# On the Representation of Probabilities over Structured Domains

Marius Bozga and Oded Maler

**VERIMAG** 

Grenoble, France

# Summary

|                    | Qualitative<br>Non-Determinism                       | Quantitative<br>Non-Determinism                    |
|--------------------|------------------------------------------------------|----------------------------------------------------|
| State              | Set of states $p:Q 	o \{0,1\}$                       | Prob on states $p:Q\to [0,1]$                      |
| Next<br>State      | $\delta: Q \to (Q \to \{0, 1\})$                     | $\delta: Q \to (Q \to [0, 1])$                     |
| Forward<br>Comp.   | $p' = p \cdot A_{\delta}$ $(\mathbb{B}, \cup, \cap)$ | $p' = p \cdot A_{\delta} \ (\mathbb{R}, +, \cdot)$ |
| Struct.<br>Systems | BDD                                                  | PDG                                                |

## Subsets and Probabilities on $\mathbb{B}^n$





### **Probabilistic Decision Trees**





#### In other Words

| Boolean Functions     | Probability Functions |
|-----------------------|-----------------------|
| Shannon Factorization | Chain Rule            |

$$p(x_1x_2\cdots x_n)$$

$$=$$

$$p(x_1)\cdot p(x_1x_2|x_1)\cdots p(x_1x_2\cdots x_n|x_1\cdots x_{n-1})$$

$$=$$

$$p(x_1)\cdot p(x_2|x_1)\cdots p(x_n|x_1\cdots x_{n-1})$$

$$p(x_{1}x_{2}\cdots x_{n}) = \\ p(x_{1}) \cdot p_{x_{1}}(x_{1}x_{2}) \cdots p_{x_{1}\cdots x_{n-1}}(x_{1}\cdots x_{n}) = \\ p(x_{1}) \cdot p_{x_{1}}(x_{2}) \cdots p_{x_{1}\cdots x_{n-1}}(x_{n})$$

# Probablistic Decision Graphs (PDG)

#### From full trees to DAGs:





## **PDG** - continued





## **Example: Independent Variables**



Exponential MTBDD/ADD vs. Linear PDG



## **Dynamics: Markov Transition Functions**

$$\delta: Q \to (Q \to [0,1])$$

 $\forall q \in Q \colon \delta_q : Q \to [0,1]$  is a probability function

Traditional representation as  $|Q| \times |Q|$  matrix:

Current state probability  $p:Q \to [0,1]$ 

$$[p_1,\ldots,p_n]$$

Probability of a transition:

$$p_1 \cdot \delta_1(1)$$
  $p_1 \cdot \delta_1(2)$  ...  $p_1 \cdot \delta_1(n)$   
 $p_2 \cdot \delta_2(1)$   $p_2 \cdot \delta_2(2)$  ...  $p_2 \cdot \delta_2(n)$   
...  $p_n \cdot \delta_n(1)$   $p_n \cdot \delta_n(2)$  ...  $p_n \cdot \delta_n(n)$ 

Next-state probability:

$$p' = [\sum_i p_i \cdot \delta_i(1), \dots, \sum_i p_i \cdot \delta_i(n)]$$

#### **Structured Markov Transition Functions**

$$\delta: \mathbb{B}^n \to (\mathbb{B}^n \to [0,1])$$

 $\forall x_1 \cdots x_n : \delta_{x_1 \cdots x_n} : \mathbb{B}^n \to [0, 1]$  is a probability function

Notation:  $\delta_{x_1 \cdots x_n}(y_1 \cdots y_n)$ 

 $\delta_{x_1 \cdots x_n}$  can be decomposed:

$$\delta_{x_1 \cdots x_n}(y_1 \cdots y_n) = \\ \delta_{x_1 \cdots x_n}(y_1) \cdots \delta_{x_1 \cdots x_n y_1 \cdots y_{n-1}}(y_1 \cdots y_n).$$

Conditional PDG (two types of nodes):



#### **Causal Transition Functions**

All the next-state (y) variables depend only on the current state variables (x):

$$\delta_{x_1\cdots x_n}(y_1\cdots y_n) =$$

$$\delta_{x_1\cdots x_n}(y_1)\cdot\delta_{x_1\cdots x_n}(y_2)\cdots\delta_{x_1\cdots x_n}(y_n)$$



 $O(|Q|\log |Q|)$  instead of  $O(|Q|^2)$ !!

## **Exploiting Independence (I):**

Each y variable  $\mathbf{must}$  appear after all the x variables on which it depends

#### Independent Markov chains:



## Size O(n):



## **Exploiting Independence (II):**

#### A cascade of probabilistic automata of depth 2:



Size O(2n):



A cascade of depth k: O(kn)

# **Calculating Next-State Probabilities**









# **Experimental Results**

## Cascades of noisy AND gates:





### **Related Work**

#### **MTBDD**

(Clarke, Fujita, McGeer, McMillan, Yang)

#### **ADD**

(Bahar, Frohm, Ganoa, Hachtel, Macii, Pardo, Somenzi)

#### Edge-valued BDD

(Vrudhula, Pedram, Lai, Tafertshofer)

Bayesian Networks

(Al literature)

#### **Future Work**

- Complete the input language for the tool
- Case-studies (noisy protocols and circuits, queues, probabilistic timed automata, etc.)
- Solving large MDPs (controller synthesis, structured utility functions)
- Other algorithms on PDG (eigenvectors?)