Reachability Analysis of Dynamical Systems having Piecewise-Constant Derivatives

Eugene Asarin Oded Maler Amir Pnueli

CNRS - VERIMAG Grenoble, France

1993-1995

Outline of Talk

- Some generalities on "linear" hybrid automata and PCD systems
- Decidability of reachability problems in the plane
- Undecidability in dimension 3 and above by simulating pushdown stacks

- Going higher in the arithmetical hierarchy
- So what?

A Motivating Example: Buffer Networks

- Consider a network of containers/buffers for water/data
- Channels can be switched on and off
- When a channel is on, its flow rate is a constant
- Each combination of open/close valves leads to a different derivatives for the buffer levels, based on the difference between their in- and outflows

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

"Linear" Hybrid Automata and PCD Systems

- A sub-class of hybrid automata
- Can be viewed as piecewise-trivial dynamical systems: derivatives are constant in every control state (location) and the evolution is along a straight line
- Transition guards (switching surface) and invariants (staying conditions) are linear (hyperplanes, polytopes)
- Local continuous evolution needs no numerical analysis;
 Computing the effect of time passage amounts to quantifier elimination in linear algebra
- Investigated a lot by Henzinger et al. (HYTECH), currently supported by the tool PHAVER (G. Frehse)
- PCD (piecewise-constant derivative): a sub-class of linear hybrid automata closer in spirit to continuous dynamical systems

PCD (Piecewise-Constant Derivatives) Systems

- Dynamical System: $\mathcal{H} = (X, f), X = \mathbb{R}^d$
- $f: X \to X$ defines differential equation $\frac{d^+ \mathbf{x}}{dt} = f(\mathbf{x})$
- A trajectory of \mathcal{H} starting at $\mathbf{x}_0 \in X$ is $\xi : \mathbb{R}_+ \to X$ s.t.
 - ξ(0) = x₀
 - ► f(ξ(t)) is defined for every t and is equal to the right derivative of ξ(t)
- PCD: X is partitioned into a final number of polyhedra (regions) and f is constant in each region
- Trajectories are thus broken lines

PCDs are Effective

- A description of a PCD system: $\{(P_1, \mathbf{c}_1), \ldots, (P_n, \mathbf{c}_n)\}$
- each P_i is a convex polyhedron (interesection of linear inequalities) and c_i is its corresponding derivative (slope)
- Effectiveness: given a PCD description and a rational point
 x = ξ(0)
- There exists ε > 0 s.t. we can compute precisely x' = ξ(Δ) for every Δ, 0 < Δt < ε; x' = x + c · Δ</p>

 Unlike arbitrary dynamical systems where you can only approximate

Decision Problems for PCD

- Point-to-point reachability Reach(H, x, x'):
- Given: a PCD \mathcal{H} and $\mathbf{x}, \mathbf{x}' \in X$,
- Are there a trajectory ξ and $t \ge 0$ such that $\xi(0) = \mathbf{x}$ and $\xi(t) = \mathbf{x}'$?

- Region-to-region reachability \mathbf{R} -Reach (\mathcal{H}, P, P') :
- Given: a PCD \mathcal{H} and two polyhedral sets $P, P' \subseteq X$
- ► Are there two points x ∈ P and x' ∈ P' such that Reach(H, x, x') ?

PCDs on the Plane

- ▶ Polyhedral partition of the plane into polygons/regions (P)
- ▶ Induced boundary elements: edges (e) and vertices (x)
- A kind of abstract finite alphabet to describe qualitative behaviors as sequences of regions or edges

Orientation and Ordering of Boundaries

- Edges (and vertices) can be classified as entry and exit according to the relation between the slope c and the the vector e which defines the inequality
- Edge *e* below is exit for c_1 and entry for c_3

- The whole boundary of a region can be decomposed into two connected sets, entry In(P) and exit Out(p)
- A linear order can be imposed on each of them:

A Fundamental Property of Planar Systems

Let ξ be any trajectory that intersects Out(P) in three consecutive points, x₁, x₂ and x₃. Then: x₁ ≤ x₂ implies x₂ ≤ x₃

The figure shows why it cannot be otherwise as the trajectory must intersect itself

Jordan's theorem, not true in 3 dimensions

Spirals

Consequently all repetitive behaviors are spirals

- The sequences of intersections with an edge is monotonic and you cannot return to an edge you have "abandoned"
- Since there are finitely many edges we can conclude:
- For every trajectory, the sequence of edges it crosses is ultimately-periodic: e₁,..., e_i, (e_{i+1},..., e_{i+j})^ω

Representation (Parametrization)

A representation scheme for an edge e is a pair of vectors v, u and an interval [I, h] such that e = {v + λu : λ ∈ [I, h]}

- ► Consider and entry edge e with (u, v) representation and exit edge e' with (u', v') representation
- The corresponding successor function is defined as $f_{e,e'}(\lambda) = \lambda'$ iff by entering P at $\mathbf{x} = (e, \lambda)$, you exit as $\mathbf{x}' = (e', \lambda')$

Successor Function is Linear

Successor function is well-defined, computable and linear: $\lambda' = A_{e,e'}\lambda + B_{e,e'}$ where

$$egin{aligned} \mathcal{A}_{e,e'} = rac{\mathbf{c}\cdot\mathbf{a}}{\mathbf{c}\cdot\mathbf{a}'} \;\; ext{and} \;\; \mathcal{B}_{e,e'} = rac{\hat{\mathbf{c}}\cdot(\mathbf{v}-\mathbf{v}')}{\mathbf{c}\cdot\mathbf{a}'} \end{aligned}$$

Here c is the slope and a and a' are the normals to e and e'
(Some basic linear algebra, quantifier elimination...)
Predecessor:

$$\lambda = \frac{\lambda' - B_{e,e'}}{A_{e,e'}}$$

• Moreover: if $e \in In(P)$ and $e' \in Out(P)$ then $A_{e,e'} > 0$

Signature Successor Function

• A cyclic signature: a sequence $\sigma = e_1, \ldots, e_k$ of edges s.t. $e_1 = e_k$

- The function f_σ from e₁ to itself represents the effect on a point going through a cycle (Poincare map)
- In our case it is linear f_σ(λ) = A_σλ + B_σ (composition of linear partial functions)

$$A_{\sigma} = A_{e_{1},e_{2}} \cdot A_{e_{2},e_{3}} \dots A_{e_{k-1},e_{k}}$$

$$B_{\sigma} = (\cdots ((B_{e_{1},e_{2}} \cdot A_{e_{2},e_{3}} + B_{e_{2},e_{3}}) \cdot A_{e_{3},e_{4}} + B_{e_{3},e_{4}}) \cdots) \cdot A_{e_{k-1},e_{k}} + B_{e_{k-1},e_{k}}$$

Intersections of a Spiral and an Edge

$$\mu_{i+1} = A_{\sigma} \cdot \mu_i + B_{\sigma}$$

$$\mu_n = \begin{cases} \mu_0 + B_{\sigma} \cdot n & \text{if } A_{\sigma} = 1 \\ \mu_0 \cdot A_{\sigma}^n + B_{\sigma} \cdot \frac{A_{\sigma}^n - 1}{A_{\sigma} - 1} & \text{otherwise} \end{cases}$$

• We can compute $\mu^* = \lim_{n \to \infty} \mu_n$

The Limit of the Sequence

Case	Limit
$A_{\sigma}=1, B_{\sigma}=0$	μ_0
$ A_{\sigma}=1, B_{\sigma} >0$	∞
$ A_{\sigma}=1, B_{\sigma} <0$	$-\infty$
$A_{\sigma} < 1$	$\frac{B_\sigma}{1-A_\sigma}$
$A_{\sigma} > 1, \mu_0 = \frac{B_{\sigma}}{1 - A_{\sigma}}$	μ_0
$A_{\sigma} > 1, \mu_0 > \frac{B_{\sigma}}{1 - A_{\sigma}}$	∞
$A_{\sigma} > 1, \mu_0 < \frac{B_{\sigma}}{1 - A_{\sigma}}$	$-\infty$

Main Positive Result

- ► An algorithm for deciding **Reach**(*H*, **x**, **x**'):
- Start "simulating" forward from x
- When you encounter a cycle, compute its limit points on all edges and determine whether it is the ultimate cycle (limits on each edge stays inside edge range)
- If not, continue simulating until you leave it (in a finite number of iterations)
- If it is the ultimate cycle, and x' is beyond the limit, the answer is "no"
- If x' is before the limit then continue simulation until you reach x' ("yes") or bypass it ("no")

Region-to-Region Reachability (Sketch)

- Can be reduced to edge-to-edge reachability
- An entry edge interval splits into finitely many exits edges

 Can build a successor tree and compute a limit along each branch

Can we go to Higher Dimensions?

- One one hand: calculating successors can be generalized to higher dimensions (more book-keeping though)
- On the other: no Jordan theorem so trajectories are not necessary ultimately-periodic (Chaos et co.)
- We show undecidability for 3 dimensions by showing that PCDs can simulate any TM (2PDA) and hence deciding reachability for PCDs solves the halting problem

Interesting "model of computation"

Simulation of Finite-State Automata

 Every finite deterministic automaton can be simulated by a 3-dimensional PCD system

Region	Defining conditions	$\mathbf{c} = (\dot{x}, \dot{y}, \dot{z})$
F	$(z=0) \wedge (y < 1)$	(0, 1, 0)
U _{ij}	$(x = i) \land (y = 1) \land (z < j)$	(0, 0, 1)
B _{ij}	$(z=j) \land (x+(j-i)y=j) \land (y>0)$	(j - i, -1, 0)
D	$(z > 0) \land (y = 0)$	(0, 0, -1)

▶ Regions U_{ij} and B_{ij} are defined for every i, j such that $\delta(q_i) = q_j$

Push-down Automata (PDA)

- Pushdown stack: an element of $\Sigma^* 0^{\omega}$.
- Two operations:

PUSH:
$$\Sigma \times \Sigma^{\omega} \to \Sigma^{\omega}$$
 POP: $\Sigma^{\omega} \to \Sigma \times \Sigma^{\omega}$
PUSH $(v, S) = v \cdot S$ POP $(v \cdot S) = (v, S)$

- ► PDA: an infinite transition system A = (Q × Σ*0^ω, δ)
- Q is finite and δ is defined using a finite collection of statements of one of the following forms:

$$q_i: S := PUSH(v, S);$$
 $q_i: (v, S) := POP(S);$
GOTO q_j IF $v = 0$ GOTO $q_{i_0};$

. . .

IF
$$v = k - 1$$
 Goto $q_{i_{k-1}}$;

Encoding Stacks into [0, 1]

- ► Contents of a stack S = s₁s₂... where s₁ is the top of the stack
- Enconding using *k*-ary representation $r: \Sigma^{\omega} \rightarrow [0, 1]$

$$r(S) = \sum_{i=1}^{\infty} s_i k^{-i}$$

Stack operations have arithmetic counterparts:

$$\begin{array}{lll} S' = & \operatorname{PUSH}(v,S) & \operatorname{iff} & r(S') = (r(S) + v)/k \\ (S',v) = & \operatorname{POP}(S) & \operatorname{iff} & r(S') = kr(S) - v \end{array}$$

Building Blocks for the Simulation, k = 2 and $\Sigma = \{0, 1\}$

- A trajectory starting at x = (x, 0), x ∈ [0, 1] and ending at x' = (x', 1) satisfies:
- ▶ x' = (x + 1)/2 (PUSH 1), x' = x/2 (PUSH 0) and x' = 2x 1/2 (POP)
- In other words, x = r(S) at the "input port" (y = 0) of an element, then x' = r(S') at the "output port" (y = 1) where S' is the operation outcome.
- The POP element has two output ports which are selected according to the value of the top element popped

Simulation of PDAs by PCDs

- Put the appropriate element for each state and connect via "bands" that "carry" the stack value
- A PCD for the PDA defined by:

 $q_1: S := PUSH(1, S);$ Goto $q_2;$ $q_2: (v, S) := POP(S);$ If v = 1 then goto q_2 else goto q_1

Every PDA can be simulated by a 3-dimensional PCD system

Simulating 2PDAs

- Automata with 2 push-down stacks can simulate Turing machines
- ▶ We can represent the configuration of two stacks by a point in [0,1]² and build the corresponding gadgets, e.g. PUSH(S₁,0)

- Hence a straightforward realization of 2PDA in 4 dimensions
- With some considerable effort we can squeeze everything into 3 dimensions and conclude:
- The reachability problem for PCD systems in 3 dimensions is undecidable

Theoreticians go Wild

- Arithmetical hierarchy: the classes Σ₁, Σ₂,... and Π₁, Π₂,... of sets of integers defined inductively:
- Σ₁ consists of sets P ⊆ N such that there is a Turing machine that halts on an input n iff n ∈ P
- The class Π_i consists of all the sets P such that $\overline{P} \in \Sigma_i$
- ► Σ_{i+1} is the class of all sets *P* defined as $P = \{n : \exists m \langle m, n \rangle \in P'\}$ for some $P' \in \Pi_i$, where $\langle \rangle$ is some computable pairing function
- The arithmetical hierarchy is infinite, satisfying the strict inclusions Π_i ⊂ Σ_{i+1} and Σ_i ⊂ Π_{i+1}
- We show (with the help of Zeno paradox) how all the arithmetical hierarchy can be realized by PCDs

Recognition by PCDs

- ▶ PCD recognizer: $\widehat{\mathcal{H}} = (\mathbb{R}^d, f, I, r, \mathbf{x}^A, \mathbf{x}^R)$, $\mathcal{H} = (\mathbb{R}^d, f)$ is a PCD
- I = [0, 1] × {0}^{d−1} is a one-dimensional subset of X (the "input port")
- ▶ $r: \mathbb{N} \to [0,1] \cap \mathcal{Q}$ is a recursive injective coding function
- ▶ $\mathbf{x}^{\mathrm{A}}, \mathbf{x}^{\mathrm{R}} \in \mathbb{R}^{d} I$ are two distinct points (accepting and rejecting states)
- We assume that $f(\mathbf{x}^{\mathrm{A}}) = f(\mathbf{x}^{\mathrm{R}}) = 0$
- *H* semi-recognizes *P* ⊆ ℕ iff for every *n*, the trajectory starting at (*r*(*n*), 0, ..., 0) can continue forever and it eventually reaches x^A iff *n* ∈ *P*
- We say that (fully) recognizes P when, in addition, this trajectory reaches x^R iff n ∉ P
- Previous result: every Σ₁ set P is semi-recognized by some 3-dimensional bounded PCD

Principal Lammata

- From a PCD that semi-recognizes P one can construct a (higher-dimensional) PCD that recognizes P
- From a PCD that recognizes *P* one can construct:
 - 1. a PCD that semi-recognizes $\{x : \exists y \langle x, y \rangle \in P\}$
 - 2. a PCD that recognizes \overline{P} .
- The last two are relatively-easy and trivial (respectively)
- The main idea of the first:

・ロット (日) (日) (日) (日) (日)

Gadgets used in the Construction

Division by 2:

Projectivisation:

Corollary: PCDs can realize the whole arithmetical hierarchy

Credits and Follow-ups

- Decidability : OM and A. Pnueli, Reachability Analysis of Planar Multi-Linear Systems, 1993
- Generalized by Asarin, Pace, Schneider and Yovine to planar differential inclusions (and implemented)
- Undecidability: E. Asarin and OM, On some Relations between Dynamical Systems and Transition Systems, 1994
- Numerous papers on decidability boundaries for linear hybrid automata (Henzinger et al)
- Some small open problems remain, e.g. M. Mahfoudh,
 B. Krogh and OM, On Control with Bounded Computational Resources, 2002
- Higher undecidability: E. Asarin and OM, Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy, 1995
- Studied extensively by O. Bournez

So What?

- Beyond the nice intellectual exercise (and a warm-up for those whose geometry and linear algebra are, at best, rusty) the results are rather disappointing
- Even for these systems, whose continuous dynamics is trivial we cannot answer anything
- ▶ How will we cope with "real" dynamics?
- We are asking the wrong questions, inspired by our discrete verification background
- In the continuous world having precise/exact answers is an oxymoron
- We should ask weaker, approximate questions on stronger systems with real differential equations