# How the Timed Automaton Lost its Tail (and Clocks) 

Oded Maler

Joint work with Jean-Francois Kempf and Marius Bozga

CNRS - VERIMAG
Grenoble, France
FORMATS
Aalborg 2011

## Returning to the Scene of the Crime

- I am happy to present this work in Aalborg where it started two years ago by discussions with Kim Larsen
- Initial goal was to do timing analysis by statistical methods on duration probabilistic automata
- But then we had some ideas to compute probabilities using density transformers, extensions of the zone transformers used in the verification of timed automata:
- OM, Kim Larsen and Bruce Krogh: On Zone-Based Analysis of Duration Probabilistic Automata, Infinity 2010
- Similar to Vicario et al. and Alur and Bernadsky
- The present clock-free work is a byproduct of trying to implement the ideas
- Let us start with an intuitive introduction to the context


## Processes that Take Time

- Processes that take some time to conclude after having started, for example:
- Propagation delay between send and receive
- Execution time of a program
- Duration of a step in a manufacturing process
- Mathematically they are simple timed automata:

- A waiting state $\bar{p}$; a start transition which resets a clock $x$ to measure time elapsed in active state $p$
- An end transition guarded by a temporal condition $\phi(x)$
- Condition $\phi$ can be true (no constraint), $x=d$ (deterministic), $x \in[a, b]$ (non-deterministic) or probabilistic


## Composition

- Such processes can be combined:
- Sequentially to represent precedence relations between tasks, for example $p$ precedes $q$ :

- In parallel to express partially-independent processes, sometimes competing with each other



## Levels of Abstraction: Untimed

- Untimed (asynchronous) approach:
- Each process may take between zero and infinity time
- Consequently any interleaving in $(a \cdot b) \| c$ is possible



## Levels of Abstraction: Timed

- Timed automata and similar formalisms assume a lower and (finite) upper bound for the duration of each step

- The arithmetics of time eliminates some paths:
- Since $4<6$, a must precede $c$ and the set of possible paths is reduced to $a \cdot(b \| c)=a b c+a c b$
- But how likely is $a b c$ to occur?


## Levels of Abstraction: Timed

- But how likely is abc to occur?

- The durations of the steps is a vector $\left(y_{a}, y_{b}, y_{c}\right) \in Y=[2,4] \times[6,20] \times[6,9]$
- Event $b$ precedes $c$ only when $y_{a}+y_{b}<y_{c}$
- Since $y_{a}+y_{b}$ ranges in $[8,24]$ and $y_{c} \in[6,9]$, it is less likely than $c$ preceding $b$


## Probabilistic Interpretation of Timing Uncertainty

- Interpreting temporal guards probabilistically as uniform distribution over [ $a, b$ ] gives precise quantitative meaning to this intuition
- Using this model we can compute probabilities of paths as volumes in the duration space
- We can discard low-probability paths, compute expected performance of schedulers, etc.
- This talk explains how to do it gradually

1. A single sequential process
2. Multiple independent processes
3. Processes executing under scheduler coordination

## Sequential Stochastic Processes I

- $S=P^{\mathbf{1}}\|\cdots\| P^{\mathrm{n}}$ of $n$ sequential stochastic processes
- A process is a sequence of steps with probabilistic duration
- A step cannot start before its predecessor terminates
- Two scenarios:
- Independent executions
- Coordinated execution: resource conflicts on some steps, resolved by a scheduler that guarantees mutual exclusion
- We want to compare the (expected) performance of scheduling policies for the second scenario
- We start with the first for didactic reasons


## Bounded Uniform Distributions

- A uniform distribution inside an interval $I=[a, b]$ is characterized by a density $\psi$ defined as

$$
\psi(y)= \begin{cases}1 /(b-a) & \text { if } a \leq y<b \\ 0 & \text { otherwise }\end{cases}
$$



- Or in terms of distribution:

$$
F(y)=\int_{0}^{y} \psi(\tau) d \tau= \begin{cases}0 & \text { if } y<a \\ (y-a) /(b-a) & \text { if } a \leq y \leq b \\ 1 & \text { if } b \leq y\end{cases}
$$

## Sequential Stochastic Processes II

- A sequential stochastic process: $P=(\mathcal{I}, \Psi)$ :
- $\mathcal{I}=\left\{I_{j}\right\}_{j \in K}$ where $I_{j}=\left[a_{j}, b_{j}\right]$ is the interval of possible durations of step $P_{j}$
- $\Psi=\left\{\psi_{j}\right\}_{j \in K}$ is a sequence of densities with each $\psi_{j}$ uniform over $I_{j}$
- We consider finite acyclic processes with $K=\{1, \ldots, k\}$
- Automaton view:


$$
\begin{gathered}
y_{j}:=\psi_{j} \\
e_{j-1} \\
q_{j} \xrightarrow[e_{j}]{ } x=y_{j}
\end{gathered}
$$

## Duration Space

- A finite sequence of independent uniform random variables $\left\{y_{j}\right\}_{j \in K}$ ranging over a duration space $D$, consisting of vectors

$$
y=\left(y_{1}, \ldots, y_{k}\right) \in D=I_{1} \times \cdots \times I_{k} \subseteq \mathbb{R}^{k}
$$

with density

$$
\psi\left(y_{1}, \ldots, y_{k}\right)=\psi_{1}\left(y_{1}\right) \cdots \psi_{k}\left(y_{k}\right)
$$

- A point $y \in D$ induces a unique behavior of the system

$$
\xi_{y}=y_{1} e_{1} y_{2} e_{2} \cdots y_{k} e_{k}
$$

where $y_{j} \in l_{j}$ is the duration of step $P_{j}$ and $e_{j}$ is the termination event

## Volume and Probability

- The timed language of the process $L=\left\{\xi_{y}: y \in D\right\}$
- The untimed (qualitative) language $\underline{L}=\left\{e_{1} e_{2} \cdots e_{k}\right\}$
- The probability of any subset of $L$ is the relative volume of the subset of $D$ that generates it
- For example, the probability to terminate before deadline $r$ :
- The volume of $D \wedge\left(y_{1}+\cdots+y_{k}<r\right)$ divided by the volume of $D$



## From Durations to Time Stamps

- A timed word $\xi_{y}=y_{1} e_{1} y_{2} e_{2} \cdots y_{k} e_{k}$
can be written as a sequence of time-stamped events

$$
\xi_{t}=\left(e_{1}, t_{1}\right),\left(e_{2}, t_{2}\right), \ldots,\left(e_{k}, t_{k}\right)
$$

- where $t_{j}=y_{1}+\cdots+y_{j}$ is the absolute time of $e_{j}$

$$
y_{j}=t_{j}-t_{j-1}
$$

- A coordinate transformations $t=T y$ and $y=T^{\prime} t$ between the duration space $D$ and the time-stamp space $C$

$$
T=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \quad T^{\prime}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

- These transformations preserve volume. We do our calculations on the time-stamp space $C$ which is a zone defined by

$$
\varphi_{C}: \bigwedge_{j \in K} a_{j} \leq t_{j}-t_{j-1} \leq b_{j}
$$

## Processes in Parallel

- Consider $n$ processes $S=P^{\mathbf{1}}\|\cdots\| P^{\mathbf{n}}=\left\{\left(\mathcal{I}^{\mathbf{i}}, \Psi^{\mathbf{i}}\right)\right\}_{i=1}^{n}$
- Notations: $P_{j}^{\mathrm{i}}$ (step $j$ of process $i$ ), $l_{j}^{\mathrm{j}}=\left[a_{j}^{\mathrm{i}}, h_{j}^{\mathrm{i}}\right]$ and $\psi_{j}^{\mathbf{i}}$
- All processes have the same number $k$ of steps
- Event alphabet $\Sigma=\left\{e_{1}^{1}, e_{2}^{1}, \ldots, e_{k-1}^{\mathbf{n}}, e_{k}^{\mathbf{n}}\right\}$
- A global behavior corresponds to a point in the global duration space

$$
y=\left(y_{1}^{1}, y_{2}^{1}, \ldots, y_{k-1}^{\mathrm{n}}, y_{k}^{\mathrm{n}}\right) \in \mathcal{D}=\prod_{i=1}^{n} \prod_{j=1}^{k} \iota_{j}^{\mathrm{j}} \subset \mathbb{R}^{n k}
$$

or equivalently to a point $t$ in the time-stamp space

$$
t=\left(t_{1}^{1}, t_{2}^{1}, \ldots, t_{k-1}^{\mathrm{n}}, t_{k}^{\mathrm{n}}\right) \in \mathcal{C}=T \mathcal{D}
$$

where $T$ is a block diagonal matrix.

## Global Behaviors

- Merging local behaviors $L=L^{1}\|\cdots\| L^{n}$

- Qualitative behavior: equivalence class of all timed behaviors with the same order of events
- All potentially possible behaviors are part of the shuffle (interleavings) of the local languages $\underline{L}=\underline{L}^{1}\|\cdots\| \underline{L}^{n}$


## Automaton View

- A qualitative behavior is the set of all runs that go through the same path in the global (product) automaton



## Races



- In state $\left(q_{3}^{1}, q_{2}^{2}\right)$ there is a race between $e_{3}^{1}$ and $e_{2}^{2}$
- The winner depends on which termination condition (transition guard) is satisfied first
- Which reduces to the relation between $t_{3}^{1}$ and $t_{2}^{2}$


## Probability of Qualitative Behavior

- We formulate the following question:
- Compute the probability of a qualitative behavior w, ie the probability that events occur in a particular order
- Two-stage solution: characterize the subset $Z_{w}$ of the time-stamp space $\mathcal{C}$ that yields $w$
- Compute the volume of this subset divided by the volume of $\mathcal{C}$
- This will be expressed by a constraint $\varphi_{\mathcal{C}} \wedge \varphi_{w}$ with

$$
\varphi_{\mathcal{C}}: \bigwedge_{i \in N} \bigwedge_{j \in K} a_{j}^{\mathrm{i}} \leq t_{j}^{\mathrm{i}}-t_{j-1}^{\mathrm{i}} \leq b_{j}^{\mathrm{i}}
$$

## Zone of a Qualitative Behavior

- Example: $w=e_{1}^{1} e_{1}^{2} e_{2}^{2} e_{1}^{3} e_{3}^{2} e_{2}^{1} e_{3}^{1} e_{2}^{3} e_{3}^{3}$

$$
\varphi_{w}: \varphi_{\mathcal{C}} \wedge t_{1}^{1}<t_{1}^{2}<t_{2}^{2}<t_{1}^{3}<t_{3}^{2}<t_{2}^{1}<t_{3}^{1}<t_{2}^{3}<t_{3}^{3}
$$

- Some constraints are implied by $\varphi_{\mathcal{C}}$ and transitivity
- The minimal set of inter-process constraints that characterize $w$ :

$$
\varphi_{w}: \varphi_{\mathcal{C}} \wedge\left(t_{1}^{1}<t_{1}^{2}\right) \wedge\left(t_{2}^{2}<t_{1}^{3}\right) \wedge\left(t_{2}^{3}<t_{2}^{1}\right) \wedge\left(t_{3}^{1}<t_{3}^{2}\right) \wedge\left(t_{3}^{2}<t_{3}^{3}\right)
$$



## Incremental Construction

- Constraints can be computed incrementally as we move along the prefix of a qualitative behavior
- For every $w$ the probability of all behaviors having $w$ as a prefix is $p(w)=\left|Z_{w}\right| /|\mathcal{C}|$
- $\varphi_{\epsilon}: \varphi_{\mathcal{C}}$
- $\varphi_{e_{1}^{1}}: \varphi_{\mathcal{C}} \wedge\left(t_{1}^{1}<t_{1}^{2}\right) \wedge\left(t_{1}^{1}<t_{1}^{3}\right)$
- $\varphi_{e_{1}^{1} e_{1}^{2}}: \varphi_{\mathcal{C}} \wedge\left(t_{1}^{1}<t_{1}^{2}\right) \wedge\left(t_{1}^{2}<t_{1}^{3}\right) \wedge\left(t_{1}^{2}<t_{2}^{1}\right)$

- When a new event occurs $Z_{w}$ is split among its successors satisfying

$$
\sum_{e}\left|Z_{w} e\right|=\left|Z_{w}\right|
$$

## Integration: Back to School

- The volume of $Z_{w}$ is computed by integration
- A concrete example: 3 one-step processes

$$
\mathcal{D}=\mathcal{C}=[2,5] \times[3,4] \times[4,7]
$$

- To compute the probability that $P^{1}$ makes the first step

$$
\begin{array}{ll}
\varphi_{e_{1}}: & \left(2 \leq t_{1}^{1} \leq 5\right) \wedge\left(3 \leq t_{1}^{2} \leq 4\right) \wedge\left(4 \leq t_{1}^{3} \leq 7\right) \wedge \\
& \left(t_{1}^{1}<t_{1}^{2}\right) \wedge\left(t_{1}^{1}<t_{1}^{3}\right)
\end{array}
$$

- We choose integration order (order of variable elimination) $t_{1}^{3} \prec t_{1}^{2} \prec t_{1}^{1}$ :

$$
\left|Z_{e_{1}^{1}}\right|=\int_{2}^{3} \int_{\max \left(3, t_{1}^{\prime}\right)}^{4} \int_{\max \left(4, t_{1}^{1}\right)}^{7} d t_{1}^{3} d t_{1}^{2} d t_{1}^{1}
$$

## Integration: Back to School

- To compute

$$
\int_{2}^{3} \int_{\max \left(3, t_{1}^{1}\right)}^{4} \int_{\max \left(4, t_{1}^{1}\right)}^{7} d t_{1}^{3} d t_{1}^{2} d t_{1}^{1}
$$

we split $l_{1}^{1}$ as $[2,5]=[2,3] \cup[3,4] \cup[4,5]$

$$
\begin{gathered}
{\left[\int_{2}^{3} \int_{3}^{4} \int_{4}^{7}+\int_{3}^{4} \int_{t_{1}^{1}}^{4} \int_{4}^{7}+\int_{4}^{5} \int_{t_{1}^{1}}^{4} \int_{t_{1}^{1}}^{7}\right] d t_{1}^{3} d t_{1}^{2} d t_{1}^{1}} \\
=3+\frac{3}{2}+0=\frac{9}{2}
\end{gathered}
$$

- Dividing by $|\mathcal{C}|=9$ gives a probability of $1 / 2$ for $e_{1}^{1}$ winning the first race


## Integration over Zones

- First, we use DBM to check if a zone is empty
- Then in $n$ dimensions there are $n$ ! possible orders of integration
- Each order yields different splits and different forms of intermediate objects


- Orders of magnitude differences in complexity
- Our heuristic so far is to eliminate "later" variables first


## Theorem 1

- The probability of a qualitative behavior in a system of acyclic stochastic sequential processes with uniform probabilistic durations is computable
- From this we can also compute the expected makespan (total termination time)
- In any behavior of the form $w=w^{\prime} e_{k}^{\mathbf{i}}$ process $P^{\mathbf{i}}$ is the last to terminate and the total termination time is $t_{k}^{i}$
- The expected termination time is

$$
\mathbb{E}(\Theta)=\frac{1}{|\mathcal{C}|} \sum_{i=1}^{n} \sum_{w=w^{\prime} e_{k}^{\mathrm{i}}} \int_{Z_{w}} t_{k}^{i}
$$

- Corollary: expected makespan is computable


## Confluent Paths

- This can be, of course, computed much more efficiently
- All qualitative behaviors that pass through a global state $q=\left(q_{j}^{1}, \ldots, q_{j_{n}}^{\mathbf{n}}\right)$ are characterized by

$$
\varphi_{q}: \varphi_{\mathcal{C}} \wedge \bigwedge_{i=1}^{n} \bigwedge_{i^{\prime} \neq i} t_{j_{i}-1}^{i}<t_{j^{\prime}}^{\mathrm{i}^{\prime}}
$$

- We can forget the order among past events (paths to q)


$$
t_{2}^{1}<t_{3}^{2} \wedge t_{2}^{2}<t_{3}^{1}
$$

## Confluent Paths

- The qualitative behaviors where $P^{\mathbf{i}}$ makes the last step correspond to the zone $Z^{i}$ characterized by

$$
\varphi^{i}: \varphi_{\mathcal{C}} \wedge \bigwedge_{i^{\prime} \neq i} t_{k}^{\mathrm{i}^{\prime}}<t_{k}^{\mathrm{i}}
$$



- The expected termination time is

$$
\mathbb{E}(\Theta)=\frac{1}{|\mathcal{C}|} \sum_{i=1}^{n} \int_{Z^{i}} t_{k}^{i}
$$

## Coordinated Execution

- This concludes the warm-up, now we move to serious stuff
- We assume that steps of different processes can be in conflict as they require the same bounded resource
- A scheduler should decide to whom to give the resource first based on some policy
- Starting $P_{j}$ is not automatic upon the termination of $P_{j-1}$
- We modify the process automaton by inserting a waiting state $\bar{q}_{j}^{\mathrm{i}}$ between $q_{j-1}^{\mathrm{i}}$ and $q_{j}^{\mathrm{i}}$
- The automaton can leave this state only when it receives a start command $s_{j}^{i}$ from a scheduler


## A Running Example

- Two 3-step processes, a conflict between $P_{2}^{1}$ and $P_{2}^{2}$
- A forbidden state $\left(q_{2}^{1}, q_{2}^{2}\right)$ that no scheduler allows in



## Non-Determinism Resolved by Schedulers

- Before the scheduling policy is defined, the system is not probabilistically correct
- It is "open", mixing probability with measure-free non-determinism (CS style)
- A scheduling policy eliminates this non-determinism and replaces it by determinism
- A point in the duration space induces a unique behavior
- We will compute probabilities and expected makespan using an extension of the volume-based technique
- We use non-lazy schedulers that do not block a process from using a resource unless another process will benefit from its waiting


## Types of Schedulers

- One can consider various types of schedulers varying between two extremes
- Laissez faire: a liberal FIFO scheduler that gives a resource which is in conflict to the first task that requires it
- Control freak: a priority relation for each resource in conflict. Conflicting tasks are always executed according to this order
- In between: the decision of the scheduler to allow a task to take a resource is based on the global state of the system


## The FIFO Scheduler

- Advantage: natural, no need to think
- Disadvantage: a step of another process which is on the critical path may arrive later and will have to wait



## Strict Priority Scheduler

- Advantage: a more global view can keep the resource free for a critical task
- Disadvantage: hard to compute, not adaptive to actual durations, cannot use opportunities



## Conditional Priority

- Advantage: the most general and adaptive and hence contains the optimal scheduler;
- Disadvantage: even harder to compute and requires more runtime information to realize



## Computing Volumes

- We adapt the path labeling and volume computation procedures for coordinated execution
- We illustrate on the FIFO schedulers but it extends easily to other schedulers
- In fact, FIFO schedulers may admit more possible scenarios than priority based schedulers and hence the computation is harder
- The crucial point in the coordinated execution scenario:
- The value of $t_{j}^{i}$ may sometimes depend on its predecessor $t_{j-1}^{\mathrm{i}}$ and sometimes on $t_{j^{\prime}}^{\mathrm{i}^{\prime}}$ where $P_{j^{\prime}}^{\mathrm{i}^{\prime}}$ is a process that is in conflict with $P_{j^{\prime}}^{\mathrm{i}}$


## Conflict Outcome

- In a conflict between two processes $P^{1}$ and $P^{\mathbf{2}}$ there are 4 possible outcomes depending on:
- Who wins and uses the resource first? For FIFO schedulers this depends on who terminates before the step preceding the conflict
- Is the loser delayed? Does it become enabled before or after the winner terminates the conflicting step
- Each scenario can be expressed as a zone in the time stamp space
- Such a zone corresponds to a polytope in the duration space which has the same volume


## Case 1: $P^{1}$ Wins but $P^{2}$ is Not Delayed

- $t_{1}^{1}<t_{1}^{2} \quad t_{2}^{1}<t_{1}^{2}$

- $t_{1}^{2}+a_{2}^{2}<t_{2}^{2}<t_{1}^{2}+b_{2}^{2}$

Case 2: $P^{1}$ Wins and $P^{2}$ is Delayed

- $t_{1}^{1}<t_{1}^{2} \quad t_{1}^{2}<t_{2}^{1}$

- $t_{2}^{1}+a_{2}^{2}<t_{2}^{2}<t_{2}^{1}+b_{2}^{2}$


## Computing Probabilities

- The qualitative behaviors are partitioned into equivalence classes
- Each class is characterized by the utilization scenario of each of the shared resources:
- At what order it is utilized and which steps are delayed
- For each class we construct a zone in the time-step space having the same volume as the subset of the duration space that induces it
- The coordinate transformation from $\mathcal{D}$ to $\mathcal{C}$ becomes piecewise-linear
- A priori, a severe combinatorial explosion but in practice many zones are empty because the scenarios violate duration and precedence constraints


## Implementation

- A prototype tool:
- Computes the zone for each utilization scenario, using the DBM library of IF to simplify and check emptiness
- Performs integration over the non-empty zones to compute probabilities and expected termination time
- Integration uses high-precision arithmetic (GMP library) to avoid rounding errors
- A heuristic to determine the order of variable elimination integration based on a fast estimation of their ranges
- Preliminary performance observations: can solve (in $<3$ minutes) problems with
$(n, k)=(1,63 *),(2,12),(4,6),(5,4)$ with two or three conflicts


## Future Work

- Improve the algorithm for integration over zones
- Extend to other distributions
- To avoid explosion, develop a fat-first exploration procedure that stops when the accumulated probability crosses some threshold
- It needs a quick volume estimation procedure
- Extend the approach to cyclic systems and infinite behaviors: define suitable performance measures and compute their steady-states
- From analysis to synthesis: derive controller which are average-case optimal
- Compare and combine with Monte-Carlo simulation

