Omega Automata: Minimization and Learning ${ }^{1}$

Oded Maler

CNRS - VERIMAG
Grenoble, France

2007
${ }^{1}$ Joint work with A. Pnueli, late 80s

Summary

- Machine learning in general and of formal languages in particular
- States, minimization and learning in finitary automata
- Basics of ω-automata
- Why minimization/learning does not work for ω-languages in the general case
- A solution for the $\mathbf{B} \cap \overline{\mathbf{B}}$ subclass
- Toward a general solution

Machine Learning

- Given a sample consisting of a set of pairs $(x, f(x))$ for some unknown function f
- Find a (representation of) a function $f^{\prime}: X \rightarrow Y$ which is compatible with the sample

Machine Learning

- Given a sample consisting of a set of pairs $(x, f(x))$ for some unknown function f
- Find a (representation of) a function $f^{\prime}: X \rightarrow Y$ which is compatible with the sample
- Many issues and variations:
- Validity of inductive inference
- Static or dynamic sampling
- Passive or active sampling - can we influence the choice of examples
- Evaluation criteria: identification in the limit, probabilities, etc.

Learning Formal Languages

- For sets of sequences (languages) $L \subseteq \Sigma^{*}$, we want to learn the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$
- The sample elements are of the form $\left(u, \chi_{L}(u)\right)$
- The goal is to find a representation (say, automaton) compatible with the sample

Learning Formal Languages

- For sets of sequences (languages) $L \subseteq \Sigma^{*}$, we want to learn the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$
- The sample elements are of the form $\left(u, \chi_{L}(u)\right)$
- The goal is to find a representation (say, automaton) compatible with the sample
- The problem was first posed in Moore 56: Gedanken experiments on sequential machines
- It was solved in Gold 72: System identification via state characterization
- Various complexity issues concerning the number of examples as a function of the number of states (Gold, Trakhtenbrot and Barzdins, Angluin)

Regular Sets and their Syntactic Congruences

- With every $L \subseteq \Sigma^{*}$ we can define the following equivalence relation

$$
u \sim_{L} v \text { iff } \forall w \in \Sigma^{*} u \cdot w \in L \Longleftrightarrow v \cdot w \in L
$$

- Two prefixes are equivalent if they "accept" the same suffixes

Regular Sets and their Syntactic Congruences

- With every $L \subseteq \Sigma^{*}$ we can define the following equivalence relation

$$
u \sim_{L} v \text { iff } \forall w \in \Sigma^{*} u \cdot w \in L \Longleftrightarrow v \cdot w \in L
$$

- Two prefixes are equivalent if they "accept" the same suffixes
- This relation is a right-congruence with respect to concatenation: $u \sim v$ implies $u \cdot w \sim v \cdot w$ for all $u, v, w \in \Sigma^{*}$

Regular Sets and their Syntactic Congruences

- With every $L \subseteq \Sigma^{*}$ we can define the following equivalence relation

$$
u \sim_{L} v \text { iff } \forall w \in \Sigma^{*} u \cdot w \in L \Longleftrightarrow v \cdot w \in L
$$

- Two prefixes are equivalent if they "accept" the same suffixes
- This relation is a right-congruence with respect to concatenation: $u \sim v$ implies $u \cdot w \sim v \cdot w$ for all $u, v, w \in \Sigma^{*}$
- Myhill-Nerode theorem: a language L is accepted by a finite automaton iff \sim_{L} has finitely many congruence classes
- This relation is sometimes called the syntactic congruence associated with L

The minimal Automaton

- Let Σ^{*} / \sim be the quotient of Σ^{*} by \sim, that is the set of its equivalence classes and let $[u]$ denote the equivalence class of u
- The minimal automaton for L is $\mathcal{A}_{L}=\left(\Sigma, Q, q_{0}, \delta, F\right)$ where
- The states are the \sim-classes: $Q=\Sigma^{*} / \sim$
- Ther initial state is the class of the empty word: $\boldsymbol{q}_{0}=[\varepsilon]$
- Transition function: $\delta([u], a)=[u \cdot a]$
- Accepting states are those that accept the empty word: $F=\{[u]: u \cdot \varepsilon \in L\}$

The minimal Automaton

- Let Σ^{*} / \sim be the quotient of Σ^{*} by \sim, that is the set of its equivalence classes and let [u] denote the equivalence class of u
- The minimal automaton for L is $\mathcal{A}_{L}=\left(\Sigma, Q, q_{0}, \delta, F\right)$ where
- The states are the \sim-classes: $Q=\Sigma^{*} / \sim$
- Ther initial state is the class of the empty word: $q_{0}=[\varepsilon]$
- Transition function: $\delta([u], a)=[u \cdot a]$
- Accepting states are those that accept the empty word: $F=\{[u]: u \cdot \varepsilon \in L\}$
- This is canonical representation of L based on its I/O semantics
- \mathcal{A}_{L} is homomorphic to any other automaton accepting L

Observation Tables (Gold 1972)

- Given a language L, imagine an infinite two-dimensional table
- The rows of the table are indexed by all elements of Σ^{*}
- The columns of the table are indexed by all elements of Σ^{*}
- Each entry u, v in the table indicates whether $u \cdot v \in L$ (whether after reading prefix u we accept v)

Observation Tables (Gold 1972)

- Given a language L, imagine an infinite two-dimensional table
- The rows of the table are indexed by all elements of Σ^{*}
- The columns of the table are indexed by all elements of Σ^{*}
- Each entry u, v in the table indicates whether $u \cdot v \in L$ (whether after reading prefix u we accept v)
- For finite automata, according to Myhill-Nerode, there will be only finitely-many distinct rows (and columns)
- It is sufficient to use tables over $\Sigma^{n} \times \Sigma^{n}$

Example

	ε	a	b	$a a$	$a b$	$b a$	$b b$	\cdots
ε	-	-	-	-	+	-	-	\cdots
a	-	-	+	-	-	+	-	\cdots
b	-	-	-	-	+	-	-	\cdots
$a a$	-	-	-	-	+	-	-	\cdots
$a b$	+	+	-	+	-	-	+	\ldots
$b a$	-	-	+	-	-	+	-	\ldots
$b b$	-	-	-	-	+	-	-	\ldots
\cdots								
$a b a$	+	+	-	+	-	-	+	\ldots
$a b b$	-	-	+	-	-	+	-	\ldots
\cdots								

$\varepsilon \sim b \sim a a \quad a \sim b a \sim a b b \quad a b \sim a b a$

A Sufficient Sample to Characterize the Automaton

		E		
		ε	a	b
S	ε	-	-	-
	a	-	-	+
	$a b$	+	+	-
$S \cdot \Sigma$	b	-	-	-
	$a a$	-	-	-
	$a b a$	+	+	-
	$a b b$	-	-	+

A Sufficient Sample to Characterize the Automaton

		E		
		ε	a	b
S	ε	-	-	-
	a	-	-	+
	$a b$	+	+	-
$S \cdot \Sigma$	b	-	-	-
	$a a$	-	-	-
	$a b a$	+	+	-
	$a b b$	-	-	+

- The states of the canonical automaton are $S=\{[\varepsilon],[a]$ and [ab]\}

A Sufficient Sample to Characterize the Automaton

		E		
		ε	a	b
S	ε	-	-	-
	a	-	-	+
	$a b$	+	+	-
$S \cdot \Sigma$	b	-	-	-
	$a a$	-	-	-
	$a b a$	+	+	-
	$a b b$	-	-	+

- The states of the canonical automaton are $S=\{[\varepsilon],[a]$ and [ab]\}
- The words/paths correspond to a spanning tree
- Elements of $S \cdot \Sigma-S$ correspond to cross- and back-edges in the spanning tree

Angluin's L* Algorithm

- An incremental algorithm to construct the table based on two sources of information:
- Membership query $\operatorname{Member}(u)$? where the learner asks whether $u \in L$
- Equivalence query $\operatorname{Equiv}(\mathcal{A})$ where the learner asks whether automaton \mathcal{A} is the (minimal) automaton for L
- The answer is either "yes" or a counter-example

Angluin's L* Algorithm

- An incremental algorithm to construct the table based on two sources of information:
- Membership query $\operatorname{Member}(u)$? where the learner asks whether $u \in L$
- Equivalence query $\operatorname{Equiv}(\mathcal{A})$ where the learner asks whether automaton \mathcal{A} is the (minimal) automaton for L
- The answer is either "yes" or a counter-example
- The learner asks membership queries until it can build an automaton

Angluin's L* Algorithm

- An incremental algorithm to construct the table based on two sources of information:
- Membership query $\operatorname{Member}(u)$? where the learner asks whether $u \in L$
- Equivalence query $\operatorname{Equiv}(\mathcal{A})$ where the learner asks whether automaton \mathcal{A} is the (minimal) automaton for L
- The answer is either "yes" or a counter-example
- The learner asks membership queries until it can build an automaton
- Then it asks an equivalence query and if there is a counter-example it adds its suffixes to the columns, thus discovering new states and so on

Angluin's L* Algorithm

- An incremental algorithm to construct the table based on two sources of information:
- Membership query $\operatorname{Member}(u)$? where the learner asks whether $u \in L$
- Equivalence query $\operatorname{Equiv}(\mathcal{A})$ where the learner asks whether automaton \mathcal{A} is the (minimal) automaton for L
- The answer is either "yes" or a counter-example
- The learner asks membership queries until it can build an automaton
- Then it asks an equivalence query and if there is a counter-example it adds its suffixes to the columns, thus discovering new states and so on
- Polynomial in the number of states

ω-Languages

- Let Σ^{ω} be the set of all infinite sequences over Σ
- An ω-language is a subset $L \subseteq \Sigma^{\omega}$
- The ω-regular sets can be written as a finite union of sets of the form $U \cdot V^{\omega}$ with U and V finitary regular sets
- Every non-empty ω-regular set contains an ultimately-periodic sequence of the form $u \cdot v^{\omega}$

Acceptance of ω-Languages by ω-Automata

- Consider a deterministic automaton (Σ, Q, δ, q_{0})
- When an infinite word u is read by the automaton it induces an infinite run, an infinite sequence of states
- This run is summarized by $\operatorname{Inf}(u)$, the set of states visited infinitely-often by the run

Acceptance of ω-Languages by ω-Automata

- Consider a deterministic automaton (Σ, Q, δ, q_{0})
- When an infinite word u is read by the automaton it induces an infinite run, an infinite sequence of states
- This run is summarized by $\operatorname{Inf}(u)$, the set of states visited infinitely-often by the run
- Muller acceptance condition: a set of subsets $\mathcal{F} \subseteq 2^{Q}$
- An infinite word u is accepted if $\operatorname{Inf}(u)=F \in \mathcal{F}$

Subclasses of ω-Regular Sets

- If we restrict the structure of the accepting subsets \mathcal{F} we obtain interesting subclasses of languages
- For example, the class B of languages accepted by deterministic Buchi automata
- Here we define a set F of accepting states and u is accepted if $\operatorname{lnf}(u) \cap F \neq \emptyset$
- This amounts to saying that \mathcal{F} consists of all elements of 2^{Q} that contain elements of $F(\mathcal{F}$ is upward closed)

Subclasses of ω-Regular Sets

- If we restrict the structure of the accepting subsets \mathcal{F} we obtain interesting subclasses of languages
- For example, the class B of languages accepted by deterministic Buchi automata
- Here we define a set F of accepting states and u is accepted if $\operatorname{lnf}(u) \cap F \neq \emptyset$
- This amounts to saying that \mathcal{F} consists of all elements of 2^{Q} that contain elements of F (\mathcal{F} is upward closed)
- An infinite word u is in the complement \bar{L} if $\operatorname{Inf}(u) \cap F=\emptyset$ or equivalently $\operatorname{Inf}(u) \subseteq Q-F$
- This is called co-Buchi condition and the class is denoted by $\overline{\mathbf{B}}$

The Class $\mathbf{B} \cap \overline{\mathbf{B}}$

- Languages that belong to both classes can be accepted by automata whose accepting set \mathcal{F} admits a special structure
- In such automata, all cycles that belong to the same SCC are either accepting or rejecting

The Class $\mathbf{B} \cap \overline{\mathbf{B}}$

- Languages that belong to both classes can be accepted by automata whose accepting set \mathcal{F} admits a special structure
- In such automata, all cycles that belong to the same SCC are either accepting or rejecting

- $\operatorname{lnf}(u) \cap F \neq \emptyset$ iff $\operatorname{lnf}(u) \cap Q-F=\emptyset$

Learning ω-Regular Sets

- First problem: how do you present examples which are infinite sequences?
- Solution: use ultimately-periodic words $u \cdot v^{\omega}$

Learning ω-Regular Sets

- First problem: how do you present examples which are infinite sequences?
- Solution: use ultimately-periodic words $u \cdot v^{\omega}$
- My first lemma in life: if $L \neq L^{\prime}$ then there is $\alpha=u \cdot v^{\omega}$ that distinguishes between L and L^{\prime}

Learning ω-Regular Sets

- First problem: how do you present examples which are infinite sequences?
- Solution: use ultimately-periodic words $u \cdot v^{\omega}$
- My first lemma in life: if $L \neq L^{\prime}$ then there is $\alpha=u \cdot v^{\omega}$ that distinguishes between L and L^{\prime}
- So now we can think of building tables where rows are words and columns are (ultimately-periodic) ω-words and entries tell us whether $u \cdot \alpha \in L$
- But it is not that simple

The Problem

- Consider the language $L=(0+1)^{*} \cdot 1^{\omega}$
- The observation table for this language looks like this

	0^{ω}	1^{ω}	$0 \cdot 1^{\omega}$	$1 \cdot 0^{\omega}$	$(01)^{\omega}$
ε	-	+	+	-	-
0	-	+	+	-	-
1	-	+	+	-	-

The Problem

- Consider the language $L=(0+1)^{*} \cdot 1^{\omega}$
- The observation table for this language looks like this

	0^{ω}	1^{ω}	$0 \cdot 1^{\omega}$	$1 \cdot 0^{\omega}$	$(01)^{\omega}$
ε	-	+	+	-	-
0	-	+	+	-	-
1	-	+	+	-	-

- All prefixes "accept" the same language
- The Nerode congruence corresponds to a one-state automaton that, obviously, cannot accept L
- Already observed by Trakhtenbrot: in general ω-languages cannot be recognized by an automaton isomorphic to their Nerode congruence

No Canonical Minimal Automaton

- The language $L=(0+1)^{*} \cdot 1^{\omega}$ can be accepted by various 2-state automata, not related by homomorphism

Partial Solution

- Result by Staiger: languages in $\mathbf{B} \cap \overline{\mathbf{B}}$ can be recognized by their Nerode congruence

Partial Solution

- Result by Staiger: languages in $\mathbf{B} \cap \overline{\mathbf{B}}$ can be recognized by their Nerode congruence
- General culture: if we consider Cantor topology on infinite sequences
- The class $\mathbf{B} \cap \overline{\mathbf{B}}$ correspond to the class $F_{\sigma} \cap G_{\delta}$ in the Borel hierarchy
- Such sets can written as
- Countable unions of closed sets
- Countable intersections of open sets

Partial Solution

- Result by Staiger: languages in $\mathbf{B} \cap \overline{\mathbf{B}}$ can be recognized by their Nerode congruence
- General culture: if we consider Cantor topology on infinite sequences
- The class $\mathbf{B} \cap \overline{\mathbf{B}}$ correspond to the class $F_{\sigma} \cap G_{\delta}$ in the Borel hierarchy
- Such sets can written as
- Countable unions of closed sets
- Countable intersections of open sets
- We adapt Angluin's algorithm to this class

Algorithm L^{ω} : Sketch

- Two phases:
- Ask queries until you can build a transition graph for the Nerode congruence (similar to L^{*})
- Try to define a $\mathbf{B} \cap \overline{\mathbf{B}}$ acceptance condition

Algorithm L ${ }^{\omega}$: Sketch

- Two phases:
- Ask queries until you can build a transition graph for the Nerode congruence (similar to L^{*})
- Try to define a $\mathbf{B} \cap \overline{\mathbf{B}}$ acceptance condition
- In finitary languages acceptance status for a state is determined according to whether it accepts the empty word
- For ω-languages not all cycles in the automaton are exercised infinitely-often by the sample

Algorithm L ${ }^{\omega}$: Sketch

- Two phases:
- Ask queries until you can build a transition graph for the Nerode congruence (similar to L^{*})
- Try to define a $\mathbf{B} \cap \overline{\mathbf{B}}$ acceptance condition
- In finitary languages acceptance status for a state is determined according to whether it accepts the empty word
- For ω-languages not all cycles in the automaton are exercised infinitely-often by the sample
- We try to mark SCCs as accepting or rejecting in a way consistet with the sample, but we may have a conflict: $s \cdot x^{\omega} \in L$ and $s \cdot z \cdot y^{\omega} \notin L$. This requires more queries

Example: Learn $L=(01)^{*}(10)^{\omega}$

- Initial table is trivial, we conjecture $L=\emptyset$

	0^{ω}	1^{ω}
ε	-	-
0	-	-
1	-	-

Example: Learn $L=(01)^{*}(10)^{\omega}$

- Initial table is trivial, we conjecture $L=\emptyset$

	0^{ω}	1^{ω}
ε	-	-
0	-	-
1	-	-

- We get a positive counter example $+(10)^{\omega}$
- We add the suffixes $(01)^{\omega}$ and $(10)^{\omega}$ to the columns and discover states 0 and 1

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$
ε	-	-	-	+
0	-	-	-	-
1	-	-	+	-
00	-	-	-	-
01	-	-	-	+
10	-	-	-	+
11	-	-	-	-

Example: Learn $L=(01)^{*}(10)^{\omega}$

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$
ε	-	-	-	+
0	-	-	-	-
1	-	-	+	-
00	-	-	-	-
01	-	-	-	+
10	-	-	-	+
11	-	-	-	-

- The transition graph cannot be marked consistently for acceptance because $(10)^{\omega} \in L$ and $(01)^{\omega} \notin L$

Example: Learn $L=(01)^{*}(10)^{\omega}$

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$
ε	-	-	-	+
0	-	-	-	-
1	-	-	+	-
00	-	-	-	-
01	-	-	-	+
10	-	-	-	+
11	-	-	-	-

- The transition graph cannot be marked consistently for acceptance because $(10)^{\omega} \in L$ and $(01)^{\omega} \notin L$
- The conflict detection procedure returns the word $01(10)^{\omega}$ which is added together with its suffix $1(10)^{\omega}$ to E leading to the discovery of 2 additional states

Example: Learn $L=(01)^{*}(10)^{\omega}$

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$	$1(10)^{\omega}$	$01(10)^{\omega}$
λ	-	-	-	+	-	+
0	-	-	-	-	+	-
1	-	-	+	-	-	-
00	-	-	-	-	-	-
10	-	-	-	+	-	-
01	-	-	-	+	-	+
11	-	-	-	-	-	-
000	-	-	-	-	-	-
001	-	-	-	-	-	-
100	-	-	-	-	-	-
101	-	-	+	-	-	-

- The final table defines an automaton whose three maximal SCCs can be marked uniformly as accepting of rejecting
- This is the minimal automaton for L

Conclusions and Perspectives

- We extended learning to a subclass of ω-regular sets

Conclusions and Perspectives

- We extended learning to a subclass of ω-regular sets
- States in ω-automata have an additional "infinitary" role
- A more refined (two-sided) congruence relation was suggested by Arnold as a canonical object associated with an ω-language:

$$
u \sim_{L} v \text { iff } \forall x, y, z \in \Sigma^{*}\left\{\begin{array}{l}
\left(x u y z^{\omega} \in L \Longleftrightarrow x v y z^{\omega} \in L\right) \wedge \\
\left(x(y u z)^{\omega} \in L \Longleftrightarrow x(y v z)^{\omega} \in L\right)
\end{array}\right.
$$

Conclusions and Perspectives

- We extended learning to a subclass of ω-regular sets
- States in ω-automata have an additional "infinitary" role
- A more refined (two-sided) congruence relation was suggested by Arnold as a canonical object associated with an ω-language:
$u \sim_{L} v$ iff $\forall x, y, z \in \Sigma^{*}\left\{\begin{array}{l}\left(x u y z^{\omega} \in L \Longleftrightarrow x v y z^{\omega} \in L\right) \wedge \\ \left(x(y u z)^{\omega} \in L \Longleftrightarrow x(y v z)^{\omega} \in L\right)\end{array}\right.$
- In [Maler Staiger 97] we proposed a smaller object, a family of right-congruences, which can, in principle, be used for learning using 3-dimensional observation tables

