i=1

∫
Z i

t i
k

Coordinated Execution

I This concludes the warm-up, now we move to serious stuff
I We assume that steps of different processes can be in

conflict as they require the same bounded resource
I A scheduler should decide to whom to give the resource

first based on some policy
I Starting Pj is not automatic upon the termination of Pj−1

I We modify the process automaton by inserting a waiting
state q̄i

j between qi
j−1 and qi

j
I The automaton can leave this state only when it receives a

start command si
j from a scheduler

A Running Example

I Two 3-step processes, a conflict between P1
2 and P2

2
I A forbidden state (q1

2 ,q
2
2) that no scheduler allows in

e1
1

s1
2

e1
2

e1
3

s2
2

q2
1

q1
1

q̄1
2

q1
2

q1
3

q1
f

q̄2
2 q2

2 q2
3 q2

f

q1
2q2

2

x1
1 := 0

e2
2 e2

1e2
1x2

1 := 0

s2
2

s2
2

s1
2 s1

2

Non-Determinism Resolved by Schedulers

I Before the scheduling policy is defined, the system is not
probabilistically correct

I It is “open”, mixing probability with measure-free
non-determinism (CS style)

I A scheduling policy eliminates this non-determinism and
replaces it by determinism

I A point in the duration space induces a unique behavior
I We will compute probabilities and expected makespan

using an extension of the volume-based technique
I We use non-lazy schedulers that do not block a process

from using a resource unless another process will benefit
from its waiting

Types of Schedulers

I One can consider various types of schedulers varying
between two extremes

I Laissez faire: a liberal FIFO scheduler that gives a
resource which is in conflict to the first task that requires it

I Control freak: a priority relation for each resource in
conflict. Conflicting tasks are always executed according to
this order

I In between: the decision of the scheduler to allow a task to
take a resource is based on the global state of the system

The FIFO Scheduler

I Advantage: natural, no need to think
I Disadvantage: a step of another process which is on the

critical path may arrive later and will have to wait

e1
1

s1
2

e1
2

e1
3

e2
2 e2

1e2
1 s2

2q2
1

q1
1

q̄1
2

q1
2

q1
3

q1
f

q̄2
2 q2

2 q2
3 q2

f

q1
2q2

2

Strict Priority Scheduler
I Advantage: a more global view can keep the resource free

for a critical task
I Disadvantage: hard to compute, not adaptive to actual

durations, cannot use opportunities

e1
1

s1
2

e1
2

e1
3

e2
1e2

1 s2
2

q2
1

q1
1

q̄1
2

q1
2

q1
3

q1
f

q̄2
2 q2

2 q2
3 q2

f

q1
2q2

2

e2
2

A1 > q1
2

Conditional Priority
I Advantage: the most general and adaptive and hence

contains the optimal scheduler;
I Disadvantage: even harder to compute and requires more

runtime information to realize

e1
1

s1
2

e1
2

e1
3

e2
1e2

1 s2
2q2

1

q1
1

q̄1
2

q1
2

q1
3

q1
f

q̄2
2 q2

2 q2
3 q2

f

q1
2q2

2

e2
2

A1 < q̄2
2 ∧ x1 < d

x1 < d

x1 := 0

A1 > q1
2∨

Computing Volumes

I We adapt the path labeling and volume computation
procedures for coordinated execution

I We illustrate on the FIFO schedulers but it extends easily
to other schedulers

I In fact, FIFO schedulers may admit more possible
scenarios than priority based schedulers and hence the
computation is harder

I The crucial point in the coordinated execution scenario:
I The value of t i

j may sometimes depend on its predecessor
t i
j−1 and sometimes on t i′

j ′ where P i′
j ′ is a process that is in

conflict with P i′
j ′

Conflict Outcome

I In a conflict between two processes P1 and P2 there are 4
possible outcomes depending on:

I Who wins and uses the resource first? For FIFO
schedulers this depends on who terminates before the
step preceding the conflict

I Is the loser delayed? Does it become enabled before or
after the winner terminates the conflicting step

I Each scenario can be expressed as a zone in the time
stamp space

I Such a zone corresponds to a polytope in the duration
space which has the same volume

Case 1: P1 Wins but P2 is Not Delayed

I t1
1 < t2

1 t1
2 < t2

1

e1
1

s1
2

e1
2

e1
3

q2
1

q1
1

q̄1
2

q1
2

q1
3

q1
f

q̄2
2 q2

2 q2
3 q2

f

q1
2q2

2

e2
2s2

2 e2
1e2

1

x1
1 := 0

I t2
1 + a2

2 < t2
2 < t2

1 + b2
2

Case 2: P1 Wins and P2 is Delayed

I t1
1 < t2

1 t2
1 < t1

2

e1
1

s1
2

e1
2

e1
3

q2
1

q1
1

q̄1
2

q1
2

q1
3

q1
f

q̄2
2 q2

2 q2
3 q2

f

q1
2q2

2

e2
2s2

2 e2
1e2

1

x1
1 := 0

I t1
2 + a2

2 < t2
2 < t1

2 + b2
2

Computing Probabilities

I The qualitative behaviors are partitioned into equivalence
classes

I Each class is characterized by the utilization scenario of
each of the shared resources:

I At what order it is utilized and which steps are delayed
I For each class we construct a zone in the time-step space

having the same volume as the subset of the duration
space that induces it

I The coordinate transformation from D to C becomes
piecewise-linear

I A priori, a severe combinatorial explosion but in practice
many zones are empty because the scenarios violate
duration and precedence constraints

Implementation

I A prototype tool:
I Computes the zone for each utilization scenario, using the

DBM library of IF to simplify and check emptiness
I Performs integration over the non-empty zones to compute

probabilities and expected termination time
I Integration uses high-precision arithmetic (GMP library) to

avoid rounding errors
I A heuristic to determine the order of variable elimination

integration based on a fast estimation of their ranges
I Preliminary performance observations: can solve (in < 3

minutes) problems with
(n, k) = (1,63∗), (2,12), (4,6), (5,4) with two or three
conflicts

Future Work

I Improve the algorithm for integration over zones
I Extend to other distributions
I To avoid explosion, develop a fat-first exploration

procedure that stops when the accumulated probability
crosses some threshold

I It needs a quick volume estimation procedure
I Extend the approach to cyclic systems and infinite

behaviors: define suitable performance measures and
compute their steady-states

I From analysis to synthesis: derive controller which are
average-case optimal

I Compare and combine with Monte-Carlo simulation

