Omega Automata: Minimization and Learning¹

Oded Maler

CNRS - VERIMAG Grenoble, France

2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

¹Joint work with A. Pnueli, late 80s

Summary

- Machine learning in general and of formal languages in particular
- States, minimization and learning in finitary automata
- Basics of ω -automata
- Why minimization/learning does not work for ω-languages in the general case

- \blacktriangleright A solution for the $B\cap \bar{B}$ subclass
- Toward a general solution

Machine Learning

Given a sample consisting of a set of pairs (x, f(x)) for some unknown function f

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

► Find a (representation of) a function f' : X → Y which is compatible with the sample

Machine Learning

- Given a sample consisting of a set of pairs (x, f(x)) for some unknown function f
- ► Find a (representation of) a function f' : X → Y which is compatible with the sample
- Many issues and variations:
 - Validity of inductive inference
 - Static or dynamic sampling
 - Passive or active sampling can we influence the choice of examples
 - Evaluation criteria: identification in the limit, probabilities, etc.

Learning Formal Languages

For sets of sequences (languages) L ⊆ Σ*, we want to learn the characteristic function χ_L : Σ* → {0,1}

< D > < 同 > < E > < E > < E > < 0 < 0</p>

- The sample elements are of the form $(u, \chi_L(u))$
- The goal is to find a representation (say, automaton) compatible with the sample

Learning Formal Languages

- For sets of sequences (languages) L ⊆ Σ*, we want to learn the characteristic function χ_L : Σ* → {0,1}
- The sample elements are of the form $(u, \chi_{\iota}(u))$
- The goal is to find a representation (say, automaton) compatible with the sample
- The problem was first posed in Moore 56: Gedanken experiments on sequential machines
- It was solved in Gold 72: System identification via state characterization
- Various complexity issues concerning the number of examples as a function of the number of states (Gold, Trakhtenbrot and Barzdins, Angluin)

Regular Sets and their Syntactic Congruences

With every L ⊆ Σ* we can define the following equivalence relation

$$u \sim_L v \text{ iff } \forall w \in \Sigma^* \ u \cdot w \in L \iff v \cdot w \in L$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two prefixes are equivalent if they "accept" the same suffixes

Regular Sets and their Syntactic Congruences

With every L ⊆ Σ* we can define the following equivalence relation

$$u \sim_L v \text{ iff } \forall w \in \Sigma^* \ u \cdot w \in L \iff v \cdot w \in L$$

- Two prefixes are equivalent if they "accept" the same suffixes
- This relation is a right-congruence with respect to concatenation: u ~ v implies u · w ~ v · w for all u, v, w ∈ Σ*

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Regular Sets and their Syntactic Congruences

With every L ⊆ Σ* we can define the following equivalence relation

$$u \sim_L v \text{ iff } \forall w \in \Sigma^* \ u \cdot w \in L \iff v \cdot w \in L$$

- Two prefixes are equivalent if they "accept" the same suffixes
- This relation is a right-congruence with respect to concatenation: u ~ v implies u · w ~ v · w for all u, v, w ∈ Σ*
- Myhill-Nerode theorem: a language L is accepted by a finite automaton iff ~_L has finitely many congruence classes
- This relation is sometimes called the syntactic congruence associated with L

The minimal Automaton

- Let Σ*/ ~ be the quotient of Σ* by ~, that is the set of its equivalence classes and let [u] denote the equivalence class of u
- The minimal automaton for L is $A_L = (\Sigma, Q, q_0, \delta, F)$ where
 - The states are the \sim -classes: $Q = \Sigma^* / \sim$
 - Ther initial state is the class of the empty word: $q_0 = [\varepsilon]$
 - Transition function: $\delta([u], a) = [u \cdot a]$
 - Accepting states are those that accept the empty word:
 F = {[u] : u ⋅ ε ∈ L}

< D > < 同 > < E > < E > < E > < 0 < 0</p>

The minimal Automaton

- Let Σ*/ ~ be the quotient of Σ* by ~, that is the set of its equivalence classes and let [u] denote the equivalence class of u
- The minimal automaton for L is $A_L = (\Sigma, Q, q_0, \delta, F)$ where
 - The states are the \sim -classes: $Q = \Sigma^* / \sim$
 - Ther initial state is the class of the empty word: $q_0 = [\varepsilon]$
 - Transition function: $\delta([u], a) = [u \cdot a]$
 - Accepting states are those that accept the empty word:
 F = {[u] : u ⋅ ε ∈ L}
- This is canonical representation of L based on its I/O semantics
- A_L is homomorphic to any other automaton accepting L

(日) (日) (日) (日) (日) (日) (日) (日)

Observation Tables (Gold 1972)

- ► Given a language *L*, imagine an infinite two-dimensional table
- The rows of the table are indexed by all elements of Σ^*
- The columns of the table are indexed by all elements of Σ*

< D > < 同 > < E > < E > < E > < 0 < 0</p>

► Each entry u, v in the table indicates whether u · v ∈ L (whether after reading prefix u we accept v)

Observation Tables (Gold 1972)

- ► Given a language *L*, imagine an infinite two-dimensional table
- The rows of the table are indexed by all elements of Σ^*
- The columns of the table are indexed by all elements of Σ*
- ► Each entry u, v in the table indicates whether u · v ∈ L (whether after reading prefix u we accept v)
- For finite automata, according to Myhill-Nerode, there will be only finitely-many distinct rows (and columns)

< D > < 同 > < E > < E > < E > < 0 < 0</p>

• It is sufficient to use tables over $\Sigma^n \times \Sigma^n$

Example

	ε	а	b	аа	ab	ba	bb	
ε	—	_	-	-	+			
а	—	—	+	—	—	+	—	
b	-	—	—	—	+	—	—	
аа	—	_	_	_	+	_	_	
ab	+	+	_	+	_	_	+	
ba	—	_	+	_	_	+	_	
bb	—	_	_	_	+	_	_	
aba	+	+	_	+	_	_	+	
abb	_	—	+	_	—	+	_	

 $arepsilon \sim b \sim aa$ a $\sim ba \sim abb$ ab $\sim aba$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

A Sufficient Sample to Characterize the Automaton

		Ε		
		ε	а	b
	ε	—	-	_
S	а	—	—	+
	ab	+	+	_
	b	—	-	_
$S \cdot \Sigma$	aa	—	—	—
- <i>S</i>	aba	+	+	—
	abb	-	—	+

A Sufficient Sample to Characterize the Automaton

► The states of the canonical automaton are S = {[ɛ], [a] and [ab]}

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

A Sufficient Sample to Characterize the Automaton

- ► The states of the canonical automaton are S = {[ε], [a] and [ab]}
- The words/paths correspond to a spanning tree
- Elements of S · Σ S correspond to cross- and back-edges in the spanning tree

- An incremental algorithm to construct the table based on two sources of information:
- ► Membership query Member(u)? where the learner asks whether u ∈ L
- Equivalence query Equiv(A) where the learner asks whether automaton A is the (minimal) automaton for L

The answer is either "yes" or a counter-example

- An incremental algorithm to construct the table based on two sources of information:
- ► Membership query Member(u)? where the learner asks whether u ∈ L
- Equivalence query Equiv(A) where the learner asks whether automaton A is the (minimal) automaton for L
- ► The answer is either "yes" or a counter-example
- The learner asks membership queries until it can build an automaton

- An incremental algorithm to construct the table based on two sources of information:
- ▶ Membership query Member(u)? where the learner asks whether u ∈ L
- Equivalence query Equiv(A) where the learner asks whether automaton A is the (minimal) automaton for L
- The answer is either "yes" or a counter-example
- The learner asks membership queries until it can build an automaton
- Then it asks an equivalence query and if there is a counter-example it adds its suffixes to the columns, thus discovering new states and so on

(日) (日) (日) (日) (日) (日) (日) (日)

- An incremental algorithm to construct the table based on two sources of information:
- ▶ Membership query Member(u)? where the learner asks whether u ∈ L
- Equivalence query Equiv(A) where the learner asks whether automaton A is the (minimal) automaton for L
- The answer is either "yes" or a counter-example
- The learner asks membership queries until it can build an automaton
- Then it asks an equivalence query and if there is a counter-example it adds its suffixes to the columns, thus discovering new states and so on
- Polynomial in the number of states

ω -Languages

- Let Σ^{ω} be the set of all infinite sequences over Σ
- An ω -language is a subset $L \subseteq \Sigma^{\omega}$
- The ω-regular sets can be written as a finite union of sets of the form U · V^ω with U and V finitary regular sets
- Every non-empty ω-regular set contains an ultimately-periodic sequence of the form u · v^ω

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Acceptance of ω -Languages by ω -Automata

- Consider a deterministic automaton (Σ, Q, δ, q_0)
- ▶ When an infinite word *u* is read by the automaton it induces an infinite run, an infinite sequence of states
- This run is summarized by Inf(u), the set of states visited infinitely-often by the run

Acceptance of ω -Languages by ω -Automata

- Consider a deterministic automaton (Σ, Q, δ, q_0)
- ▶ When an infinite word *u* is read by the automaton it induces an infinite run, an infinite sequence of states
- This run is summarized by Inf(u), the set of states visited infinitely-often by the run

- Muller acceptance condition: a set of subsets $\mathcal{F} \subseteq 2^Q$
- An infinite word u is accepted if $Inf(u) = F \in \mathcal{F}$

Subclasses of ω -Regular Sets

- ► If we restrict the structure of the accepting subsets *F* we obtain interesting subclasses of languages
- For example, the class B of languages accepted by deterministic Buchi automata
- Here we define a set F of accepting states and u is accepted if Inf(u) ∩ F ≠ Ø
- ► This amounts to saying that *F* consists of all elements of 2^Q that contain elements of *F* (*F* is upward closed)

Subclasses of ω -Regular Sets

- If we restrict the structure of the accepting subsets *F* we obtain interesting subclasses of languages
- For example, the class B of languages accepted by deterministic Buchi automata
- Here we define a set F of accepting states and u is accepted if Inf(u) ∩ F ≠ Ø
- This amounts to saying that *F* consists of all elements of 2^Q that contain elements of *F* (*F* is upward closed)
- ▶ An infinite word *u* is in the complement \overline{L} if $Inf(u) \cap F = \emptyset$ or equivalently $Inf(u) \subseteq Q F$
- This is called co-Buchi condition and the class is denoted by B

The Class $B\cap\bar{B}$

- Languages that belong to both classes can be accepted by automata whose accepting set *F* admits a special structure
- In such automata, all cycles that belong to the same SCC are either accepting or rejecting

< D > < 同 > < E > < E > < E > < 0 < 0</p>

The Class $\boldsymbol{B}\cap\bar{\boldsymbol{B}}$

- Languages that belong to both classes can be accepted by automata whose accepting set *F* admits a special structure
- In such automata, all cycles that belong to the same SCC are either accepting or rejecting

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

```
• Inf(u) \cap F \neq \emptyset iff Inf(u) \cap Q - F = \emptyset
```

Learning ω -Regular Sets

First problem: how do you present examples which are infinite sequences?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

▶ Solution: use ultimately-periodic words $u \cdot v^{\omega}$

Learning ω -Regular Sets

- First problem: how do you present examples which are infinite sequences?
- Solution: use ultimately-periodic words $u \cdot v^{\omega}$
- ▶ My first lemma in life: if $L \neq L'$ then there is $\alpha = u \cdot v^{\omega}$ that distinguishes between L and L'

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Learning ω -Regular Sets

- First problem: how do you present examples which are infinite sequences?
- Solution: use ultimately-periodic words $u \cdot v^{\omega}$
- My first lemma in life: if L ≠ L' then there is α = u · v^ω that distinguishes between L and L'
- So now we can think of building tables where rows are words and columns are (ultimately-periodic) ω -words and entries tell us whether $u \cdot \alpha \in L$

But it is not that simple

The Problem

- Consider the language $L = (0+1)^* \cdot 1^\omega$
- The observation table for this language looks like this

	0^{ω}	1^{ω}	$0\cdot 1^\omega$	$1\cdot 0^\omega$	$(01)^{\omega}$
ε	-	+	+		I
0	—	+	+	-	-
1	—	+	+	_	_

The Problem

- Consider the language $L = (0+1)^* \cdot 1^\omega$
- The observation table for this language looks like this

	0^{ω}	1^{ω}	$0\cdot 1^\omega$	$1\cdot 0^\omega$	$(01)^{\omega}$
ε	-	+	+	_	
0	-	+	+	_	-
1	—	+	+	—	_

- All prefixes "accept" the same language
- The Nerode congruence corresponds to a one-state automaton that, obviously, cannot accept L
- Already observed by Trakhtenbrot: in general ω-languages cannot be recognized by an automaton isomorphic to their Nerode congruence

No Canonical Minimal Automaton

► The language L = (0 + 1)* · 1^ω can be accepted by various 2-state automata, not related by homomorphism

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Partial Solution

 \blacktriangleright Result by Staiger: languages in $B\cap\bar{B}$ can be recognized by their Nerode congruence

Partial Solution

- \blacktriangleright Result by Staiger: languages in $B\cap\bar{B}$ can be recognized by their Nerode congruence
- General culture: if we consider Cantor topology on infinite sequences
- The class B ∩ B̄ correspond to the class F_σ ∩ G_δ in the Borel hierarchy

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Such sets can written as
 - Countable unions of closed sets
 - Countable intersections of open sets

Partial Solution

- \blacktriangleright Result by Staiger: languages in $B\cap\bar{B}$ can be recognized by their Nerode congruence
- General culture: if we consider Cantor topology on infinite sequences
- The class B ∩ B̄ correspond to the class F_σ ∩ G_δ in the Borel hierarchy

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Such sets can written as
 - Countable unions of closed sets
 - Countable intersections of open sets
- We adapt Angluin's algorithm to this class

Algorithm L^{ω} : Sketch

- Two phases:
 - Ask queries until you can build a transition graph for the Nerode congruence (similar to L*)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

 \blacktriangleright Try to define a $B\cap\bar{B}$ acceptance condition

Algorithm L^{ω} : Sketch

- Two phases:
 - Ask queries until you can build a transition graph for the Nerode congruence (similar to L*)
 - \blacktriangleright Try to define a $B\cap\bar{B}$ acceptance condition
- In finitary languages acceptance status for a state is determined according to whether it accepts the empty word
- For ω-languages not all cycles in the automaton are exercised infinitely-often by the sample

▲ロト ▲帰 ト ▲ヨト ▲ヨト ニヨ … の々ぐ

Algorithm L^{ω} : Sketch

- Two phases:
 - Ask queries until you can build a transition graph for the Nerode congruence (similar to L*)
 - \blacktriangleright Try to define a $B\cap\bar{B}$ acceptance condition
- In finitary languages acceptance status for a state is determined according to whether it accepts the empty word
- For ω-languages not all cycles in the automaton are exercised infinitely-often by the sample
- We try to mark SCCs as accepting or rejecting in a way consistet with the sample, but we may have a conflict: s · x^ω ∈ L and s · z · y^ω ∉ L. This requires more queries

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

▶ Initial table is trivial, we conjecture $L = \emptyset$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Initial table is trivial, we conjecture $L = \emptyset$

- We get a positive counter example $+(10)^{\omega}$
- ► We add the suffixes (01)^ω and (10)^ω to the columns and discover states 0 and 1

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$
ε	-	-		+
0	_	_	_	_
1	—	—	+	_
00	-	-	-	-
01	—	-	_	+
10	_	—	—	+
11	-	-	-	-

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$
ε		_		+
0	-	_	_	_
1	—	—	+	_
00	-	-	-	-
01	-	_	_	+
10	-	_	_	+
11	-	—	_	_

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

The transition graph cannot be marked consistently for acceptance because (10)^ω ∈ L and (01)^ω ∉ L

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$
ε		_		+
0	-	_	_	_
1	—	—	+	—
00	-	-	-	_
01	-	_	_	+
10	-	_	_	+
11	—	_	_	—

- The transition graph cannot be marked consistently for acceptance because (10)^ω ∈ L and (01)^ω ∉ L
- The conflict detection procedure returns the word 01(10)^ω which is added together with its suffix 1(10)^ω to E leading to the discovery of 2 additional states

	0^{ω}	1^{ω}	$(01)^{\omega}$	$(10)^{\omega}$	$1(10)^{\omega}$	$01(10)^{\omega}$
λ	-	-	-	+	-	+
0	-	-	-	-	+	-
1	-	-	+	-	-	-
00	-	-	-	-	-	-
10	-	-	-	+	-	-
01	-	-	-	+	-	+
11	-	-	-	-	-	-
000	-	-	-	-	-	-
001	-	-	-	-	-	-
100	-	-	-	-	-	-
101	-	-	+	-	-	-

- The final table defines an automaton whose three maximal SCCs can be marked uniformly as accepting of rejecting
- This is the minimal automaton for L

Conclusions and Perspectives

 \blacktriangleright We extended learning to a subclass of $\omega\text{-regular sets}$

Conclusions and Perspectives

- ▶ We extended learning to a subclass of ω -regular sets
- ▶ States in ω -automata have an additional "infinitary" role
- A more refined (two-sided) congruence relation was suggested by Arnold as a canonical object associated with an ω-language:

$$u \sim_{L} v \text{ iff } \forall x, y, z \in \Sigma^{*} \begin{cases} (xuyz^{\omega} \in L \iff xvyz^{\omega} \in L) \land \\ (x(yuz)^{\omega} \in L \iff x(yvz)^{\omega} \in L) \end{cases}$$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Conclusions and Perspectives

- We extended learning to a subclass of ω -regular sets
- ▶ States in ω -automata have an additional "infinitary" role
- A more refined (two-sided) congruence relation was suggested by Arnold as a canonical object associated with an ω-language:

$$u \sim_L v \text{ iff } \forall x, y, z \in \Sigma^* \begin{cases} (xuyz^{\omega} \in L \iff xvyz^{\omega} \in L) \land \\ (x(yuz)^{\omega} \in L \iff x(yvz)^{\omega} \in L) \end{cases}$$

 In [Maler Staiger 97] we proposed a smaller object, a family of right-congruences, which can, in principle, be used for learning using 3-dimensional observation tables