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Outline of Talk

I Some generalities on “linear” hybrid automata and PCD
systems

I Decidability of reachability problems in the plane

I Undecidability in dimension 3 and above by simulating
pushdown stacks

I Going higher in the arithmetical hierarchy

I So what?



A Motivating Example: Buffer Networks

I Consider a network of containers/buffers for water/data

I Channels can be switched on and off

I When a channel is on, its flow rate is a constant

I Each combination of open/close valves leads to a different
derivatives for the buffer levels, based on the difference
between their in- and outflows
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ẋ1 = −c2
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“Linear” Hybrid Automata and PCD Systems

I A sub-class of hybrid automata

I Can be viewed as piecewise-trivial dynamical systems:
derivatives are constant in every control state (location) and
the evolution is along a straight line

I Transition guards (switching surface) and invariants (staying
conditions) are linear (hyperplanes, polytopes)

I Local continuous evolution needs no numerical analysis;
Computing the effect of time passage amounts to quantifier
elimination in linear algebra

I Investigated a lot by Henzinger et al. (HYTECH), currently
supported by the tool PHAVER (G. Frehse)

I PCD (piecewise-constant derivative): a sub-class of linear
hybrid automata closer in spirit to continuous dynamical
systems



PCD (Piecewise-Constant Derivatives) Systems

I Dynamical System: H = (X , f ), X = Rd

I f : X → X defines differential equation d+x
dt = f (x)

I A trajectory of H starting at x0 ∈ X is ξ : R+ → X s.t.
I ξ(0) = x0

I f (ξ(t)) is defined for every t and is equal to the right
derivative of ξ(t)

I PCD: X is partitioned into a final number of polyhedra
(regions) and f is constant in each region

I Trajectories are thus broken lines



PCDs are Effective

I A description of a PCD system: {(P1, c1), . . . , (Pn, cn)}
I each Pi is a convex polyhedron (interesection of linear

inequalities) and ci is its corresponding derivative (slope)

I Effectiveness: given a PCD description and a rational point
x = ξ(0)

I There exists ε > 0 s.t. we can compute precisely x′ = ξ(∆) for
every ∆, 0 < ∆t < ε; x ′ = x + c ·∆

I Unlike arbitrary dynamical systems where you can only
approximate



Decision Problems for PCD

I Point-to-point reachability Reach(H, x, x′):

I Given: a PCD H and x, x′ ∈ X ,

I Are there a trajectory ξ and t ≥ 0 such that ξ(0) = x and
ξ(t) = x′?

I Region-to-region reachability R-Reach(H,P,P ′):

I Given: a PCD H and two polyhedral sets P,P ′ ⊆ X

I Are there two points x ∈ P and x′ ∈ P ′ such that
Reach(H, x, x′) ?



PCDs on the Plane

I Polyhedral partition of the plane into polygons/regions (P)

I Induced boundary elements: edges (e) and vertices (x)

I A kind of abstract finite alphabet to describe qualitative
behaviors as sequences of regions or edges
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Orientation and Ordering of Boundaries
I Edges (and vertices) can be classified as entry and exit

according to the relation between the slope c and the the
vector e which defines the inequality

I Edge e below is exit for c1 and entry for c3
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I The whole boundary of a region can be decomposed into two
connected sets, entry In(P) and exit Out(p)

I A linear order can be imposed on each of them:
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ĉ

In(P)

θ(x2)

θ(x1)



A Fundamental Property of Planar Systems

I Let ξ be any trajectory that intersects Out(P) in three
consecutive points, x1, x2 and x3. Then: x1 � x2 implies
x2 � x3
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I The figure shows why it cannot be otherwise as the trajectory
must intersect itself

I Jordan’s theorem, not true in 3 dimensions



Spirals

I Consequently all repetitive behaviors are spirals

Contracting: Expanding:
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I The sequences of intersections with an edge is monotonic and
you cannot return to an edge you have “abandoned”

I Since there are finitely many edges we can conclude:

I For every trajectory, the sequence of edges it crosses is
ultimately-periodic: e1, . . . , ei , (ei+1, . . . , ei+j)

ω



Representation (Parametrization)

I A representation scheme for an edge e is a pair of vectors v,u
and an interval [l , h] such that e = {v + λu : λ ∈ [l , h]}
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I Consider and entry edge e with (u, v) representation and exit
edge e ′ with (u′, v′) representation

I The corresponding successor function is defined as
fe,e′(λ) = λ′ iff by entering P at x = (e, λ), you exit as
x′ = (e ′, λ′)
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Successor Function is Linear

I Successor function is well-defined, computable and linear:
λ′ = Ae,e′λ+ Be,e′ where

Ae,e′ =
c · a
c · a′

and Be,e′ =
ĉ · (v − v′)

c · a′

I Here c is the slope and a and a′ are the normals to e and e ′

I (Some basic linear algebra, quantifier elimination...)

I Predecessor:

λ =
λ′ − Be,e′

Ae,e′

I Moreover: if e ∈ In(P) and e ′ ∈ Out(P) then Ae,e′ > 0



Signature Successor Function

I A cyclic signature: a sequence σ = e1, . . . , ek of edges s.t.
e1 = ek

e λ

λ′

I The function fσ from e1 to itself represents the effect on a
point going through a cycle (Poincare map)

I In our case it is linear fσ(λ) = Aσλ+ Bσ (composition of
linear partial functions)

I Aσ = Ae1,e2 · Ae2,e3 . . .Aek−1,ek

I Bσ = (· · · ((Be1,e2 · Ae2,e3 + Be2,e3) · Ae3,e4 + Be3,e4) · · · ) ·
Aek−1,ek

+ Bek−1,ek



Intersections of a Spiral and an Edge
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I µi+1 = Aσ · µi + Bσ

I µn =

 µ0 + Bσ · n if Aσ = 1

µ0 · An
σ + Bσ ·

An
σ − 1
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I We can compute µ∗ = limn→∞µn



The Limit of the Sequence

Case Limit
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Main Positive Result

I An algorithm for deciding Reach(H, x, x′):

I Start “simulating” forward from x

I When you encounter a cycle, compute its limit points on all
edges and determine whether it is the ultimate cycle (limits on
each edge stays inside edge range)

I If not, continue simulating until you leave it (in a finite
number of iterations)

I If it is the ultimate cycle, and x′ is beyond the limit, the
answer is “no”

I If x′ is before the limit then continue simulation until you
reach x′ (“yes”) or bypass it (“no”)



Region-to-Region Reachability (Sketch)
I Can be reduced to edge-to-edge reachability
I An entry edge interval splits into finitely many exits edges
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I Can build a successor tree and compute a limit along each
branch
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Can we go to Higher Dimensions?

I One one hand: calculating successors can be generalized to
higher dimensions (more book-keeping though)

I On the other: no Jordan theorem so trajectories are not
necessary ultimately-periodic (Chaos et co.)

I We show undecidability for 3 dimensions by showing that
PCDs can simulate any TM (2PDA) and hence deciding
reachability for PCDs solves the halting problem

I Interesting “model of computation”



Simulation of Finite-State Automata

I Every finite deterministic automaton can be simulated by a
3-dimensional PCD system
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Region Defining conditions c = (ẋ, ẏ, ż)
F (z = 0) ∧ (y < 1) (0, 1, 0)
Uij (x = i) ∧ (y = 1) ∧ (z < j) (0, 0, 1)

Bij (z = j) ∧ (x + (j − i)y = j) ∧ (y > 0) (j − i,−1, 0)

D (z > 0) ∧ (y = 0) (0, 0,−1)

I Regions Uij and Bij are defined for every i , j such that
δ(qi ) = qj



Push-down Automata (PDA)

I Pushdown stack: an element of Σ∗0ω.

I Two operations:

push: Σ× Σω → Σω pop: Σω → Σ× Σω

push(v , S) = v · S pop(v · S) = (v ,S)

I PDA: an infinite transition system A = (Q × Σ∗0ω, δ)

I Q is finite and δ is defined using a finite collection of
statements of one of the following forms:

qi : S :=push(v ,S);
goto qj

qi : (v ,S) :=pop(S);
if v = 0 goto qi0 ;
. . .
if v = k − 1 goto qik−1

;



Encoding Stacks into [0, 1]

I Contents of a stack S = s1s2 . . . where s1 is the top of the
stack

I Enconding using k-ary representation r : Σω → [0, 1]

r(S) =
∞∑
i=1

sik
−i

I Stack operations have arithmetic counterparts:

S ′ = push(v ,S) iff r(S ′) = (r(S) + v)/k
(S ′, v) = pop(S) iff r(S ′) = kr(S)− v



Building Blocks for the Simulation, k = 2 and Σ = {0, 1}
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I A trajectory starting at x = (x , 0), x ∈ [0, 1] and ending at
x′ = (x ′, 1) satisfies:

I x ′ = (x + 1)/2 (push 1), x ′ = x/2 (push 0) and
x ′ = 2x − 1/2 (pop)

I In other words, x = r(S) at the “input port” (y = 0) of an
element, then x ′ = r(S ′) at the “output port” (y = 1) where
S ′ is the operation outcome.

I The pop element has two output ports which are selected
according to the value of the top element popped



Simulation of PDAs by PCDs

I Put the appropriate element for each state and connect via
“bands” that “carry” the stack value

I A PCD for the PDA defined by:

q1 : S :=push(1, S); goto q2;
q2 : (v , S) :=pop(S); If v = 1 then goto q2 else goto q1

z

(0, 0, 0) q1
q2

x

y

I Every PDA can be simulated by a 3-dimensional PCD system



Simulating 2PDAs

I Automata with 2 push-down stacks can simulate Turing
machines

I We can represent the configuration of two stacks by a point in
[0, 1]2 and build the corresponding gadgets, e.g. push(S1, 0)

yx2

x1

(x1, x2)

(x′1, x2)

I Hence a straightforward realization of 2PDA in 4 dimensions

I With some considerable effort we can squeeze everything into
3 dimensions and conclude:

I The reachability problem for PCD systems in 3 dimensions is
undecidable



Theoreticians go Wild

I Arithmetical hierarchy: the classes Σ1,Σ2, . . . and Π1,Π2, . . .
of sets of integers defined inductively:

I Σ1 consists of sets P ⊆ IN such that there is a Turing
machine that halts on an input n iff n ∈ P

I The class Πi consists of all the sets P such that P ∈ Σi

I Σi+1 is the class of all sets P defined as
P = {n : ∃m 〈m, n〉 ∈ P ′} for some P ′ ∈ Πi , where 〈〉 is some
computable pairing function

I The arithmetical hierarchy is infinite, satisfying the strict
inclusions Πi ⊂ Σi+1 and Σi ⊂ Πi+1

I We show (with the help of Zeno paradox) how all the
arithmetical hierarchy can be realized by PCDs



Recognition by PCDs

I PCD recognizer: Ĥ = (Rd , f , I , r , xa, xr), H = (Rd , f ) is a
PCD

I I = [0, 1]× {0}d−1 is a one-dimensional subset of X (the
“input port”)

I r : IN → [0, 1] ∩Q is a recursive injective coding function

I xa, xr ∈ Rd − I are two distinct points (accepting and
rejecting states)

I We assume that f (xa) = f (xr) = 0

I Ĥ semi-recognizes P ⊆ N iff for every n, the trajectory
starting at (r(n), 0, . . . , 0) can continue forever and it
eventually reaches xa iff n ∈ P

I We say that Ĥ (fully) recognizes P when, in addition, this
trajectory reaches xr iff n 6∈ P

I Previous result: every Σ1 set P is semi-recognized by some
3-dimensional bounded PCD



Principal Lammata

I From a PCD that semi-recognizes P one can construct a
(higher-dimensional) PCD that recognizes P

I From a PCD that recognizes P one can construct:

1. a PCD that semi-recognizes {x : ∃y 〈x , y〉 ∈ P}
2. a PCD that recognizes P.

I The last two are relatively-easy and trivial (respectively)

I The main idea of the first:

x1

x2



Gadgets used in the Construction
I Division by 2:
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I Projectivisation:

I Corollary: PCDs can realize the whole arithmetical hierarchy
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So What?

I Beyond the nice intellectual exercise (and a warm-up for those
whose geometry and linear algebra are, at best, rusty) the
results are rather disappointing

I Even for these systems, whose continuous dynamics is trivial
we cannot answer anything

I How will we cope with “real” dynamics?

I We are asking the wrong questions, inspired by our discrete
verification background

I In the continuous world having precise/exact answers is an
oxymoron

I We should ask weaker, approximate questions on stronger
systems with real differential equations


