
Continuous Systems Verification

Oded Maler

CNRS - VERIMAG
Grenoble, France

Amir Pnueli Memorial Symposium 2010

Introduction

I According to Manna and Pnueli, a verification framework has
three ingredients:

I A system model: a formalism for describing the designed
system (automata, transition systems, programs)

I A specification language: a formalism for describing the
desired properties of the system. In other words a criterion for
classifying event sequences as good or bad

I A verification technique: a method to show that (some/all)
behaviors generated by the system are acceptable according to
the specification

Introduction

I In this talk we focus on:
I System models which are continuous dynamical systems

defined by differential equations,
I algorithmic verification against simple properties

I Initial motivation: real-time, embedded, cyber-physical and
other buzzwordful systems where computers control a
physical environment

I Additional collected motivations: new techniques in applied
mathematics, verification of analog circuits, analyzing
biochemical reactions

I We use the latter domain for motivation but the concepts and
algorithms are rather generic

Summary

I We propose a computer-aided methodology to help analyzing
certain biological models

I Domain of applicability: biochemical reactions modeled as
differential equations

I State variables denote concentrations

I We propose reachability computation, a kind of set-based
simulation, that may replace uncountably-many simulations

I The continuous analogue of algorithmic verification
(model-checking), emerged from more than a decade of
research on hybrid systems

Outline

I Under-determined dynamical models and their biological
relevance

I Continuous dynamical systems and abstract reahcability

I Effective representation of sets and concrete algorithms for
linear systems

I Treating nonlinear systems via hybridization

I Dynamic hybridization: idea and preliminary results

I Conclusions

I Appendix

Dynamical Models with Nondeterminism

I Dynamical system: state space X and a rule x ′ = f (x , v)

I The next state is a function of the current state and some
external influence (or unknown parameters) v ∈ V

I In discrete domains: a transition system with input (alphabet)

I System becomes nondeterministic if input is projected away

I Given initial state, many possible evolutions (“runs”)

I Simulation: picking one input and generating one behavior

I Symbolic verification: magically computing all runs in
parallel

I Reachability computation: adapting these ideas to systems
defined by differential equations or hybrid automata
(differential equations with mode switching)

Why Bother?

I Differential models of biochemical reactions are very imprecise
for many reasons:

I They are obtained by measuring populations, not individuals

I Kinetic parameters are based on isolated experiments not
always under same conditions

I Etc.

I It is nice to match an experimentally-observed behavior by a
deterministic model, but can we do better?

I After all, biological systems are supposed to be robust under
variations in environmental conditions and parameters

I Showing that all trajectories corresponding to a range of
parameters and external disturbances exhibit the same
qualitative behavior is a much stronger potential
contribution

Preliminary Definitions and Notations

I A time domain T = R+, state space X ⊆ Rn, input space
V ⊆ Rm

I Trajectory: partial function ξ : T → X , Input signal:
ζ : T → V both defined over an interval [0, r] ⊂ T

I A continuous dynamical system S = (X ,V , f)

I Trajectory ξ with endpoints x and x ′ is the response of S to
input signal ζ if

I ξ is the solution of ẋ = f (x , v) for initial condition x and

v(·) = ζ, denoted by x
ζ/ξ−→ x ′

I R(x , ζ, t) = {x ′} denote the fact that x ′ is reachable from x

by ζ within t time, that is, x
ζ/ξ−→ x ′ and |ζ| = |ξ| = t

Reachability
I R(x , ζ, t) = {x ′} speaks of one initial state, one input signal

and one time instant
I Generalizing to a set X0 of initial states, to all time instants

in an interval I = [0, r] and all admissible input signals:

RI (X0) =
⋃

x∈X0

⋃
t∈I

⋃
ζ

R(x , ζ, t)

x0x0
x0

I Depth-first vs. breadth-first⋃
ζ

⋃
t∈I

R(x , ζ, t) =
⋃
t∈I

⋃
ζ

R(x , ζ, t)

Abstract Reachability Algorithm

I The reachability operator satisfies the semigroup property:

R[0,t1+t2](X0) = R[0,t2](R[0,t1](X0))

I We can choose a time step r and apply the following iterative
algorithm:

Input: A set X0 ⊂ X
Output: Q = R[0,L](X0)

P := Q := X0

repeat i = 1, 2 . . .
P := R[0,r](P)
Q := Q ∪ P

until i = L/r

I Remark: we look at a bounded time horizon and do not
care about reaching a fixpoint

From Abstract to Concrete Algorithms

I The algorithm performs operations on subsets of Rn which,
mathematically speaking, can be weird objects

I Like any computational geometry we restrict ourselves to
classes of subsets (boxes, polytopes, ellipsoids, zonotopes)
having nice properties:

I Finite syntactic representation

I Effective decision procedure for membership

I Closure (or approximate closure) under the reachability
operator

I In this talk we use convex polytopes and their finite unions

Convex Polytopes

I Halfspace: all points x satisfying a linear inequality a · x ≤ b

I Convex polyhedron: intersection of finitely many halfspaces;
Polytope: bounded convex polyhedron

I Convex combination of a set of points {x1, . . . , xl} is any
x = λ1x1 + · · ·+ λlxl such that

∑l
i=1 λi = 1

I The convex hull conv(P̃) of a set P̃ of points is the set of all
convex combinations of elements in P̃

I Polytope representations:
I Vertices: a polytope P admits a finite minimal set P̃

(vertices) such that P = conv(P̃).
I Inequalities: a polytope P admits a canonical set of

halfspaces/inequalities such that P =
∧k

i=1 ai · x ≤ bi

Autonomous (Closed, Deterministic) Linear Systems

I Systems defined by linear differential equations of the form
ẋ = Ax for a matrix A are the most well-studied

I There is a standard technique to fix a time step r and work in
discrete time, a recurrence equation of the form xi+1 = Axi

I The image of a set P by the linear transformation A is
AP = {Ax : x ∈ P} (one-step successors)

I It is easy to compute, for example, for polytopes represented
by vertices:
P = conv({x1, . . . , xl}) ⇒ AP = conv({Ax1, . . . ,Axl})

v1

v2

v4

v5

v6

v3

P

v ′4 = Av4

v ′5 = Av5

v ′6 = Av6

v ′1 = Av1

AP

v ′3 = Av3

v ′2 = Av2

Algorithm 1: Discrete-Time Linear Reachability

I Input: A set X0 ⊂ X represented as conv(P̃0)

I Output: Q = R[0..L](X0) represented as a list

{conv(P̃0), . . . , conv(P̃L)}

P := Q := P̃0

repeat i = 1, 2 . . .
P := AP
Q := Q ∪ P

until i = L

I Assuming |P̃0| = m0, the complexity of the algorithm is
O(m0LM(n)) where M(n) is the complexity of matrix-vector
multiplication in n dimensions: ∼ O(n3)

I Can be applied to other representations of objects closed
under linear transformations

Linear Systems with Input (Minkowski Sum Approach)

I Systems define by xi+1 = Axi + vi where the vi ’s range over a
bounded convex set V

I The one-step successor of P is defined as

P ′ = {Ax + v : x ∈ P, v ∈ V } = AP ⊕ V

I Minkowski sum A⊕ B = {a + b : a ∈ A ∧ b ∈ b}
I Same algorithm can be applied but the Minkowski sum

increases the number of vertices/facets in every step

P ⊕ V

P

V

Alternative: Face Lifting

I Over-approximating the reachable set while keeping its
complexity more or less fixed

I Assume P represented as intersection of halfspaces

I For each halfspace H i : aix ≤ bi , let v i ∈ V be the input
vector which pushes it in the “outermost” way

I Apply Ax + Bv i to H i and the intersection of the pushed
halfspaces over-approximates AP ⊕ V

P ′ ⊃ P ⊕ V

P
V

I The enemy of the people is the wrapping effect:
over-approximation errors accumulate every step

Linear State of the Art (Minkowski Approach)

I New algorithmics by C. Le Guernic and A. Girard

I Efficient computations: linear transformation applied to a
fixed number of points in each iteration

I No accumulation of over-approximation errors

I Initially used zonotopes, a class of sets closed under both
linear operations and Minkowski sum; Can be applied to any
“lazy” representation of the sequence of the computed sets

I Based on the observation that two consecutive sets

Pk = AkP0 ⊕ Ak−1V ⊕ Ak−2V ⊕ . . .⊕ V
Pk+1 = Ak+1P0 ⊕ AkV ⊕ Ak−1V ⊕ . . .⊕ V

share a lot of terms

I Can compute within few minutes 1000 reachability steps for
linear systems with 200 (!) state variables

Linear State of the Art (Optimization Approach)

I Recent result by T. Dang and R. Testylier

I Observation: over-approximation error on sharp corners can
be significantly reduced by adding redundant constraints

I Moreover, the extra constraint can be added in the right
place and orientation, after the over-approximating set
intersects the bad set

I A kind of dynamic approximation refinement
I No need to move between constraint and vertex

representations

I A prototype can easily handle 100 dimensions

Linear Reachability: Some Credits

I Algorithmic analysis of hybrid systems started with tools like
Kronos and HyTech for timed automata and “linear” hybrid
automata: HenzingerSifakisYovine,HenzingerHoWongtoi

I Very simple continuous dynamics, summarized in ACH+95

I Verifying differential equations: Greenstreet96

I Reachability for linear differential equations and hybrid
systems: ChutinanKrogh99, AsarinBournezDangMaler00
(polytopes) KurzhanskiVaraiya00, BotchkarevTripakis00
(ellipsoids), MitchellTomlin00 (level sets)

I Pushing faces and treating inputs: DangMaler98, Varaiya98

I Using zonotopes: Girard05

I New algorithmic schemes LeGuernic Girard06-09,
DangTestylier10

The Nonlinear Challenge

I Ok, bravo, but linear systems were studied to death by
everybody

I Real interesting models, biological included, are nonlinear

I What about systems of the form xi+1 = f (xi , ui) or even
simply xi+1 = f (xi) where f is an arbitrary continuous
function, say a polynomial ?

I Nonlinear maps do not preserve convexity

I You can make small time steps, use a local linear
approximation and bloat the obtained set to be safe

I This approach will either accumulate large errors or require
very expensive computation in every step of the main loop

Hybridization: Asarin, Dang and Girard 2003

I Take a nonlinear system xi+1 = f (xi) and partition the
state space into linearization domains (boxes, simplices)

I In each domain Xq find a matrix Aq and a convex polytope
Vq s.t. f (x) ∈ Aqx ⊕ Vq for every x ∈ Xq

I Aq is a local linearization of f with error bounded by Vq

I The new dynamics is xi+1 ∈ Aqx ⊕ Vq iff x ∈ Xq

I A piecewise-(linear-with-input) system, a restricted type of a
hybrid automaton, which over-approximates f in terms of
inclusion of trajectories

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1

ẋ ∈ A00 · x ⊕ V00 ẋ ∈ A10 · x ⊕ V10

ẋ ∈ A01 · x ⊕ V01 ẋ ∈ A11 · x ⊕ V11

x2 ≥ d2

d1

x1
X10X00

X01 X11d2

x2

Hybridization (cont.)

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1

ẋ ∈ A00 · x ⊕ V00 ẋ ∈ A10 · x ⊕ V10

ẋ ∈ A01 · x ⊕ V01 ẋ ∈ A11 · x ⊕ V11

x2 ≥ d2

d1

x1
X10X00

X01 X11d2

x2

I In the hybrid automaton, x evolves according to the linear
dynamics Aqx ⊕ Vq as long as it remains in Xq

I Reaching the boundary between Xq and Xq′ , it takes a
transition to q′ and evolves according to Aq′x ⊕ Vq′

I Linearization and error are recomputed only while crossing
domain boundaries, not in every step

I Approximation quality can be tuned by controlling the size of
linearization domains

Hybrid Reachability

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1

ẋ ∈ A00 · x ⊕ V00 ẋ ∈ A10 · x ⊕ V10

ẋ ∈ A01 · x ⊕ V01 ẋ ∈ A11 · x ⊕ V11

x2 ≥ d2

d1

x1
X10X00

X01 X11d2

x2

I Compute in one domain a sequences of sets using linear
techniques until a set intersects with a boundary

I Take the intersection as initial set in the next domain and
apply linear reachability with the corresponding linearization

(a) (b)

A1 A2

Between Theory and Practice

I First problem: intersection may be spread over many steps:

(c)(b)(a)

I Either explosion or union of intersections, error accumulation

I Major problem: a set may leave a box via many facets:

(a) (b)

I Consequently, static hybridization is practically impossible
beyond 3 dimensions

I Set splitting is an artifact of the fixed grid that we violently
imposed on Space

The Solution: Dynamic Hybridization

I A dynamic hybridization scheme not based on a fixed grid

I In this scheme we do not need intersection at all and we
allow the linearization domains to overlap

I When we leave a domain, we backtrack one step and define a
new linearization domain around the previous set and
continue with the new linearized dynamics from there

Pi
Pi

P0P0

B

(a)

B

(b)

B′

I And it works!

Example: E. Coli Lac Operon

Ṙa = τ − µ ∗ Ra − k2RaOf + k−2(χ− Of)− k3RaI
2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ− Of)

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI
2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE

I We can also do a 9-dim highly-nonlinear aging model, and a
model of an angiogenesis pathway (14-dim polynomial DE)

Conclusions

I Disclaimer: we do not bring any new biological insight on
any concrete system at this point

I Our goal is to develop tools, as general-purpose as possible,
that can aid in the analysis of many non-trivial systems

I Problem specificity cannot be avoided of course: it will
come up at the particular modeling and exploration phases

I Methodological aspects of the use of such tools in the
biological context should be worked out

I Work in progress: optimizing the choice of size and
orientation of the linearizarization domains

I Current version is still a prototype, based on the old
algorithmics for linear systems, hence we are optimistic about
going to even higher dimensions

Commercial I: SpaceEx

I Coming soon: SpaceEx the state space explorer (G. Frehse)

I A tool platform for developing hybrid verification tools

I Two tools will be released in 2010: PHAVer 2.0 for linear
hybrid automata and a tool for piecewise-linear
differential equations using support function representation

I Web interface

And What About Temporal Logic?

I The logic STL (signal temporal logic), an extension of the
real-time logic MITL with numerical predicates

I Example: a water-level controller for a nuclear plant should
maintain a controlled variable y around a fixed level despite
external disturbances x

I We want y to stay always in the interval [−30, 30] except,
possibly, for an initialization period of duration 300

I If, due to disturbances, y goes outside the interval [−0.5, 0.5],
it should return to it within 150 time units and stay there for
at least 20 time units

I The property is expressed as

�[300,2500]((|y | ≤ 30)∧((|y | > 0.5)⇒ ♦[0,150]�[0,20](|y | ≤ 0.5)))

Commercial II: AMT

I The Analog Monitoring Tool (D. Nickovic) is available for
download

Thank You

