
Omega Automata: Minimization and Learning1

Oded Maler

CNRS - VERIMAG

Grenoble, France

2007

1
Joint work with A. Pnueli, late 80s



Summary

I Machine learning in general and of formal languages in
particular

I States, minimization and learning in finitary automata

I Basics of ω-automata

I Why minimization/learning does not work for ω-languages in
the general case

I A solution for the B ∩ B̄ subclass

I Toward a general solution



Machine Learning

I Given a sample consisting of a set of pairs (x , f (x)) for some
unknown function f

I Find a (representation of) a function f ′ : X → Y which is
compatible with the sample



Machine Learning

I Given a sample consisting of a set of pairs (x , f (x)) for some
unknown function f

I Find a (representation of) a function f ′ : X → Y which is
compatible with the sample

I Many issues and variations:
I Validity of inductive inference
I Static or dynamic sampling
I Passive or active sampling - can we influence the choice of

examples
I Evaluation criteria: identification in the limit, probabilities, etc.



Learning Formal Languages

I For sets of sequences (languages) L ⊆ Σ∗, we want to learn
the characteristic function χ

L
: Σ∗ → {0, 1}

I The sample elements are of the form (u, χ
L
(u))

I The goal is to find a representation (say, automaton)
compatible with the sample



Learning Formal Languages

I For sets of sequences (languages) L ⊆ Σ∗, we want to learn
the characteristic function χ

L
: Σ∗ → {0, 1}

I The sample elements are of the form (u, χ
L
(u))

I The goal is to find a representation (say, automaton)
compatible with the sample

I The problem was first posed in Moore 56: Gedanken

experiments on sequential machines

I It was solved in Gold 72: System identification via state

characterization

I Various complexity issues concerning the number of examples
as a function of the number of states (Gold, Trakhtenbrot and
Barzdins, Angluin)



Regular Sets and their Syntactic Congruences

I With every L ⊆ Σ∗ we can define the following equivalence
relation

u ∼L v iff ∀w ∈ Σ∗ u · w ∈ L ⇐⇒ v · w ∈ L

I Two prefixes are equivalent if they “accept” the same suffixes



Regular Sets and their Syntactic Congruences

I With every L ⊆ Σ∗ we can define the following equivalence
relation

u ∼L v iff ∀w ∈ Σ∗ u · w ∈ L ⇐⇒ v · w ∈ L

I Two prefixes are equivalent if they “accept” the same suffixes

I This relation is a right-congruence with respect to
concatenation: u ∼ v implies u ·w ∼ v ·w for all u, v , w ∈ Σ∗



Regular Sets and their Syntactic Congruences

I With every L ⊆ Σ∗ we can define the following equivalence
relation

u ∼L v iff ∀w ∈ Σ∗ u · w ∈ L ⇐⇒ v · w ∈ L

I Two prefixes are equivalent if they “accept” the same suffixes

I This relation is a right-congruence with respect to
concatenation: u ∼ v implies u ·w ∼ v ·w for all u, v , w ∈ Σ∗

I Myhill-Nerode theorem: a language L is accepted by a finite
automaton iff ∼L has finitely many congruence classes

I This relation is sometimes called the syntactic congruence
associated with L



The minimal Automaton

I Let Σ∗/ ∼ be the quotient of Σ∗ by ∼, that is the set of its
equivalence classes and let [u] denote the equivalence class of
u

I The minimal automaton for L is AL = (Σ, Q, q0, δ, F ) where
I The states are the ∼-classes: Q = Σ∗/ ∼
I Ther initial state is the class of the empty word: q0 = [ε]
I Transition function: δ([u], a) = [u · a]
I Accepting states are those that accept the empty word:

F = {[u] : u · ε ∈ L}



The minimal Automaton

I Let Σ∗/ ∼ be the quotient of Σ∗ by ∼, that is the set of its
equivalence classes and let [u] denote the equivalence class of
u

I The minimal automaton for L is AL = (Σ, Q, q0, δ, F ) where
I The states are the ∼-classes: Q = Σ∗/ ∼
I Ther initial state is the class of the empty word: q0 = [ε]
I Transition function: δ([u], a) = [u · a]
I Accepting states are those that accept the empty word:

F = {[u] : u · ε ∈ L}

I This is canonical representation of L based on its I/O
semantics

I AL is homomorphic to any other automaton accepting L



Observation Tables (Gold 1972)

I Given a language L, imagine an infinite two-dimensional table

I The rows of the table are indexed by all elements of Σ∗

I The columns of the table are indexed by all elements of Σ∗

I Each entry u, v in the table indicates whether u · v ∈ L

(whether after reading prefix u we accept v)



Observation Tables (Gold 1972)

I Given a language L, imagine an infinite two-dimensional table

I The rows of the table are indexed by all elements of Σ∗

I The columns of the table are indexed by all elements of Σ∗

I Each entry u, v in the table indicates whether u · v ∈ L

(whether after reading prefix u we accept v)

I For finite automata, according to Myhill-Nerode, there will be
only finitely-many distinct rows (and columns)

I It is sufficient to use tables over Σn × Σn



Example

b

a

a

a

b

b

ε a b aa ab ba bb · · ·

ε − − − − + − − · · ·
a − − + − − + − · · ·
b − − − − + − − · · ·

aa − − − − + − − · · ·
ab + + − + − − + · · ·
ba − − + − − + − · · ·
bb − − − − + − − · · ·
· · ·
aba + + − + − − + · · ·
abb − − + − − + − · · ·
· · ·

ε ∼ b ∼ aa a ∼ ba ∼ abb ab ∼ aba



A Sufficient Sample to Characterize the Automaton

b

a

a

a

b

b

E

ε a b

ε − − −
S a − − +

ab + + −

b − − −
S · Σ aa − − −
−S aba + + −

abb − − +



A Sufficient Sample to Characterize the Automaton

b

a

a

a

b

b

E

ε a b

ε − − −
S a − − +

ab + + −

b − − −
S · Σ aa − − −
−S aba + + −

abb − − +

I The states of the canonical automaton are S = {[ε], [a] and
[ab]}



A Sufficient Sample to Characterize the Automaton

b

a

a

a

b

b

E

ε a b

ε − − −
S a − − +

ab + + −

b − − −
S · Σ aa − − −
−S aba + + −

abb − − +

I The states of the canonical automaton are S = {[ε], [a] and
[ab]}

I The words/paths correspond to a spanning tree

I Elements of S · Σ − S correspond to cross- and back-edges in
the spanning tree



Angluin’s L
∗ Algorithm

I An incremental algorithm to construct the table based on two
sources of information:

I Membership query Member(u)? where the learner asks
whether u ∈ L

I Equivalence query Equiv(A) where the learner asks whether
automaton A is the (minimal) automaton for L

I The answer is either “yes” or a counter-example



Angluin’s L
∗ Algorithm

I An incremental algorithm to construct the table based on two
sources of information:

I Membership query Member(u)? where the learner asks
whether u ∈ L

I Equivalence query Equiv(A) where the learner asks whether
automaton A is the (minimal) automaton for L

I The answer is either “yes” or a counter-example

I The learner asks membership queries until it can build an
automaton



Angluin’s L
∗ Algorithm

I An incremental algorithm to construct the table based on two
sources of information:

I Membership query Member(u)? where the learner asks
whether u ∈ L

I Equivalence query Equiv(A) where the learner asks whether
automaton A is the (minimal) automaton for L

I The answer is either “yes” or a counter-example

I The learner asks membership queries until it can build an
automaton

I Then it asks an equivalence query and if there is a
counter-example it adds its suffixes to the columns, thus
discovering new states and so on



Angluin’s L
∗ Algorithm

I An incremental algorithm to construct the table based on two
sources of information:

I Membership query Member(u)? where the learner asks
whether u ∈ L

I Equivalence query Equiv(A) where the learner asks whether
automaton A is the (minimal) automaton for L

I The answer is either “yes” or a counter-example

I The learner asks membership queries until it can build an
automaton

I Then it asks an equivalence query and if there is a
counter-example it adds its suffixes to the columns, thus
discovering new states and so on

I Polynomial in the number of states



ω-Languages

I Let Σω be the set of all infinite sequences over Σ

I An ω-language is a subset L ⊆ Σω

I The ω-regular sets can be written as a finite union of sets of
the form U · V ω with U and V finitary regular sets

I Every non-empty ω-regular set contains an ultimately-periodic
sequence of the form u · vω



Acceptance of ω-Languages by ω-Automata

I Consider a deterministic automaton (Σ, Q, δ, q0)

I When an infinite word u is read by the automaton it induces
an infinite run, an infinite sequence of states

I This run is summarized by Inf (u), the set of states visited
infinitely-often by the run



Acceptance of ω-Languages by ω-Automata

I Consider a deterministic automaton (Σ, Q, δ, q0)

I When an infinite word u is read by the automaton it induces
an infinite run, an infinite sequence of states

I This run is summarized by Inf (u), the set of states visited
infinitely-often by the run

I Muller acceptance condition: a set of subsets F ⊆ 2Q

I An infinite word u is accepted if Inf (u) = F ∈ F



Subclasses of ω-Regular Sets

I If we restrict the structure of the accepting subsets F we
obtain interesting subclasses of languages

I For example, the class B of languages accepted by
deterministic Buchi automata

I Here we define a set F of accepting states and u is accepted if
Inf (u) ∩ F 6= ∅

I This amounts to saying that F consists of all elements of 2Q

that contain elements of F (F is upward closed)



Subclasses of ω-Regular Sets

I If we restrict the structure of the accepting subsets F we
obtain interesting subclasses of languages

I For example, the class B of languages accepted by
deterministic Buchi automata

I Here we define a set F of accepting states and u is accepted if
Inf (u) ∩ F 6= ∅

I This amounts to saying that F consists of all elements of 2Q

that contain elements of F (F is upward closed)

I An infinite word u is in the complement L̄ if Inf (u) ∩ F = ∅ or
equivalently Inf (u) ⊆ Q − F

I This is called co-Buchi condition and the class is denoted by B̄



The Class B ∩ B̄

I Languages that belong to both classes can be accepted by
automata whose accepting set F admits a special structure

I In such automata, all cycles that belong to the same SCC are
either accepting or rejecting



The Class B ∩ B̄

I Languages that belong to both classes can be accepted by
automata whose accepting set F admits a special structure

I In such automata, all cycles that belong to the same SCC are
either accepting or rejecting

+

−

+

−

I Inf (u) ∩ F 6= ∅ iff Inf (u) ∩ Q − F = ∅



Learning ω-Regular Sets

I First problem: how do you present examples which are infinite
sequences?

I Solution: use ultimately-periodic words u · vω



Learning ω-Regular Sets

I First problem: how do you present examples which are infinite
sequences?

I Solution: use ultimately-periodic words u · vω

I My first lemma in life: if L 6= L′ then there is α = u · vω that
distinguishes between L and L′



Learning ω-Regular Sets

I First problem: how do you present examples which are infinite
sequences?

I Solution: use ultimately-periodic words u · vω

I My first lemma in life: if L 6= L′ then there is α = u · vω that
distinguishes between L and L′

I So now we can think of building tables where rows are words
and columns are (ultimately-periodic) ω-words and entries tell
us whether u · α ∈ L

I But it is not that simple



The Problem

I Consider the language L = (0 + 1)∗ · 1ω

I The observation table for this language looks like this

0ω 1ω 0 · 1ω 1 · 0ω (01)ω

ε − + + − −

0 − + + − −
1 − + + − −



The Problem

I Consider the language L = (0 + 1)∗ · 1ω

I The observation table for this language looks like this

0ω 1ω 0 · 1ω 1 · 0ω (01)ω

ε − + + − −

0 − + + − −
1 − + + − −

I All prefixes “accept” the same language

I The Nerode congruence corresponds to a one-state automaton
that, obviously, cannot accept L

I Already observed by Trakhtenbrot: in general ω-languages
cannot be recognized by an automaton isomorphic to their
Nerode congruence



No Canonical Minimal Automaton

I The language L = (0 + 1)∗ · 1ω can be accepted by various
2-state automata, not related by homomorphism

0

0

1

1

11

0

0

0

1

0,1



Partial Solution

I Result by Staiger: languages in B ∩ B̄ can be recognized by
their Nerode congruence



Partial Solution

I Result by Staiger: languages in B ∩ B̄ can be recognized by
their Nerode congruence

I General culture: if we consider Cantor topology on infinite
sequences

I The class B ∩ B̄ correspond to the class Fσ ∩ Gδ in the Borel
hierarchy

I Such sets can written as
I Countable unions of closed sets
I Countable intersections of open sets



Partial Solution

I Result by Staiger: languages in B ∩ B̄ can be recognized by
their Nerode congruence

I General culture: if we consider Cantor topology on infinite
sequences

I The class B ∩ B̄ correspond to the class Fσ ∩ Gδ in the Borel
hierarchy

I Such sets can written as
I Countable unions of closed sets
I Countable intersections of open sets

I We adapt Angluin’s algorithm to this class



Algorithm L
ω: Sketch

I Two phases:
I Ask queries until you can build a transition graph for the

Nerode congruence (similar to L∗)
I Try to define a B ∩ B̄ acceptance condition



Algorithm L
ω: Sketch

I Two phases:
I Ask queries until you can build a transition graph for the

Nerode congruence (similar to L∗)
I Try to define a B ∩ B̄ acceptance condition

I In finitary languages acceptance status for a state is
determined according to whether it accepts the empty word

I For ω-languages not all cycles in the automaton are exercised
infinitely-often by the sample



Algorithm L
ω: Sketch

I Two phases:
I Ask queries until you can build a transition graph for the

Nerode congruence (similar to L∗)
I Try to define a B ∩ B̄ acceptance condition

I In finitary languages acceptance status for a state is
determined according to whether it accepts the empty word

I For ω-languages not all cycles in the automaton are exercised
infinitely-often by the sample

I We try to mark SCCs as accepting or rejecting in a way
consistet with the sample, but we may have a conflict:
s · xω ∈ L and s · z · yω 6∈ L. This requires more queries

s

s
+

x

t

w

−

z

y



Example: Learn L = (01)∗(10)ω

I Initial table is trivial, we conjecture L = ∅

0ω 1ω

ε − −

0 − −
1 − −



Example: Learn L = (01)∗(10)ω

I Initial table is trivial, we conjecture L = ∅

0ω 1ω

ε − −

0 − −
1 − −

I We get a positive counter example +(10)ω

I We add the suffixes (01)ω and (10)ω to the columns and
discover states 0 and 1

0ω 1ω (01)ω (10)ω

ε − − − +
0 − − − −
1 − − + −

00 − − − −
01 − − − +
10 − − − +
11 − − − −



Example: Learn L = (01)∗(10)ω

0ω 1ω (01)ω (10)ω

ε − − − +
0 − − − −
1 − − + −

00 − − − −
01 − − − +
10 − − − +
11 − − − −

+−

0

1

01

1

0

10

ε

I The transition graph cannot be marked consistently for
acceptance because (10)ω ∈ L and (01)ω 6∈ L



Example: Learn L = (01)∗(10)ω

0ω 1ω (01)ω (10)ω

ε − − − +
0 − − − −
1 − − + −

00 − − − −
01 − − − +
10 − − − +
11 − − − −

+−

0

1

01

1

0

10

ε

I The transition graph cannot be marked consistently for
acceptance because (10)ω ∈ L and (01)ω 6∈ L

I The conflict detection procedure returns the word 01(10)ω

which is added together with its suffix 1(10)ω to E leading to
the discovery of 2 additional states



Example: Learn L = (01)∗(10)ω

0ω 1ω (01)ω (10)ω 1(10)ω 01(10)ω

λ − − − + − +
0 − − − − + −
1 − − + − − −
00 − − − − − −
10 − − − + − −

01 − − − + − +
11 − − − − − −
000 − − − − − −
001 − − − − − −
100 − − − − − −
101 − − + − − −

0

10000, 1

0

0

11

1

10

10

ε

I The final table defines an automaton whose three maximal
SCCs can be marked uniformly as accepting of rejecting

I This is the minimal automaton for L



Conclusions and Perspectives

I We extended learning to a subclass of ω-regular sets



Conclusions and Perspectives

I We extended learning to a subclass of ω-regular sets

I States in ω-automata have an additional “infinitary” role

I A more refined (two-sided) congruence relation was suggested
by Arnold as a canonical object associated with an
ω-language:

u ∼L v iff ∀x , y , z ∈ Σ∗







(xuyzω ∈ L ⇐⇒ xvyzω ∈ L) ∧

(x(yuz)ω ∈ L ⇐⇒ x(yvz)ω ∈ L)



Conclusions and Perspectives

I We extended learning to a subclass of ω-regular sets

I States in ω-automata have an additional “infinitary” role

I A more refined (two-sided) congruence relation was suggested
by Arnold as a canonical object associated with an
ω-language:

u ∼L v iff ∀x , y , z ∈ Σ∗







(xuyzω ∈ L ⇐⇒ xvyzω ∈ L) ∧

(x(yuz)ω ∈ L ⇐⇒ x(yvz)ω ∈ L)

I In [Maler Staiger 97] we proposed a smaller object, a family of
right-congruences, which can, in principle, be used for learning
using 3-dimensional observation tables


