Reachability Analysis of Dynamical Systems
having Piecewise-Constant Derivatives

Eugene Asarin Oded Maler Amir Pnueli

CNRS - VERIMAG
Grenoble, France

1993-1995

Outline of Talk

» Some generalities on “linear” hybrid automata and PCD
systems

v

Decidability of reachability problems in the plane

v

Undecidability in dimension 3 and above by simulating
pushdown stacks

v

Going higher in the arithmetical hierarchy
So what?

v

A Motivating Example: Buffer Networks

» Consider a network of containers/buffers for water/data

» Channels can be switched on and off

» When a channel is on, its flow rate is a constant

» Each combination of open/close valves leads to a different
derivatives for the buffer levels, based on the difference
between their in- and outflows

I
a Dl? V1

o N Va

o |l

X1

Xp =¢
Xp = —c3

2

Close 2

A Open 1
x1 =0
Xy = —c3

Close 1
Open 2 Open
Close 2
Open 1

c pen
xX] = —cp
Xy =) —c3

Close 1

D
X =€ = o
Xp = cp — c3

“Linear” Hybrid Automata and PCD Systems

v

A sub-class of hybrid automata

» Can be viewed as piecewise-trivial dynamical systems:

derivatives are constant in every control state (location) and
the evolution is along a straight line

Transition guards (switching surface) and invariants (staying
conditions) are linear (hyperplanes, polytopes)

Local continuous evolution needs no numerical analysis;
Computing the effect of time passage amounts to quantifier
elimination in linear algebra

Investigated a lot by Henzinger et al. (HYTECH), currently
supported by the tool PHAVER (G. Frehse)

PCD (piecewise-constant derivative): a sub-class of linear

hybrid automata closer in spirit to continuous dynamical
systems

PCD (Piecewise-Constant Derivatives) Systems

» Dynamical System: H = (X, f), X =R

» f: X — X defines differential equation dd—?‘ = f(x)

> A trajectory of H starting at xo € X is £ : Ry — X s.t.
> £(0) = xo
» f(&(t)) is defined for every t and is equal to the right

derivative of £(t)
» PCD: X is partitioned into a final number of polyhedra
(regions) and f is constant in each region

» Trajectories are thus broken lines

PCDs are Effective

v

A description of a PCD system: {(P1,¢1),...,(Pn,cpn)}

» each P; is a convex polyhedron (interesection of linear

inequalities) and c; is its corresponding derivative (slope)
Effectiveness: given a PCD description and a rational point

x = £(0)

There exists € > 0 s.t. we can compute precisely x' = £(A) for
every A, 0 < At<e; X' =x+c-A

Unlike arbitrary dynamical systems where you can only
approximate

Decision Problems for PCD

» Point-to-point reachability Reach(H, x, x’):

» Given: a PCD H and x,x’ € X,

> Are there a trajectory £ and t > 0 such that £(0) = x and
§(t) =x7

» Region-to-region reachability R-Reach(H, P, P'):

» Given: a PCD H and two polyhedral sets P, P’ C X

» Are there two points x € P and x’ € P’ such that
Reach(H,x,x’) 7

PCDs on the Plane

» Polyhedral partition of the plane into polygons/regions (P)
» Induced boundary elements: edges (e) and vertices (x)

» A kind of abstract finite alphabet to describe qualitative
behaviors as sequences of regions or edges

P1 P2

X1

P3 e3

P
Py 6 ®

Orientation and Ordering of Boundaries

» Edges (and vertices) can be classified as entry and exit
according to the relation between the slope ¢ and the the
vector e which defines the inequality

» Edge e below is exit for ¢; and entry for c3

(=1 \ /
(=3 =

—

e

» The whole boundary of a region can be decomposed into two
connected sets, entry In(P) and exit Out(p)
» A linear order can be imposed on each of them:

Out(P) X1

A Fundamental Property of Planar Systems

> Let £ be any trajectory that intersects Out(P) in three
consecutive points, X1, X2 and x3. Then: x; < xp implies
X2 2 X3

» The figure shows why it cannot be otherwise as the trajectory
must intersect itself

» Jordan's theorem, not true in 3 dimensions

Spirals

» Consequently all repetitive behaviors are spirals

Contracting: Expanding:

» The sequences of intersections with an edge is monotonic and
you cannot return to an edge you have “abandoned”

» Since there are finitely many edges we can conclude:

» For every trajectory, the sequence of edges it crosses is
ultimately-periodic: ey, ..., €, (€41, -, €4j)*

Representation (Parametrization)
» A representation scheme for an edge e is a pair of vectors v, u
and an interval [/, h] such that e = {v+ Au: X\ € [/, h]}

» Consider and entry edge e with (u,v) representation and exit

edge €’ with (u’,Vv’) representation
» The corresponding successor function is defined as
feer(A) = X iff by entering P at x = (e, \), you exit as

x' = (e, \)

Successor Function is Linear

» Successor function is well-defined, computable and linear:
N = Ac.e A+ Be s Where
a /
c-a c-(v—v
Ae,e’ =) and Be,e’ = (7/)
c-a c-a
» Here c is the slope and a and &’ are the normals to e and ¢’
» (Some basic linear algebra, quantifier elimination...)
» Predecessor:
\ = N — Be,e/
Ae,e’
» Moreover: if e € In(P) and €’ € Out(P) then A, s >0

Signature Successor Function

» A cyclic signature: a sequence o = ey, ..., ¢ of edges s.t.
€1 = €k

» The function f, from e; to itself represents the effect on a
point going through a cycle (Poincare map)

» In our case it is linear f,(\) = A, + B, (composition of
linear partial functions)

> A = Aeer Aeprey - - A

s Aep_1,ek
> B, = (e ((861,6‘2 : Aez,e3 + 862763)) Ae3,e4 + Be3,e4) e) :
Aek—hek + Bek—laek

Intersections of a Spiral and an Edge

{{.\«l

)=

> piv1 = As - pi + By

o+ By - n if A, =1
= Al —1

> Hn to - Ay + By - =2 otherwise
A, —1

» We can compute p* = limp_ oo fin

The Limit of the Sequence

‘ Case ‘ Limit
AU:]-aBa:O Ho
A, =1,|B;| >0 |0
Ar=1,1B;| <0 —00

B,
A <1 7
1-A,
Ay > 17/~L0 = 1782” Ho
By
Aa>17#0>1,AU 00
B,
Ar > 1o < T4, |~

Main Positive Result

» An algorithm for deciding Reach(H, x, x'):
» Start “simulating” forward from x

» When you encounter a cycle, compute its limit points on all
edges and determine whether it is the ultimate cycle (limits on
each edge stays inside edge range)

> If not, continue simulating until you leave it (in a finite
number of iterations)

» If it is the ultimate cycle, and x’ is beyond the limit, the
answer is “no”

» If x' is before the limit then continue simulation until you
reach x’ (“yes”) or bypass it (“no”)

Region-to-Region Reachability (Sketch)

» Can be reduced to edge-to-edge reachability
» An entry edge interval splits into finitely many exits edges

x
x1 2 e

€1

I e

» Can build a successor tree and compute a limit along each
branch

Can we go to Higher Dimensions?

» One one hand: calculating successors can be generalized to
higher dimensions (more book-keeping though)

» On the other: no Jordan theorem so trajectories are not
necessary ultimately-periodic (Chaos et co.)

» We show undecidability for 3 dimensions by showing that
PCDs can simulate any TM (2PDA) and hence deciding
reachability for PCDs solves the halting problem

» Interesting “model of computation”

Simulation of Finite-State Automata

» Every finite deterministic automaton can be simulated by a
3-dimensional PCD system

:
sl
b
7 7 = ‘ Z g
©0.9 a L] a3 "
Region Defining conditions c=(x,y,2)
F (z=0)A(y<1 0,1,0)
Ujj (x=NAly=1)A(z<]) (0,0,1)
Bij E=DAx+0=-Dy=)A>0 | (—=i—1,0)
D E>0A(=0 ©,0,-1)

> Regions Uj; and Bj; are defined for every /,j such that
(qi) = qj

Push-down Automata (PDA)

» Pushdown stack: an element of X*0%.

» Two operations:

PUSH: 2 X 2% — %“ POP: X% — ¥ x 2%

PUSH(v,S)=v-S pPOP(v-S) =(v,S)

» PDA: an infinite transition system A = (Q x X*0%,)

» @ is finite and ¢ is defined using a finite collection of
statements of one of the following forms:

gi: S :=pusH(v,S); gi: (v,S) :=pop(S);
GOTO g IF v =0 GOTO gqjp;

IF v=k—1GOTO qj, ,;

Encoding Stacks into [0, 1]

» Contents of a stack S = s15,... where s; is the top of the
stack

» Enconding using k-ary representation r : ¥ — [0, 1]

r(S) = i sk~
i=1

» Stack operations have arithmetic counterparts:

S"= pusH(v,S) iff r(S)=(r(S)+v)/k
(S',v) = popr(S) iff r(S')=kr(S)—v

Building Blocks for the Simulation, k =2 and ¥ = {0, 1}

1/2 1/2 —1/2 1/2 3/2
3 H N v 7

vvvvvv

» A trajectory starting at x = (x,0), x € [0,1] and ending at
x' = (x/, 1) satisfies:

» x' =(x+1)/2 (pusH 1), x' =x/2 (pPUusH 0) and
x' =2x—1/2 (pop)

» In other words, x = r(S) at the “input port” (y = 0) of an
element, then x’ = r(S’) at the “output port” (y = 1) where
S’ is the operation outcome.

» The POP element has two output ports which are selected
according to the value of the top element popped

Simulation of PDAs by PCDs

» Put the appropriate element for each state and connect via
“bands” that “carry” the stack value

» A PCD for the PDA defined by:

g1 : S :=PUsH(1, S); GOTO q;
g2 : (v,S) :=pPoP(S); If v =1 THEN GOTO g2 ELSE GOTO q1

y

I

0.0,00

» Every PDA can be simulated by a 3-dimensional PCD system

Simulating 2PDAs

» Automata with 2 push-down stacks can simulate Turing
machines

» We can represent the configuration of two stacks by a point in
[0,1]? and build the corresponding gadgets, e.g. PUSH(Sy,0)

X2y Y
HETE)
: X

» Hence a straightforward realization of 2PDA in 4 dimensions

» With some considerable effort we can squeeze everything into
3 dimensions and conclude:

» The reachability problem for PCD systems in 3 dimensions is
undecidable

Theoreticians go Wild

» Arithmetical hierarchy: the classes 21,%5,... and 1, [y,...
of sets of integers defined inductively:

» Y1 consists of sets P C I such that there is a Turing
machine that halts on an input niff n € P

» The class IM; consists of all the sets P such that P € ¥;

> Y14 is the class of all sets P defined as
P ={n:3m(m,n) € P'} for some P" € IN;, where () is some
computable pairing function

» The arithmetical hierarchy is infinite, satisfying the strict
inclusions I; C X;41 and X; C Mg

» We show (with the help of Zeno paradox) how all the
arithmetical hierarchy can be realized by PCDs

Recognition by PCDs

» PCD recognizer: H= (R, £, 1, r,x2 xB), H = (RY, f) is a
PCD

» | =1[0,1] x {0}~ is a one-dimensional subset of X (the
“input port”)

» r: N —[0,1] N Q is a recursive injective coding function

» x4 xB € RY — | are two distinct points (accepting and
rejecting states)

> We assume that f(x*) = f(x®) =0

> H semi-recognizes P C N iff for every n, the trajectory
starting at (r(n),0,...,0) can continue forever and it
eventually reaches x™ iff n € P

» We say that { (fully) recognizes P when, in addition, this
trajectory reaches x® iff n & P

» Previous result: every ¥ 1 set P is semi-recognized by some
3-dimensional bounded PCD

Principal Lammata

» From a PCD that semi-recognizes P one can construct a
(higher-dimensional) PCD that recognizes P
» From a PCD that recognizes P one can construct:
1. a PCD that semi-recognizes {x : dy (x,y) € P}

2. a PCD that recognizes P.

> The last two are relatively-easy and trivial (respectively)

» The main idea of the first:

x2

X1

Gadgets used in the Construction
» Division by 2:

NS

» Projectivisation:

» Corollary: PCDs can realize the whole arithmetical hierarchy

Credits and Follow-ups

» Decidability : OM and A. Pnueli, Reachability Analysis of
Planar Multi-Linear Systems, 1993

» Generalized by Asarin, Pace, Schneider and Yovine to planar
differential inclusions (and implemented)

» Undecidability: E. Asarin and OM, On some Relations
between Dynamical Systems and Transition Systems, 1994

» Numerous papers on decidability boundaries for linear hybrid
automata (Henzinger et al)

» Some small open problems remain, e.g. M. Mahfoudh,
B. Krogh and OM, On Control with Bounded Computational
Resources, 2002

» Higher undecidability: E. Asarin and OM, Achilles and the
Tortoise Climbing Up the Arithmetical Hierarchy, 1995

» Studied extensively by O. Bournez

So What?

» Beyond the nice intellectual exercise (and a warm-up for those
whose geometry and linear algebra are, at best, rusty) the
results are rather disappointing

» Even for these systems, whose continuous dynamics is trivial
we cannot answer anything

» How will we cope with “real” dynamics?

» We are asking the wrong questions, inspired by our discrete
verification background

» In the continuous world having precise/exact answers is an
oxymoron

» We should ask weaker, approximate questions on stronger
systems with real differential equations

