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Traditional Mass Action 

• In the standard molecular interpretation of chemical reactions, 
there are several species, of molecules, A,B,… .  
• The state of the system is defined by the number of molecules of each 

type, NA , NB , …  

• Reactions are transformations where one, two, etc. molecules 
transform into some other number of molecules: 
• A  B, A+B  C, A B+C, A + B +C  D, .. 

• The rate of a reaction is the probability per time associated 
with it. 
• For mass-action systems, the rate of a reaction is proportional to the 

product of concentrations (particle counts) of each species that enters 
on the left-hand side 



Spatial Considerations 

• Arguably the most often ignored, and hardest to tackle, aspect 
of bio-molecular processes is the fact that all processes take 
place in a spatially extended, not necessarily homogeneous 
environment. 

• One of the lessons from the first 20 years of systems biology is 
that brute force doesn’t work. There are good methods to 
describe spatially extended processes, thanks to the work of 
many physicists and chemists, but they are very expensive.  

• The well known problems of biological modeling (lack of 
detailed parameter information and the extreme limitation on 
the ability to perform controlled experiments) are exacerbated 
when spatial issues come into play.  

 



When Does Spatial Organization Matter? 

• Yet, sometimes, simple models that ignore spatial aspects work 
just fine. Similarly to stochasticity (which can be safely ignored 
more often than not), it seems that situations where space 
must be taken into account are special.  

• We propose a simple emulation of spatially distributed 
reaction-diffusion systems to help investigate these issues. 

• A one-species reaction (A ..) can be seen as a “decay”, the 
result of an intrinsic property of the input species. Such a 
reaction takes place independently of the distribution of A. 

• By contrast, a two-species reaction (A+BC) happens as a 
result of the collision of an A and a B molecule, which is why 
the rate is proportional to the number of possible (A,B) pairs. 
We expect that these reactions will depend on the distribution.  

 



The Model 

• The basic entity is a probabilistic automaton 

• The number of automata is fixed  
• Agents may be in one of a finite set of states (q1,q2,..) 

• There are two kinds of state transitions 

• Spontaneous (q1 q2) 

• Induced by interaction with another agent (              ) 

• Transitions take place at fixed time increments 
• Each type of transition has an associated probability 

• Induced transitions only occur when the particle detects an 
encounter with another particle of the appropriate type 

 



Not exactly mass action 

• The main difference between standard mass action and our 
model is “causality” 
• In an (A,B) encounter, the effect of B on A is independent of the the 

effect of A on B. 

• As a result, the system can be updated in a “synchronous” manner, 
particle by particle 

• It can be shown that this is a subset of regular mass action rules 

• The other difference is that agents are never destroyed nor 
created, they only change type. 

• It is not yet clear whether our model can emulate an arbitrary 
mass action system (even restricted to uni- and bi-molecular 
reactions) 



Aggregation styles 

• Counting abstraction 
• Equivalent to the well-mixed case 

• We do not follow the position of agents 

• Interactions occur with an encounter probability, 
proportional to the number of possible partners. 

• Further abstracted by allowing “fractional” 
agent counts 
• Such a simulation will predict (in some cases) the 

average behavior 

• There are important exceptions, such as in the case 
of multistable systems 

 



Example 
• An example specification: 

 

 

 

 

• Each group or 3 columns gives the relative probability of transformation 
into (q1,q2,q3), upon meeting (nothing, q1, q2, q3). 

• The relative rate of spontaneous transitions (1-α) also needs to be specified, 
for example α=0.1 corresponds to the following update rules: 

 

 

 

• Starting from x=(0.4,0.3,0.3), this gives convergence to (0.366, 0.195, 0.437). 

• Rules corresponding to α=0.9 lead to convergence to (0.939,0.027,0.033).  

  

 



Spatially distributed model 

• The more interesting situation is when we endow our agents 
with a position: 
• At each update, agents generate a displacement vector according to a 

normal distribution (similar to Brownian diffusion) 

• For the state transitions, now each agent determines the agents that 
are close to it (within an interaction radius), and then selects one of 
them to implement the corresponding update rules.  

• This model is similar to reaction-diffusion systems, with some 
important differences 
• The update rule is “deterministic” in the previously discussed sense 

• This allows for a more efficient implementation (no need to deal with 
pairs of agents, only a list of neighbors). 



Spatial Simulations 

• The model was implemented in Java. 

• Preliminary experiments are aimed at identifying the effect of 
various initial spatial distributions on the final state of the 
system. 



Three colors 
• Red competes with Green, Blue is neutral 

• Steady states are either all-Red or all-Green 

• Same initial counts in all runs, different distributions 
• All colors uniform – can go both ways 

• Red concentrated over a small area or uniform –
disadvantage for Red 

• Principle of “gerrymandering” 



Summary 

• We defined a simplified model to study the effect of 
spatial distribution on reaction-diffusion systems 

• Our model can be simulated efficiently, and analytical 
approaches also seem promising 

• This model can be emulated by a regular mass action 
system, the reverse may also be possible in limited 
cases. 

• When particles interact, initial configurations where 
different species are close together, separated, or 
spread out, lead to different final states.  


