
Reachability Analysis of Dynamical Systems
having Piecewise-Constant Derivatives

Eugene Asarin Oded Maler Amir Pnueli

CNRS - VERIMAG
Grenoble, France

1993-1995

Outline of Talk

I Some generalities on “linear” hybrid automata and PCD
systems

I Decidability of reachability problems in the plane

I Undecidability in dimension 3 and above by simulating
pushdown stacks

I Going higher in the arithmetical hierarchy

I So what?

A Motivating Example: Buffer Networks

I Consider a network of containers/buffers for water/data

I Channels can be switched on and off

I When a channel is on, its flow rate is a constant

I Each combination of open/close valves leads to a different
derivatives for the buffer levels, based on the difference
between their in- and outflows

x1

x2

c1

c2

c3

V1

V2

Open 1

Close 2 Close 2

Open 1

A B

C D

ẋ2 = −c3

ẋ1 = 0 ẋ1 = c1
ẋ2 = −c3

ẋ1 = c1 − c2
ẋ2 = c2 − c3

ẋ1 = −c2
ẋ2 = c2 − c3

Close 1

Close 1

Open 2 Open 2

“Linear” Hybrid Automata and PCD Systems

I A sub-class of hybrid automata

I Can be viewed as piecewise-trivial dynamical systems:
derivatives are constant in every control state (location) and
the evolution is along a straight line

I Transition guards (switching surface) and invariants (staying
conditions) are linear (hyperplanes, polytopes)

I Local continuous evolution needs no numerical analysis;
Computing the effect of time passage amounts to quantifier
elimination in linear algebra

I Investigated a lot by Henzinger et al. (HYTECH), currently
supported by the tool PHAVER (G. Frehse)

I PCD (piecewise-constant derivative): a sub-class of linear
hybrid automata closer in spirit to continuous dynamical
systems

PCD (Piecewise-Constant Derivatives) Systems

I Dynamical System: H = (X , f), X = Rd

I f : X → X defines differential equation d+x
dt = f (x)

I A trajectory of H starting at x0 ∈ X is ξ : R+ → X s.t.
I ξ(0) = x0

I f (ξ(t)) is defined for every t and is equal to the right
derivative of ξ(t)

I PCD: X is partitioned into a final number of polyhedra
(regions) and f is constant in each region

I Trajectories are thus broken lines

PCDs are Effective

I A description of a PCD system: {(P1, c1), . . . , (Pn, cn)}
I each Pi is a convex polyhedron (interesection of linear

inequalities) and ci is its corresponding derivative (slope)

I Effectiveness: given a PCD description and a rational point
x = ξ(0)

I There exists ε > 0 s.t. we can compute precisely x′ = ξ(∆) for
every ∆, 0 < ∆t < ε; x ′ = x + c ·∆

I Unlike arbitrary dynamical systems where you can only
approximate

Decision Problems for PCD

I Point-to-point reachability Reach(H, x, x′):

I Given: a PCD H and x, x′ ∈ X ,

I Are there a trajectory ξ and t ≥ 0 such that ξ(0) = x and
ξ(t) = x′?

I Region-to-region reachability R-Reach(H,P,P ′):

I Given: a PCD H and two polyhedral sets P,P ′ ⊆ X

I Are there two points x ∈ P and x′ ∈ P ′ such that
Reach(H, x, x′) ?

PCDs on the Plane

I Polyhedral partition of the plane into polygons/regions (P)

I Induced boundary elements: edges (e) and vertices (x)

I A kind of abstract finite alphabet to describe qualitative
behaviors as sequences of regions or edges

P2

P3 e3
e4

e5e7

x2

P1

x1

P5
P4

e2

e1

e6

x3

Orientation and Ordering of Boundaries
I Edges (and vertices) can be classified as entry and exit

according to the relation between the slope c and the the
vector e which defines the inequality

I Edge e below is exit for c1 and entry for c3

c2

c1

c3

e

I The whole boundary of a region can be decomposed into two
connected sets, entry In(P) and exit Out(p)

I A linear order can be imposed on each of them:

e1

e2

e4

Out(P) x1

c

x2
e3

ĉ

In(P)

θ(x2)

θ(x1)

A Fundamental Property of Planar Systems

I Let ξ be any trajectory that intersects Out(P) in three
consecutive points, x1, x2 and x3. Then: x1 � x2 implies
x2 � x3

x3

x′3

x1 x′2

l x2y

x3

x′3

x1

ly

x′2

x2

I The figure shows why it cannot be otherwise as the trajectory
must intersect itself

I Jordan’s theorem, not true in 3 dimensions

Spirals

I Consequently all repetitive behaviors are spirals

Contracting: Expanding:

l

x1

x2

y

x1

ly

x2

I The sequences of intersections with an edge is monotonic and
you cannot return to an edge you have “abandoned”

I Since there are finitely many edges we can conclude:

I For every trajectory, the sequence of edges it crosses is
ultimately-periodic: e1, . . . , ei , (ei+1, . . . , ei+j)

ω

Representation (Parametrization)

I A representation scheme for an edge e is a pair of vectors v,u
and an interval [l , h] such that e = {v + λu : λ ∈ [l , h]}

l

h

v u

λ e

I Consider and entry edge e with (u, v) representation and exit
edge e ′ with (u′, v′) representation

I The corresponding successor function is defined as
fe,e′(λ) = λ′ iff by entering P at x = (e, λ), you exit as
x′ = (e ′, λ′)

v

v′

u

λ

e′

e

λ′
u′

Successor Function is Linear

I Successor function is well-defined, computable and linear:
λ′ = Ae,e′λ+ Be,e′ where

Ae,e′ =
c · a
c · a′

and Be,e′ =
ĉ · (v − v′)

c · a′

I Here c is the slope and a and a′ are the normals to e and e ′

I (Some basic linear algebra, quantifier elimination...)

I Predecessor:

λ =
λ′ − Be,e′

Ae,e′

I Moreover: if e ∈ In(P) and e ′ ∈ Out(P) then Ae,e′ > 0

Signature Successor Function

I A cyclic signature: a sequence σ = e1, . . . , ek of edges s.t.
e1 = ek

e λ

λ′

I The function fσ from e1 to itself represents the effect on a
point going through a cycle (Poincare map)

I In our case it is linear fσ(λ) = Aσλ+ Bσ (composition of
linear partial functions)

I Aσ = Ae1,e2 · Ae2,e3 . . .Aek−1,ek

I Bσ = (· · · ((Be1,e2 · Ae2,e3 + Be2,e3) · Ae3,e4 + Be3,e4) · · ·) ·
Aek−1,ek

+ Bek−1,ek

Intersections of a Spiral and an Edge

µ0
µ1

µ∗

I µi+1 = Aσ · µi + Bσ

I µn =

 µ0 + Bσ · n if Aσ = 1

µ0 · An
σ + Bσ ·

An
σ − 1

Aσ − 1
otherwise

I We can compute µ∗ = limn→∞µn

The Limit of the Sequence

Case Limit

Aσ = 1,Bσ = 0 µ0

Aσ = 1, |Bσ| > 0 ∞
Aσ = 1, |Bσ| < 0 −∞

Aσ < 1
Bσ

1− Aσ

Aσ > 1, µ0 = Bσ
1−Aσ

µ0

Aσ > 1, µ0 >
Bσ

1−Aσ
∞

Aσ > 1, µ0 <
Bσ

1−Aσ
−∞

Main Positive Result

I An algorithm for deciding Reach(H, x, x′):

I Start “simulating” forward from x

I When you encounter a cycle, compute its limit points on all
edges and determine whether it is the ultimate cycle (limits on
each edge stays inside edge range)

I If not, continue simulating until you leave it (in a finite
number of iterations)

I If it is the ultimate cycle, and x′ is beyond the limit, the
answer is “no”

I If x′ is before the limit then continue simulation until you
reach x′ (“yes”) or bypass it (“no”)

Region-to-Region Reachability (Sketch)
I Can be reduced to edge-to-edge reachability
I An entry edge interval splits into finitely many exits edges

e3x1
e2

e1

x2

l
h

e

I Can build a successor tree and compute a limit along each
branch

e1
l1 u1

e2 l2 u2

e3 l3 u3

l4 u4

e4

l′1 u′1

Can we go to Higher Dimensions?

I One one hand: calculating successors can be generalized to
higher dimensions (more book-keeping though)

I On the other: no Jordan theorem so trajectories are not
necessary ultimately-periodic (Chaos et co.)

I We show undecidability for 3 dimensions by showing that
PCDs can simulate any TM (2PDA) and hence deciding
reachability for PCDs solves the halting problem

I Interesting “model of computation”

Simulation of Finite-State Automata

I Every finite deterministic automaton can be simulated by a
3-dimensional PCD system

q1 q2 q3

q1 q2 q3

z

z = 0

z = 1

z = 2

z = 3

(0, 0, 0)

y

x

Region Defining conditions c = (ẋ, ẏ, ż)
F (z = 0) ∧ (y < 1) (0, 1, 0)
Uij (x = i) ∧ (y = 1) ∧ (z < j) (0, 0, 1)

Bij (z = j) ∧ (x + (j − i)y = j) ∧ (y > 0) (j − i,−1, 0)

D (z > 0) ∧ (y = 0) (0, 0,−1)

I Regions Uij and Bij are defined for every i , j such that
δ(qi) = qj

Push-down Automata (PDA)

I Pushdown stack: an element of Σ∗0ω.

I Two operations:

push: Σ× Σω → Σω pop: Σω → Σ× Σω

push(v , S) = v · S pop(v · S) = (v ,S)

I PDA: an infinite transition system A = (Q × Σ∗0ω, δ)

I Q is finite and δ is defined using a finite collection of
statements of one of the following forms:

qi : S :=push(v ,S);
goto qj

qi : (v ,S) :=pop(S);
if v = 0 goto qi0 ;
. . .
if v = k − 1 goto qik−1

;

Encoding Stacks into [0, 1]

I Contents of a stack S = s1s2 . . . where s1 is the top of the
stack

I Enconding using k-ary representation r : Σω → [0, 1]

r(S) =
∞∑
i=1

sik
−i

I Stack operations have arithmetic counterparts:

S ′ = push(v ,S) iff r(S ′) = (r(S) + v)/k
(S ′, v) = pop(S) iff r(S ′) = kr(S)− v

Building Blocks for the Simulation, k = 2 and Σ = {0, 1}

0

1/2 3/21/2 1/2 −1/2

1 0 1 0 1/2 1

push 1 push 0 pop

I A trajectory starting at x = (x , 0), x ∈ [0, 1] and ending at
x′ = (x ′, 1) satisfies:

I x ′ = (x + 1)/2 (push 1), x ′ = x/2 (push 0) and
x ′ = 2x − 1/2 (pop)

I In other words, x = r(S) at the “input port” (y = 0) of an
element, then x ′ = r(S ′) at the “output port” (y = 1) where
S ′ is the operation outcome.

I The pop element has two output ports which are selected
according to the value of the top element popped

Simulation of PDAs by PCDs

I Put the appropriate element for each state and connect via
“bands” that “carry” the stack value

I A PCD for the PDA defined by:

q1 : S :=push(1, S); goto q2;
q2 : (v , S) :=pop(S); If v = 1 then goto q2 else goto q1

z

(0, 0, 0) q1
q2

x

y

I Every PDA can be simulated by a 3-dimensional PCD system

Simulating 2PDAs

I Automata with 2 push-down stacks can simulate Turing
machines

I We can represent the configuration of two stacks by a point in
[0, 1]2 and build the corresponding gadgets, e.g. push(S1, 0)

yx2

x1

(x1, x2)

(x′1, x2)

I Hence a straightforward realization of 2PDA in 4 dimensions

I With some considerable effort we can squeeze everything into
3 dimensions and conclude:

I The reachability problem for PCD systems in 3 dimensions is
undecidable

Theoreticians go Wild

I Arithmetical hierarchy: the classes Σ1,Σ2, . . . and Π1,Π2, . . .
of sets of integers defined inductively:

I Σ1 consists of sets P ⊆ IN such that there is a Turing
machine that halts on an input n iff n ∈ P

I The class Πi consists of all the sets P such that P ∈ Σi

I Σi+1 is the class of all sets P defined as
P = {n : ∃m 〈m, n〉 ∈ P ′} for some P ′ ∈ Πi , where 〈〉 is some
computable pairing function

I The arithmetical hierarchy is infinite, satisfying the strict
inclusions Πi ⊂ Σi+1 and Σi ⊂ Πi+1

I We show (with the help of Zeno paradox) how all the
arithmetical hierarchy can be realized by PCDs

Recognition by PCDs

I PCD recognizer: Ĥ = (Rd , f , I , r , xa, xr), H = (Rd , f) is a
PCD

I I = [0, 1]× {0}d−1 is a one-dimensional subset of X (the
“input port”)

I r : IN → [0, 1] ∩Q is a recursive injective coding function

I xa, xr ∈ Rd − I are two distinct points (accepting and
rejecting states)

I We assume that f (xa) = f (xr) = 0

I Ĥ semi-recognizes P ⊆ N iff for every n, the trajectory
starting at (r(n), 0, . . . , 0) can continue forever and it
eventually reaches xa iff n ∈ P

I We say that Ĥ (fully) recognizes P when, in addition, this
trajectory reaches xr iff n 6∈ P

I Previous result: every Σ1 set P is semi-recognized by some
3-dimensional bounded PCD

Principal Lammata

I From a PCD that semi-recognizes P one can construct a
(higher-dimensional) PCD that recognizes P

I From a PCD that recognizes P one can construct:

1. a PCD that semi-recognizes {x : ∃y 〈x , y〉 ∈ P}
2. a PCD that recognizes P.

I The last two are relatively-easy and trivial (respectively)

I The main idea of the first:

x1

x2

Gadgets used in the Construction
I Division by 2:

y

x

B

C D

A

I Projectivisation:

I Corollary: PCDs can realize the whole arithmetical hierarchy

Credits and Follow-ups

I Decidability : OM and A. Pnueli, Reachability Analysis of
Planar Multi-Linear Systems, 1993

I Generalized by Asarin, Pace, Schneider and Yovine to planar
differential inclusions (and implemented)

I Undecidability: E. Asarin and OM, On some Relations
between Dynamical Systems and Transition Systems, 1994

I Numerous papers on decidability boundaries for linear hybrid
automata (Henzinger et al)

I Some small open problems remain, e.g. M. Mahfoudh,
B. Krogh and OM, On Control with Bounded Computational
Resources, 2002

I Higher undecidability: E. Asarin and OM, Achilles and the
Tortoise Climbing Up the Arithmetical Hierarchy, 1995

I Studied extensively by O. Bournez

So What?

I Beyond the nice intellectual exercise (and a warm-up for those
whose geometry and linear algebra are, at best, rusty) the
results are rather disappointing

I Even for these systems, whose continuous dynamics is trivial
we cannot answer anything

I How will we cope with “real” dynamics?

I We are asking the wrong questions, inspired by our discrete
verification background

I In the continuous world having precise/exact answers is an
oxymoron

I We should ask weaker, approximate questions on stronger
systems with real differential equations

