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Before Dinner Speech

I I like long and general introductions in my papers and talks

I Not everybody does: recently someone protested that such
ramblings belong in style to an after dinner speech

I But I will unfortunately miss the banquet

I So I allow myself to start my presentation with some reflection
in this spirit on the meaning of words



What IS Runtime Verification?

I Robert Anton Wilson, (1932-2007), a writer and thinker

I “Is”,“is.”“is”the idiocy of the word haunts me. If it were
abolished, human thought might begin to make sense. I don’t
know what anything “is”; I only know how it seems to me at
this moment.



On The Meaning of Words

I Words do not have absolute meaning

I They are just tools to create the (very useful) illusion of
common understanding between people

I Their meaning may be different for different individuals,
communities and periods in time

I Analyzing a new word/expression, we should look at what new
distinctions it makes with respect to existing background



Example: Reactive Systems



Reactive Systems

I In this classical paper, more cited than read, reactive systems
are defined as

I Systems that maintain an ongoing interaction with their
external environment

I Real-time, embedded, cyber-physical . . . in contrast with

I Programs that compute a static function from an input
domain to an output domain without being in time

I Unlike classical theory of computability, complexity and
program semantics dealing with static “autistic”
computations1

I It is only against this background that the word reactive
obtains its intended meaning

1See my pamphlet Hybrid Systems and Real-World Computations



Reactive Systems

I But if you say “reactive” to a control engineer, I am not
sure he will understand what’s the point

I All control systems are reactive by definition, implementing
feedback loops against a dynamic environment

I And when you preach reactive systems to biologists, you really
tell them to consider automata as an additional modeling tool

I To AI types exposed to cognitive science, reactive systems
may sound like behaviorist stimulus-response psychology

I

I Another example: reachability (and controllability) are
precise technical terms in linear control theory which were
kidnapped to another meaning in hybrid systems research



So What is Runtime Verification?

I In this talk I will give three interpretations of what runtime
verification is, in contrast with verification tout court



Outline
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6. Qualitative properties and quantitative measures



Verification
I The meaning of verification may also vary even among those

who pretend to care about correct systems
I It may depend on whether you are a theoretician looking for

an excuse for your math or a practitioner who needs to
publish, or any linear combination of those

I I once got this industrial verification book and its intersection
with the CAV literature was practically empty
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My Version of Verification

I You have a system which is open (reactive)

I Each of its dynamic inputs may induce a different behavior

I Behaviors are viewed as trajectories in the state-space,
typically the states of a product of automata

I You want to ensure that all those behaviors are correct, they
comply with some restrictions on observed sequences

I These restrictions (specifications, requirements) are
formulated either in a declarative language (temporal logic,
regular expressions) or encoded directly into observers



My Version of Verification

I Rather than stimulate the system with all admissible input
sequences (exponential in the graph diameter)

I You use the transition graph and the Bellman-Nerode
principle to explore possible behaviors more efficiently

I When systems are small enough you can explore all the paths

I Otherwise you either try to prove things analytically
(deductively) or use symbolic techniques

I Run set-based breadth-first simulation while representing
reachable states at time t by logic formulae, BDD, etc.

I And most of the rest is efficient implementation



Another Linguistic Observation: Model Checking

I Algorithmic verification is known as model checking

I When you try to sell it to an outsider, say a biologist, she
probably interprets it in the usual everyday sense:

I I have a mathematical model of my physical phenomenon
and these guys help me to check if it makes sense internally

I The origin of MC has nothing to do with this sense of a model

I It comes from the technical notion of a model of a logical
theory

I Verification checks algorithmically whether all system
sequences are models of (satisfy) an LTL formula

I Or in branching time: whether the transition system is a
model (Kripke structure) of a CTL formula



Another Linguistic Observation: Model Checking

I MC was coined as an alternative to theorem proving, where
you prove deductively the logical specification based on
axioms that include the system’s description

I The deductive approach is described in these books:



Implicit Assumptions in the Verification Story

I Verification takes place during the design and development
process before the system is up and running

I It is often done on an abstract model of the system
I An automaton that abstracts from data and implementation

details (actual code and platform)
I The more abstract the model is, the easier it is to verify
I But you need syntax to express the system and connect

eventually to the real application

I The properties against which you verify are traditionally
qualitative, providing a yes/no answer concerning correctness

I They clearly partition the set of global behaviors into
acceptable and unacceptable ones

I Some of these assumptions will be dropped in the sequel
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RV as Lightweight Verification (Monitoring)

I Verification is glorious and romantic but practically
impossible beyond certain complexity

I Simulation/testing is here to stay with or without attempts
to guarantee some coverage

I So let us add to this practice some formal properties and
property monitors that check the simulation traces

I Instead of language inclusion Ls ⊆ Lϕ as in verification, we
check membership w ∈ Lϕ, one trace at a time

I Monitoring is less sensitive to system complexity

I I does not require a mathematical model of the system, a
program or a black box is sufficient

I In fact, it does not care who generates the simulation traces,
it could be measurements of a real physical process



Monitoring Continuous and Hybrid Systems with STL

I In digital circuit verification, monitoring is called dynamic
verification or assertion checking

I Motivated by analog and mixed-signal circuits, we extended
LTL and MTL into signal temporal logic (STL)

I STL can express properties that speak of the temporal
distance between threshold-crossings of continuous signals

I We developed novel monitoring techniques for this logic and
implemented them into a tool called AMT

I It can liberate designers and verifiers from the need to
inspect and analyze long simulation traces

I It remains an open question whether having a clean
declarative specification language is a feature or a bug

I These issues were described in the summer school by Dejan
Nickovic, a major contributor to this work



Example: Specifying Stabilization in STL

I A water-level controller for a nuclear plant should maintain
a controlled variable y around a fixed level despite external
disturbances x

I We want y to stay always in the interval [−30, 30] except,
possibly, for an initialization period of duration 300

I If, due to disturbances, y goes outside the interval
[−0.5, 0.5], it should return to it within 150 time units and
remain there for at least 20 time units

I The property is expressed as

�[300,2500]((|y | ≤ 30)∧((|y | > 0.5)⇒ ♦[0,150]�[0,20](|y | ≤ 0.5)))



Monitoring Stabilization



The Success of STL

I This is not rocket science, much simpler than our heroic
attempts to scale-up timed and hybrid verification

I But it turned out to be very useful or, at least, popular and
also led to a better understanding of real-time logics

I There was industrial interest, including a thesis supported by
Mentor Graphics on combining analog and digital simulators
and design flows

I STL has been applied to circuit verification, control systems
(verification, synthesis, falsification), robotics planning and
systems biology

I So let us take a short publicity break
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RV as Getting More real

I Runtime can be interpreted as “while some program is
running”, so we have real piece of code

I Already generated from the abstract model or written directly
without such a model

I Unlike abstract models, programs are not naturally amenable
to set-based simulation

I You need to instrument the code to generate traces

I The program might (or not) run on the target platform

I There are many degrees of being closer to the final product



To V or not to V
I CPS have heterogenous components, including the external

environment which is modeled but not implemented
I The implemented system consists of software, hardware and

physical components
I The development process follows some structure

I Coming up from the bottom of the V, you integrate more real
components (hardware in the loop, system in the loop)

I Runtime can refer to the verification and testing of those
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RV as Verifying Systems while they Run

I Monitoring real systems during their normal and abnormal
execution is the most radical interpretation of RV

I Many systems are observed and monitored during execution

I Nuclear and industrial plants, airplanes and cars, medical
patients, military control rooms, sound systems in rock
concerts, stock markets, google analytics, traffic control . . .



New Opprotunities

I A monitoring process which is simultaneous with the ongoing
behavior of the systems offers new opportunities

I You can detect important events and patterns of activity in
real time, almost as soon as they occur

I And react to them by alerting a human operator or
triggering an automatic action

I These opportunities are new only in the context of verification

I Control panels, displays and alarms exist in low-tech ever since
the electrical revolution

I In cars they range from speed, fuel level and temperature
indicators to

I More modern ABS, collision avoidance systems and airbags
that detect collisions if they are not avoided



Rethinking Specifications in this Context

I What are the properties against which we should monitor
online in real time?

I To answer the question I will use the method of the naive
straw man, a true believer in verification

I Well, he would say, let ϕ be the complete specification of
the system, then we monitor for ¬ϕ and shout when it occurs

I But anyway, this will not happen if we have verified the
system (or synthesized the controller properly)

I To see what is wrong here we need to discuss the limitations
of verification in the physical world



The Narrow Scope of Formal Verification

I The verification story depends on the following ingredients:

I 1) A very faithful model of the system under verification

I 2) Formal requirements that indeed trace the boundary
between acceptable and unacceptable behaviors

I In addition, the system should be sufficiently small so that
formal verification is computationally feasible

I For CPS, (1) and (2) above hold for a very small niche

I Some hardware and software components, analyzed for their
functional properties, without physical aspects such as power
consumption or timing



The Narrow Scope of Formal Verification

I Software is special, admitting a chain of semantics
preserving models from programs down to gates and
transistors

I Nothing like that exists in the physical world where models
are just useful approximations

I The same holds for specifications: you can characterize the
valid behaviors of a chip realizing a hardware protocol

I You can verify them on a faithful model of the chip and
expect that it will indeed work correctly

I For physical systems there is never a comprehensive list of
requirements that holds globally over the whole state-space,
which is not part of the conceptual map of engineers

I You have domain-specific intuitions on the form of response
curves but not an explicit formalized partition of behaviors in
this huge state-space

I Airplanes fly, nevertheless, most of the time



Monitoring and Supervisory Control

I We want to use some formalism to express observable
conditions and temporal patterns that trigger some response:

if some pattern is observed then do the right thing

I When the reacting entity is a human operator, we should
create an alarm to bring the situation to her attention

I If the action is automatic, this is another instance of
feed-back control, appropriate for high-level supervisory
control where discrete decisions are to be taken

I Intuitively, low level is likes controlling torques and velocities
in cars or robots (continuous processes )

I Higher levels decide whether to bypass an obstacle from right
or left or cancel the trip after observing traffic jams

I Similar motivations led in the past to hybrid systems



Do Not Wait for the Last Minute

I If we want to react, the specified patterns need not be the
complete negations of properties but prefixes of those

I For property like �(x < c) we should raise a flag when x gets
too close to c and try to steer the system in the opposite
direction to enforce the property

I If every request should be granted within d time, a useful
monitor will detect customers that wait for some d ′ < d time,
while there is a chance to serve them on time

I Note that monitoring is not immediately associated an error:
fuel level in cars is displayed continuously and only when it
crosses some threshold it is Booleanized into an alarm



Some Technicalities of Online Monitoring

I Offline monitoring can go back and forth on the simulation
trace which has already been computed

I Going backwards is natural for future temporal logic which is
acausal: truth at t depends on values at t ′ > t

I For real systems we cannot wait until the end of time and
need to adopt forward techniques

I Past temporal logic is causal and can be monitored forward

I One may argue that unbounded liveness is useless, while
bounded liveness (safety), translates to past TL and can be
monitored causally

I In verification you consider behaviors starting at t = 0;

I For online monitoring you look for segments of the behavior
that match some pattern

I Regular expressions (timed and hybrid) are more appropriate
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Quantitative Semantics, Robustness

I Properties map behaviors (sequences, signals) into {0, 1}
according to satisfaction or violation

I Sometimes we want more refined information about the
robustness of the answer

I For a behavior satisfying �(x < c), the distance
c −maxt x(t) tells us how close we were to violation

I When we violate �(e → ♦[0,a]e ′), the maximal temporal
distance between e and e ′ defines the severity of violation

I The quantitative (robustness) semantics of STL returns a real
value ρ = ρ(ϕ,w) satisfying:

ρ(ϕ,w) > 0↔ w |= ϕ and ∀w ′d(w ,w ′) < ρ→ (w |= ϕ↔ w ′ |= ϕ)

I This number is used in optimization/search procedures for
finding bad behaviors (falsification)

I Implemented in tools such as S-Taliro (Fainekos and
Sankaranarayanan) and Breach (Donze)



Unifying Properties and Performance Measures

I Robustness gives more information but it still suffers from the
extremal nature of logic

I The quantitative semantics is obtained by replacing Boolean
predicates such as x < c by numbers like c − x and then
replacing ∨, ∧ and ¬ by max, min and −

I The value will always depend on the worst case, the largest
value of x , the largest response time

I Some work is needed to reconcile STL with other additive
(average) measures used elsewhere



Unifying Properties and Performance Measures

I Specification formalisms such as STL and TREG and their
quantitative extensions should be viewed as

I Yet another family of performance measures which are good
in terms of expressing sequential behaviors

I As nobody is perfect, they are weak in other aspects and
should be inserted into the rich arsenal of measures existing
already in control, signal processing, statistics, etc.

I A unified declarative language for qualitative properties and
quantitative measures can be a useful contribution toward
monitoring complex systems, simulated and real

I Thank you


