
Some Thoughts on Runtime Verification

Oded Maler

VERIMAG
CNRS and the University of Grenoble (UGA)

France

RV, September 2016
Madrid



Before Dinner Speech

I I like long and general introductions in my papers and talks

I Not everybody does: recently someone protested that such
ramblings belong in style to an after dinner speech

I But I will unfortunately miss the banquet

I So I allow myself to start my presentation with some reflection
in this spirit on the meaning of words



What IS Runtime Verification?

I Robert Anton Wilson, (1932-2007), a writer and thinker

I “Is”,“is.”“is”the idiocy of the word haunts me. If it were
abolished, human thought might begin to make sense. I don’t
know what anything “is”; I only know how it seems to me at
this moment.



On The Meaning of Words

I Words do not have absolute meaning

I They are just tools to create the (very useful) illusion of
common understanding between people

I Their meaning may be different for different individuals,
communities and periods in time

I Analyzing a new word/expression, we should look at what new
distinctions it makes with respect to existing background



Example: Reactive Systems



Reactive Systems

I In this classical paper, more cited than read, reactive systems
are defined as

I Systems that maintain an ongoing interaction with their
external environment

I Real-time, embedded, cyber-physical . . . in contrast with

I Programs that compute a static function from an input
domain to an output domain without being in time

I Unlike classical theory of computability, complexity and
program semantics dealing with static “autistic”
computations1

I It is only against this background that the word reactive
obtains its intended meaning

1See my pamphlet Hybrid Systems and Real-World Computations



Reactive Systems

I But if you say “reactive” to a control engineer, I am not
sure he will understand what’s the point

I All control systems are reactive by definition, implementing
feedback loops against a dynamic environment

I And when you preach reactive systems to biologists, you really
tell them to consider automata as an additional modeling tool

I To AI types exposed to cognitive science, reactive systems
may sound like behaviorist stimulus-response psychology

I

I Another example: reachability (and controllability) are
precise technical terms in linear control theory which were
kidnapped to another meaning in hybrid systems research



So What is Runtime Verification?

I In this talk I will give three interpretations of what runtime
verification is, in contrast with verification tout court



Outline

1. So what is verification?

2. RV as lightweight verification, non-exhaustive simulation
(testing) plus formal specifications

3. RV as getting closer to implementation, away from abstract
models

4. RV as checking systems after deployment while they are up
and running

5. The limitations (if not impossibility) of classical formal
verification in the cyber-physical world

6. Qualitative properties and quantitative measures



Verification
I The meaning of verification may also vary even among those

who pretend to care about correct systems
I It may depend on whether you are a theoretician looking for

an excuse for your math or a practitioner who needs to
publish, or any linear combination of those

I I once got this industrial verification book and its intersection
with the CAV literature was practically empty

  
 

3 d EdiHon 



My Version of Verification

I You have a system which is open (reactive)

I Each of its dynamic inputs may induce a different behavior

I Behaviors are viewed as trajectories in the state-space,
typically the states of a product of automata

I You want to ensure that all those behaviors are correct, they
comply with some restrictions on observed sequences

I These restrictions (specifications, requirements) are
formulated either in a declarative language (temporal logic,
regular expressions) or encoded directly into observers



My Version of Verification

I Rather than stimulate the system with all admissible input
sequences (exponential in the graph diameter)

I You use the transition graph and the Bellman-Nerode
principle to explore possible behaviors more efficiently

I When systems are small enough you can explore all the paths

I Otherwise you either try to prove things analytically
(deductively) or use symbolic techniques

I Run set-based breadth-first simulation while representing
reachable states at time t by logic formulae, BDD, etc.

I And most of the rest is efficient implementation



Another Linguistic Observation: Model Checking

I Algorithmic verification is known as model checking

I When you try to sell it to an outsider, say a biologist, she
probably interprets it in the usual everyday sense:

I I have a mathematical model of my physical phenomenon
and these guys help me to check if it makes sense internally

I The origin of MC has nothing to do with this sense of a model

I It comes from the technical notion of a model of a logical
theory

I Verification checks algorithmically whether all system
sequences are models of (satisfy) an LTL formula

I Or in branching time: whether the transition system is a
model (Kripke structure) of a CTL formula



Another Linguistic Observation: Model Checking

I MC was coined as an alternative to theorem proving, where
you prove deductively the logical specification based on
axioms that include the system’s description

I The deductive approach is described in these books:



Implicit Assumptions in the Verification Story

I Verification takes place during the design and development
process before the system is up and running

I It is often done on an abstract model of the system
I An automaton that abstracts from data and implementation

details (actual code and platform)
I The more abstract the model is, the easier it is to verify
I But you need syntax to express the system and connect

eventually to the real application

I The properties against which you verify are traditionally
qualitative, providing a yes/no answer concerning correctness

I They clearly partition the set of global behaviors into
acceptable and unacceptable ones

I Some of these assumptions will be dropped in the sequel



Outline

1. So what is verification?

2. RV as lightweight verification, non-exhaustive simulation
(testing) plus formal specifications

3. RV as getting closer to implementation, away from abstract
models

4. RV as checking systems after deployment while they are up
and running

5. The limitations (if not impossibility) of cyber-physical formal
verification

6. Qualitative Properties and Quantitative Measures



RV as Lightweight Verification (Monitoring)

I Verification is glorious and romantic but practically
impossible beyond certain complexity

I Simulation/testing is here to stay with or without attempts
to guarantee some coverage

I So let us add to this practice some formal properties and
property monitors that check the simulation traces

I Instead of language inclusion Ls ⊆ Lϕ as in verification, we
check membership w ∈ Lϕ, one trace at a time

I Monitoring is less sensitive to system complexity

I I does not require a mathematical model of the system, a
program or a black box is sufficient

I In fact, it does not care who generates the simulation traces,
it could be measurements of a real physical process



Monitoring Continuous and Hybrid Systems with STL

I In digital circuit verification, monitoring is called dynamic
verification or assertion checking

I Motivated by analog and mixed-signal circuits, we extended
LTL and MTL into signal temporal logic (STL)

I STL can express properties that speak of the temporal
distance between threshold-crossings of continuous signals

I We developed novel monitoring techniques for this logic and
implemented them into a tool called AMT

I It can liberate designers and verifiers from the need to
inspect and analyze long simulation traces

I It remains an open question whether having a clean
declarative specification language is a feature or a bug

I These issues were described in the summer school by Dejan
Nickovic, a major contributor to this work



Example: Specifying Stabilization in STL

I A water-level controller for a nuclear plant should maintain
a controlled variable y around a fixed level despite external
disturbances x

I We want y to stay always in the interval [−30, 30] except,
possibly, for an initialization period of duration 300

I If, due to disturbances, y goes outside the interval
[−0.5, 0.5], it should return to it within 150 time units and
remain there for at least 20 time units

I The property is expressed as

�[300,2500]((|y | ≤ 30)∧((|y | > 0.5)⇒ ♦[0,150]�[0,20](|y | ≤ 0.5)))



Monitoring Stabilization



The Success of STL

I This is not rocket science, much simpler than our heroic
attempts to scale-up timed and hybrid verification

I But it turned out to be very useful or, at least, popular and
also led to a better understanding of real-time logics

I There was industrial interest, including a thesis supported by
Mentor Graphics on combining analog and digital simulators
and design flows

I STL has been applied to circuit verification, control systems
(verification, synthesis, falsification), robotics planning and
systems biology

I So let us take a short publicity break



Annotated Bibliography I

I OM, D Nickovic, Monitoring Temporal Properties of
Continuous Signals, FORMATS/FTRTFT 2004 (first paper)

I D Nickovic, OM, AMT: A Property-based Monitoring Tool for
Analog Systems, FORMATS 2007 (tool)

I OM, D Nickovic, A Pnueli, From MITL to Timed Automata,
FORMATS 2006 (theoretical byproduct)

I OM, D Nickovic, A Pnueli, Checking Temporal Properties of
Discrete, Timed and Continuous Behaviors, Pillars of Computer
Science, 2008 (good and long introduction)

I OM, D Nickovic, Monitoring Properties of Analog and
Mixed-Signal Designs, STTT 2013 (more up to date)

I A Donze, OM, Robust Satisfiability of Temporal Logic over
Real-Valued Signals, FORMATS 2010 (quantitative semantics)

I A Donze, T Ferrere, OM, Efficient Robust Monitoring for STL,
CAV 2013 (improved algorithm)



Annotated Bibliography II

I E Asarin, A Donze, OM, D Nickovic, Parametric Identification of
Temporal Properties, RV 2011 (inverse problem, learning)

I A Donze, OM, E Bartocci, D Nickovic, R Grosu, S Smolka, On
Temporal Logic and Signal Processing, ATVA 2012 (preliminary
extension to frequency domain)

I T Ferrere, OM, D Nickovic, Trace Diagnostics using Temporal
Implicants, ATVA 2015 (minimal explanation for violation)

I D Ulus, T Ferrere, E Asarin, OM, Timed Pattern Matching,
FORMATS 2014 (monitoring timed regular expressions)

I D Ulus, T Ferrere, E Asarin, OM, Online Timed Pattern
Matching using Derivatives, TACAS 2016 (online monitring)

I T Ferrere, OM, D Nickovic, D Ulus, Measuring with Timed
Patterns, CAV 2015 (a declarative measurement language)



Outline

1. So what is verification?

2. RV as lightweight verification, non-exhaustive simulation
(testing) plus formal specifications

3. RV as getting closer to implementation, away from
abstract models

4. RV as checking systems after deployment while they are up
and running

5. The limitations (if not impossibility) of cyber-physical formal
verification

6. Qualitative Properties and Quantitative Measures



RV as Getting More real

I Runtime can be interpreted as “while some program is
running”, so we have real piece of code

I Already generated from the abstract model or written directly
without such a model

I Unlike abstract models, programs are not naturally amenable
to set-based simulation

I You need to instrument the code to generate traces

I The program might (or not) run on the target platform

I There are many degrees of being closer to the final product



To V or not to V
I CPS have heterogenous components, including the external

environment which is modeled but not implemented
I The implemented system consists of software, hardware and

physical components
I The development process follows some structure

I Coming up from the bottom of the V, you integrate more real
components (hardware in the loop, system in the loop)

I Runtime can refer to the verification and testing of those



Outline

1. So what is verification?

2. RV as lightweight verification, non-exhaustive simulation
(testing) plus formal specifications

3. RV as getting closer to implementation, away from abstract
models

4. RV as checking systems after deployment while they are
up and running

5. The limitations (if not impossibility) of cyber-physical formal
verification

6. Qualitative Properties and Quantitative Measures



RV as Verifying Systems while they Run

I Monitoring real systems during their normal and abnormal
execution is the most radical interpretation of RV

I Many systems are observed and monitored during execution

I Nuclear and industrial plants, airplanes and cars, medical
patients, military control rooms, sound systems in rock
concerts, stock markets, google analytics, traffic control . . .



New Opprotunities

I A monitoring process which is simultaneous with the ongoing
behavior of the systems offers new opportunities

I You can detect important events and patterns of activity in
real time, almost as soon as they occur

I And react to them by alerting a human operator or
triggering an automatic action

I These opportunities are new only in the context of verification

I Control panels, displays and alarms exist in low-tech ever since
the electrical revolution

I In cars they range from speed, fuel level and temperature
indicators to

I More modern ABS, collision avoidance systems and airbags
that detect collisions if they are not avoided



Rethinking Specifications in this Context

I What are the properties against which we should monitor
online in real time?

I To answer the question I will use the method of the naive
straw man, a true believer in verification

I Well, he would say, let ϕ be the complete specification of
the system, then we monitor for ¬ϕ and shout when it occurs

I But anyway, this will not happen if we have verified the
system (or synthesized the controller properly)

I To see what is wrong here we need to discuss the limitations
of verification in the physical world



The Narrow Scope of Formal Verification

I The verification story depends on the following ingredients:

I 1) A very faithful model of the system under verification

I 2) Formal requirements that indeed trace the boundary
between acceptable and unacceptable behaviors

I In addition, the system should be sufficiently small so that
formal verification is computationally feasible

I For CPS, (1) and (2) above hold for a very small niche

I Some hardware and software components, analyzed for their
functional properties, without physical aspects such as power
consumption or timing



The Narrow Scope of Formal Verification

I Software is special, admitting a chain of semantics
preserving models from programs down to gates and
transistors

I Nothing like that exists in the physical world where models
are just useful approximations

I The same holds for specifications: you can characterize the
valid behaviors of a chip realizing a hardware protocol

I You can verify them on a faithful model of the chip and
expect that it will indeed work correctly

I For physical systems there is never a comprehensive list of
requirements that holds globally over the whole state-space,
which is not part of the conceptual map of engineers

I You have domain-specific intuitions on the form of response
curves but not an explicit formalized partition of behaviors in
this huge state-space

I Airplanes fly, nevertheless, most of the time



Monitoring and Supervisory Control

I We want to use some formalism to express observable
conditions and temporal patterns that trigger some response:

if some pattern is observed then do the right thing

I When the reacting entity is a human operator, we should
create an alarm to bring the situation to her attention

I If the action is automatic, this is another instance of
feed-back control, appropriate for high-level supervisory
control where discrete decisions are to be taken

I Intuitively, low level is likes controlling torques and velocities
in cars or robots (continuous processes )

I Higher levels decide whether to bypass an obstacle from right
or left or cancel the trip after observing traffic jams

I Similar motivations led in the past to hybrid systems



Do Not Wait for the Last Minute

I If we want to react, the specified patterns need not be the
complete negations of properties but prefixes of those

I For property like �(x < c) we should raise a flag when x gets
too close to c and try to steer the system in the opposite
direction to enforce the property

I If every request should be granted within d time, a useful
monitor will detect customers that wait for some d ′ < d time,
while there is a chance to serve them on time

I Note that monitoring is not immediately associated an error:
fuel level in cars is displayed continuously and only when it
crosses some threshold it is Booleanized into an alarm



Some Technicalities of Online Monitoring

I Offline monitoring can go back and forth on the simulation
trace which has already been computed

I Going backwards is natural for future temporal logic which is
acausal: truth at t depends on values at t ′ > t

I For real systems we cannot wait until the end of time and
need to adopt forward techniques

I Past temporal logic is causal and can be monitored forward

I One may argue that unbounded liveness is useless, while
bounded liveness (safety), translates to past TL and can be
monitored causally

I In verification you consider behaviors starting at t = 0;

I For online monitoring you look for segments of the behavior
that match some pattern

I Regular expressions (timed and hybrid) are more appropriate



Outline

1. So what is verification?

2. RV as lightweight verification, non-exhaustive simulation
(testing) plus formal specifications

3. RV as getting closer to implementation, away from abstract
models

4. RV as checking systems after deployment while they are up
and running

5. The limitations (if not impossibility) of cyber-physical formal
verification

6. Qualitative Properties and Quantitative Measures



Quantitative Semantics, Robustness

I Properties map behaviors (sequences, signals) into {0, 1}
according to satisfaction or violation

I Sometimes we want more refined information about the
robustness of the answer

I For a behavior satisfying �(x < c), the distance
c −maxt x(t) tells us how close we were to violation

I When we violate �(e → ♦[0,a]e ′), the maximal temporal
distance between e and e ′ defines the severity of violation

I The quantitative (robustness) semantics of STL returns a real
value ρ = ρ(ϕ,w) satisfying:

ρ(ϕ,w) > 0↔ w |= ϕ and ∀w ′d(w ,w ′) < ρ→ (w |= ϕ↔ w ′ |= ϕ)

I This number is used in optimization/search procedures for
finding bad behaviors (falsification)

I Implemented in tools such as S-Taliro (Fainekos and
Sankaranarayanan) and Breach (Donze)



Unifying Properties and Performance Measures

I Robustness gives more information but it still suffers from the
extremal nature of logic

I The quantitative semantics is obtained by replacing Boolean
predicates such as x < c by numbers like c − x and then
replacing ∨, ∧ and ¬ by max, min and −

I The value will always depend on the worst case, the largest
value of x , the largest response time

I Some work is needed to reconcile STL with other additive
(average) measures used elsewhere



Unifying Properties and Performance Measures

I Specification formalisms such as STL and TREG and their
quantitative extensions should be viewed as

I Yet another family of performance measures which are good
in terms of expressing sequential behaviors

I As nobody is perfect, they are weak in other aspects and
should be inserted into the rich arsenal of measures existing
already in control, signal processing, statistics, etc.

I A unified declarative language for qualitative properties and
quantitative measures can be a useful contribution toward
monitoring complex systems, simulated and real

I Thank you


