Reachability Analysis of Dynamical Systems having Piecewise-Constant Derivatives

Eugene Asarin Oded Maler Amir Pnueli
CNRS - VERIMAG
Grenoble, France

1993-1995

Outline of Talk

- Some generalities on "linear" hybrid automata and PCD systems
- Decidability of reachability problems in the plane
- Undecidability in dimension 3 and above by simulating pushdown stacks
- Going higher in the arithmetical hierarchy
- So what?

A Motivating Example: Buffer Networks

- Consider a network of containers/buffers for water/data
- Channels can be switched on and off
- When a channel is on, its flow rate is a constant
- Each combination of open/close valves leads to a different derivatives for the buffer levels, based on the difference between their in- and outflows

"Linear" Hybrid Automata and PCD Systems

- A sub-class of hybrid automata
- Can be viewed as piecewise-trivial dynamical systems: derivatives are constant in every control state (location) and the evolution is along a straight line
- Transition guards (switching surface) and invariants (staying conditions) are linear (hyperplanes, polytopes)
- Local continuous evolution needs no numerical analysis; Computing the effect of time passage amounts to quantifier elimination in linear algebra
- Investigated a lot by Henzinger et al. (HYTECH), currently supported by the tool PHAVER (G. Frehse)
- PCD (piecewise-constant derivative): a sub-class of linear hybrid automata closer in spirit to continuous dynamical systems

PCD (Piecewise-Constant Derivatives) Systems

- Dynamical System: $\mathcal{H}=(X, f), X=\mathbb{R}^{d}$
- $f: X \rightarrow X$ defines differential equation $\frac{d^{+} \mathbf{x}}{d t}=f(\mathbf{x})$
- A trajectory of \mathcal{H} starting at $\mathbf{x}_{0} \in X$ is $\xi: \mathbb{R}_{+} \rightarrow X$ s.t.
- $\xi(0)=\mathbf{x}_{0}$
- $f(\xi(t))$ is defined for every t and is equal to the right derivative of $\xi(t)$
- PCD: X is partitioned into a final number of polyhedra (regions) and f is constant in each region
- Trajectories are thus broken lines

PCDs are Effective

- A description of a PCD system: $\left\{\left(P_{1}, \mathbf{c}_{1}\right), \ldots,\left(P_{n}, \mathbf{c}_{n}\right)\right\}$
- each P_{i} is a convex polyhedron (interesection of linear inequalities) and \mathbf{c}_{i} is its corresponding derivative (slope)
- Effectiveness: given a PCD description and a rational point $\mathbf{x}=\xi(0)$
- There exists $\epsilon>0$ s.t. we can compute precisely $\mathbf{x}^{\prime}=\xi(\Delta)$ for every $\Delta, 0<\Delta t<\epsilon ; x^{\prime}=x+c \cdot \Delta$
- Unlike arbitrary dynamical systems where you can only approximate

Decision Problems for PCD

- Point-to-point reachability $\operatorname{Reach}\left(\mathcal{H}, \mathbf{x}, \mathbf{x}^{\prime}\right)$:
- Given: a PCD \mathcal{H} and $\mathbf{x}, \mathbf{x}^{\prime} \in X$,
- Are there a trajectory ξ and $t \geq 0$ such that $\xi(0)=\mathbf{x}$ and $\xi(t)=\mathbf{x}^{\prime}$?
- Region-to-region reachability R-Reach $\left(\mathcal{H}, P, P^{\prime}\right)$:
- Given: a PCD \mathcal{H} and two polyhedral sets $P, P^{\prime} \subseteq X$
- Are there two points $\mathbf{x} \in P$ and $\mathbf{x}^{\prime} \in P^{\prime}$ such that $\operatorname{Reach}\left(\mathcal{H}, \mathbf{x}, \mathbf{x}^{\prime}\right)$?

PCDs on the Plane

- Polyhedral partition of the plane into polygons/regions (P)
- Induced boundary elements: edges (e) and vertices (x)
- A kind of abstract finite alphabet to describe qualitative behaviors as sequences of regions or edges

Orientation and Ordering of Boundaries

- Edges (and vertices) can be classified as entry and exit according to the relation between the slope c and the the vector e which defines the inequality
- Edge e below is exit for c_{1} and entry for c_{3}

- The whole boundary of a region can be decomposed into two connected sets, entry $\operatorname{In}(P)$ and exit $\operatorname{Out}(p)$
- A linear order can be imposed on each of them:

A Fundamental Property of Planar Systems

- Let ξ be any trajectory that intersects $\operatorname{Out}(P)$ in three consecutive points, $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3}. Then: $\mathbf{x}_{1} \preceq \mathbf{x}_{2}$ implies $\mathbf{x}_{2} \preceq \mathbf{x}_{3}$

- The figure shows why it cannot be otherwise as the trajectory must intersect itself
- Jordan's theorem, not true in 3 dimensions

Spirals

- Consequently all repetitive behaviors are spirals

Contracting:

Expanding:

- The sequences of intersections with an edge is monotonic and you cannot return to an edge you have "abandoned"
- Since there are finitely many edges we can conclude:
- For every trajectory, the sequence of edges it crosses is ultimately-periodic: $e_{1}, \ldots, e_{i},\left(e_{i+1}, \ldots, e_{i+j}\right)^{\omega}$

Representation (Parametrization)

- A representation scheme for an edge e is a pair of vectors \mathbf{v}, \mathbf{u} and an interval $[I, h]$ such that $e=\{\mathbf{v}+\lambda \mathbf{u}: \lambda \in[I, h]\}$

- Consider and entry edge e with (\mathbf{u}, \mathbf{v}) representation and exit edge e^{\prime} with ($\mathbf{u}^{\prime}, \mathbf{v}^{\prime}$) representation
- The corresponding successor function is defined as $f_{e, e^{\prime}}(\lambda)=\lambda^{\prime}$ iff by entering P at $\mathbf{x}=(e, \lambda)$, you exit as $\mathbf{x}^{\prime}=\left(e^{\prime}, \lambda^{\prime}\right)$

Successor Function is Linear

- Successor function is well-defined, computable and linear: $\lambda^{\prime}=A_{e, e^{\prime}} \lambda+B_{e, e^{\prime}}$ where

$$
A_{e, e^{\prime}}=\frac{\mathbf{c} \cdot \mathbf{a}}{\mathbf{c} \cdot \mathbf{a}^{\prime}} \text { and } B_{e, e^{\prime}}=\frac{\hat{\mathbf{c}} \cdot\left(\mathbf{v}-\mathbf{v}^{\prime}\right)}{\mathbf{c} \cdot \mathbf{a}^{\prime}}
$$

- Here c is the slope and a and a^{\prime} are the normals to e and e^{\prime}
- (Some basic linear algebra, quantifier elimination...)
- Predecessor:

$$
\lambda=\frac{\lambda^{\prime}-B_{e, e^{\prime}}}{A_{e, e^{\prime}}}
$$

- Moreover: if $e \in \operatorname{In}(P)$ and $e^{\prime} \in \operatorname{Out}(P)$ then $A_{e, e^{\prime}}>0$

Signature Successor Function

- A cyclic signature: a sequence $\sigma=e_{1}, \ldots, e_{k}$ of edges s.t. $e_{1}=e_{k}$

- The function f_{σ} from e_{1} to itself represents the effect on a point going through a cycle (Poincare map)
- In our case it is linear $f_{\sigma}(\lambda)=A_{\sigma} \lambda+B_{\sigma}$ (composition of linear partial functions)
$-A_{\sigma}=A_{e_{1}, e_{2}} \cdot A_{e_{2}, e_{3}} \ldots A_{e_{k-1}, e_{k}}$
- $B_{\sigma}=\left(\cdots\left(\left(B_{e_{1}, e_{2}} \cdot A_{e_{2}, e_{3}}+B_{e_{2}, e_{3}}\right) \cdot A_{e_{3}, e_{4}}+B_{e_{3}, e_{4}}\right) \cdots\right)$. $A_{e_{k-1}, e_{k}}+B_{e_{k-1}, e_{k}}$

Intersections of a Spiral and an Edge

- $\mu_{i+1}=A_{\sigma} \cdot \mu_{i}+B_{\sigma}$
- $\mu_{n}= \begin{cases}\mu_{0}+B_{\sigma} \cdot n & \text { if } A_{\sigma}=1 \\ \mu_{0} \cdot A_{\sigma}^{n}+B_{\sigma} \cdot \frac{A_{\sigma}^{n}-1}{A_{\sigma}-1} & \text { otherwise }\end{cases}$
- We can compute $\mu^{*}=\lim _{n \rightarrow \infty} \mu_{n}$

The Limit of the Sequence

Case	Limit
$A_{\sigma}=1, B_{\sigma}=0$	μ_{0}
$A_{\sigma}=1,\left\|B_{\sigma}\right\|>0$	∞
$A_{\sigma}=1,\left\|B_{\sigma}\right\|<0$	$-\infty$
$A_{\sigma}<1$	$\frac{B_{\sigma}}{1-A_{\sigma}}$
$A_{\sigma}>1, \mu_{0}=\frac{B_{\sigma}}{1-A_{\sigma}}$	μ_{0}
$A_{\sigma}>1, \mu_{0}>\frac{B_{\sigma}}{1-A_{\sigma}}$	∞
$A_{\sigma}>1, \mu_{0}<\frac{B_{\sigma}}{1-A_{\sigma}}$	$-\infty$

Main Positive Result

- An algorithm for deciding $\operatorname{Reach}\left(\mathcal{H}, \mathbf{x}, \mathbf{x}^{\prime}\right)$:
- Start "simulating" forward from \mathbf{x}
- When you encounter a cycle, compute its limit points on all edges and determine whether it is the ultimate cycle (limits on each edge stays inside edge range)
- If not, continue simulating until you leave it (in a finite number of iterations)
- If it is the ultimate cycle, and \mathbf{x}^{\prime} is beyond the limit, the answer is "no"
- If \mathbf{x}^{\prime} is before the limit then continue simulation until you reach \mathbf{x}^{\prime} ("yes") or bypass it ("no")

Region-to-Region Reachability (Sketch)

- Can be reduced to edge-to-edge reachability
- An entry edge interval splits into finitely many exits edges

- Can build a successor tree and compute a limit along each branch

Can we go to Higher Dimensions?

- One one hand: calculating successors can be generalized to higher dimensions (more book-keeping though)
- On the other: no Jordan theorem so trajectories are not necessary ultimately-periodic (Chaos et co.)
- We show undecidability for 3 dimensions by showing that PCDs can simulate any TM (2PDA) and hence deciding reachability for PCDs solves the halting problem
- Interesting "model of computation"

Simulation of Finite-State Automata

- Every finite deterministic automaton can be simulated by a 3-dimensional PCD system

Region	Defining conditions	$\mathbf{c}=(\dot{x}, \dot{y}, \dot{z})$
F	$(z=0) \wedge(y<1)$	$(0,1,0)$
$U_{i j}$	$(x=i) \wedge(y=1) \wedge(z<j)$	$(0,0,1)$
$B_{i j}$	$(z=j) \wedge(x+(j-i) y=j) \wedge(y>0)$	$(j-i,-1,0)$
D	$(z>0) \wedge(y=0)$	$(0,0,-1)$

- Regions $U_{i j}$ and $B_{i j}$ are defined for every i, j such that $\delta\left(q_{i}\right)=q_{j}$

Push-down Automata (PDA)

- Pushdown stack: an element of $\Sigma^{*} 0^{\omega}$.
- Two operations:

$$
\begin{array}{ll}
\operatorname{PUSH}: \Sigma \times \Sigma^{\omega} \rightarrow \Sigma^{\omega} & \text { POP: } \Sigma^{\omega} \rightarrow \Sigma \times \Sigma^{\omega} \\
\operatorname{PUSH}(v, S)=v \cdot S & \operatorname{POP}(v \cdot S)=(v, S)
\end{array}
$$

- PDA: an infinite transition system $\mathcal{A}=\left(Q \times \Sigma^{*} 0^{\omega}, \delta\right)$
- Q is finite and δ is defined using a finite collection of statements of one of the following forms:

$$
\begin{aligned}
q_{i}: & S:=\operatorname{PUSH}(v, S) ; \\
& \operatorname{GOTO} q_{j}
\end{aligned}
$$

$$
\begin{aligned}
q_{i}: & (v, S):=\operatorname{POP}(S) ; \\
& \text { IF } v=0 \operatorname{GOTO} q_{i_{0}}
\end{aligned}
$$

$$
\text { IF } v=k-1 \text { GOTO } q_{i_{k-1}}
$$

Encoding Stacks into $[0,1]$

- Contents of a stack $S=s_{1} s_{2} \ldots$ where s_{1} is the top of the stack
- Enconding using k-ary representation $r: \Sigma^{\omega} \rightarrow[0,1]$

$$
r(S)=\sum_{i=1}^{\infty} s_{i} k^{-i}
$$

- Stack operations have arithmetic counterparts:

$$
\begin{array}{lll}
S^{\prime}=\operatorname{PUSH}(v, S) & \text { iff } & r\left(S^{\prime}\right)=(r(S)+v) / k \\
\left(S^{\prime}, v\right)=\operatorname{POP}(S) & \text { iff } & r\left(S^{\prime}\right)=k r(S)-v
\end{array}
$$

Building Blocks for the Simulation, $k=2$ and $\Sigma=\{0,1\}$

- A trajectory starting at $\mathbf{x}=(x, 0), x \in[0,1]$ and ending at $\mathbf{x}^{\prime}=\left(x^{\prime}, 1\right)$ satisfies:
- $x^{\prime}=(x+1) / 2$ (PUSH 1$), x^{\prime}=x / 2$ (PUSH 0$)$ and $x^{\prime}=2 x-1 / 2$ (POP)
- In other words, $x=r(S)$ at the "input port" $(y=0)$ of an element, then $x^{\prime}=r\left(S^{\prime}\right)$ at the "output port" $(y=1)$ where S^{\prime} is the operation outcome.
- The POP element has two output ports which are selected according to the value of the top element popped

Simulation of PDAs by PCDs

- Put the appropriate element for each state and connect via "bands" that "carry" the stack value
- A PCD for the PDA defined by:
$q_{1}: S:=\operatorname{PuSh}(1, S) ;$ GOTO q_{2};
$q_{2}:(v, S):=\operatorname{POP}(S)$; If $v=1$ THEN GOTO q_{2} ELSE GOTO q_{1}

- Every PDA can be simulated by a 3-dimensional PCD system

Simulating 2PDAs

- Automata with 2 push-down stacks can simulate Turing machines
- We can represent the configuration of two stacks by a point in $[0,1]^{2}$ and build the corresponding gadgets, e.g. $\operatorname{PuSH}\left(S_{1}, 0\right)$

- Hence a straightforward realization of 2PDA in 4 dimensions
- With some considerable effort we can squeeze everything into 3 dimensions and conclude:
- The reachability problem for PCD systems in 3 dimensions is undecidable

Theoreticians go Wild

- Arithmetical hierarchy: the classes $\Sigma_{1}, \Sigma_{2}, \ldots$ and Π_{1}, Π_{2}, \ldots of sets of integers defined inductively:
- Σ_{1} consists of sets $P \subseteq N$ such that there is a Turing machine that halts on an input n iff $n \in P$
- The class Π_{i} consists of all the sets P such that $\bar{P} \in \Sigma_{i}$
- Σ_{i+1} is the class of all sets P defined as $P=\left\{n: \exists m\langle m, n\rangle \in P^{\prime}\right\}$ for some $P^{\prime} \in \Pi_{i}$, where \rangle is some computable pairing function
- The arithmetical hierarchy is infinite, satisfying the strict inclusions $\Pi_{i} \subset \Sigma_{i+1}$ and $\Sigma_{i} \subset \Pi_{i+1}$
- We show (with the help of Zeno paradox) how all the arithmetical hierarchy can be realized by PCDs

Recognition by PCDs

- PCD recognizer: $\widehat{\mathcal{H}}=\left(\mathbb{R}^{d}, f, I, r, \mathbf{x}^{\mathrm{A}}, \mathbf{x}^{\mathrm{R}}\right), \mathcal{H}=\left(\mathbb{R}^{d}, f\right)$ is a PCD
- $I=[0,1] \times\{0\}^{d-1}$ is a one-dimensional subset of X (the "input port")
- $r: N \rightarrow[0,1] \cap \mathcal{Q}$ is a recursive injective coding function
- $\mathbf{x}^{\mathrm{A}}, \mathbf{x}^{\mathrm{R}} \in \mathbb{R}^{d}-I$ are two distinct points (accepting and rejecting states)
- We assume that $f\left(\mathbf{x}^{\mathrm{A}}\right)=f\left(\mathbf{x}^{\mathrm{R}}\right)=0$
- $\widehat{\mathcal{H}}$ semi-recognizes $P \subseteq \mathbb{N}$ iff for every n, the trajectory starting at $(r(n), 0, \ldots, 0)$ can continue forever and it eventually reaches \mathbf{x}^{A} iff $n \in P$
- We say that $\hat{\mathcal{H}}$ (fully) recognizes P when, in addition, this trajectory reaches \mathbf{x}^{R} iff $n \notin P$
- Previous result: every Σ_{1} set P is semi-recognized by some 3-dimensional bounded PCD

Principal Lammata

- From a PCD that semi-recognizes P one can construct a (higher-dimensional) PCD that recognizes P
- From a PCD that recognizes P one can construct:

1. a PCD that semi-recognizes $\{x: \exists y\langle x, y\rangle \in P\}$
2. a PCD that recognizes \bar{P}.

- The last two are relatively-easy and trivial (respectively)
- The main idea of the first:

Gadgets used in the Construction

- Division by 2 :

- Projectivisation:

- Corollary: PCDs can realize the whole arithmetical hierarchy

Credits and Follow-ups

- Decidability : OM and A. Pnueli, Reachability Analysis of Planar Multi-Linear Systems, 1993
- Generalized by Asarin, Pace, Schneider and Yovine to planar differential inclusions (and implemented)
- Undecidability: E. Asarin and OM, On some Relations between Dynamical Systems and Transition Systems, 1994
- Numerous papers on decidability boundaries for linear hybrid automata (Henzinger et al)
- Some small open problems remain, e.g. M. Mahfoudh, B. Krogh and OM, On Control with Bounded Computational Resources, 2002
- Higher undecidability: E. Asarin and OM, Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy, 1995
- Studied extensively by O. Bournez

So What?

- Beyond the nice intellectual exercise (and a warm-up for those whose geometry and linear algebra are, at best, rusty) the results are rather disappointing
- Even for these systems, whose continuous dynamics is trivial we cannot answer anything
- How will we cope with "real" dynamics?
- We are asking the wrong questions, inspired by our discrete verification background
- In the continuous world having precise/exact answers is an oxymoron
- We should ask weaker, approximate questions on stronger systems with real differential equations

