On some Potential Research Contributions
to the Multi-Core Enterprise

Oded Maler

CNRS - VERIMAG
Grenoble, France

February 2009



Background

» This presentation is based on observations made in the
ATHOLE project with the participation of STM, CEA-LETI,
THALES, CWS and VERIMAG

» Opinions are mine and do not necessarily represent other
partners nor the ultimate truth

» The project is centered around low-power multi-core mobile
architectures for stream-processing applications (video, audio,
radio)

» Not all these observation are valid for all potential
applications of the multi-core concept

» More on high-level performance modeling and analysis, less on
programming



Motivation

» Complex electronic gadgets are designed and sold under tough
competition constraints
» They should satisfy the following conflicting goals:
» High performance
» Low power
» Short development time, adaptation to changes in standards
and market needs
» Low-level development (hardware, micro-code, assembly) is
better for optimizing performance

» High-level software: more flexible, effective and reliable
development process

» Hardware is inherently parallel

» Software (and algorithms in general) is traditionally more of a
sequential nature



Why Multicore for Mobile Streaming Applications?

» Today such systems are realized by special-purpose hardware
» The same silicon area can be allocated differently:

» A computation and communication fabric consisting of
computation nodes connected via a network on chip (NoC)

» Computation nodes are simple general-purpose processors
with local memory

» Some nodes may be special-purpose hardware accelerators
obeying the same unified communication regime

» To be viable the platform should combine the relative
simplicity and flexibility of software without too much
performance penalty

» This means executing the software in a parallel fashion



Parallelism

» We are not concerned with the following problem:

» Take a sequential program, identify its maximal parallelism
and find an optimal or satisfactory schedule

» Qur starting point: stream-processing applications, described
naturally in a dataflow style

» An application is viewed as a block diagram, a network of
communicating “filters”

» With this formalism the dependence and independence
between tasks is visible and the inherent parallelism is already
“exposed”

» The body of a filter can be written as a sequential acyclic
C-like program obeying some input-output convention



Task Graph Scheduling

» In principle, if we annotate filters with their execution times
and know the number of processors we can apply our favorite
task graph scheduling algorithm

» There are some features that render the straightforward
application of standard scheduling algorithms difficult if not
impossible:

» The problems are recurrent: a stream of instances arrives from
the outside (unlike loop parallelisation)

» Performance optimization should be combined with power
minimization

» The application are data-intensive: communicating and
transferring data among filters is sometime more significant
and resource-consuming than the computations themselves

» Below we sketch some preliminary work to identify and tackle
these problems



Recurrent Scheduling (with Aldric Degorre, FORMATS'08)

» The model:

>

|

Job types: a combination of task-graph (partial order) and
job-shop (different types of machines)

Request generator: generates non-deterministically (but with
bounded frequency) jobs of different types

» Execution platform: a given number of machines for each type
» Admissible request streams: accumulated demand for work

does not exceed platform capacity
Scheduling policy/strategy: allocate machines to task
instances, without knowing the future requests

» Results (theoretical):

>

Negative: some admissible request streams admit no schedule
of bounded latency

Positive: a scheduling policy that can guarantee bounded
backlog for all admissible request streams

Better understanding of the notion of pipelinability



Meeting Dealines Cheaply (with Julien Legriel, 2008)

» Motivation: the execution platform may have different models
varying in the number of processors

» Moreover, to control power consumption, the architecture is
configurable and processors can be turned off or slowed down

» What is the cheapest (in terms of power) configuration
(number of processors and their speeds) on which an
application can be excuted with a reasonable performance
(design-space exploration)



Meeting Dealines Cheaply (contd.)

» Modified task graph model: tasks defined in terms of quantity
of work, not execution times (those depend on the speed of
the processor)

> A (static) cost function on architecture configurations (linear
function of the number of processors at each speed)

» Given a deadline, what is the cheapest architecture on which
the graph can be scheduled to meet the deadline

» The problem is formulated as an SMT (SAT modulo theories,
constrained optimization) and solved using the Yices solver

» Can solve problem with up to 40 tasks and 3 processor speeds

» Extension to periodic problems via finite unfolding



Handling Data (preliminary)

» Exposing non-parallelism: tasks that exchange a lot of data
(directly or indirectly) should be executed on the same
machine

» Task-data graph: the precedence between two tasks is also
annotated by the volume of data communicated between them




Network Topology

» The topology is not the full graph and some pairs of
processors have distance > 1

» Mapping: deciding which task runs on which processor and
what path the communication between a pair of tasks uses

> Sometimes the path is fixed once the processors are
determined

» Heuristic: try to minimize communication by running
communicating tasks on the same machine (filter merging) or
as close as possible

» Balance the computation load



A Mapping Example




From a Mapping to a Schedule

BEEE e [z




This is Not a Good Solution

» We assumed each task waits for all its data before executing
and sends all its output upon termination

» Hence we could use scheduling in the classical sense: allocate
resources (processors and communication channels)
deterministically

» This is not the underlying philosophy and methodology for
these applications (unlike hard real time)

» Computation and communication are interleaved, tasks are
executed in data-driven multi threading

» The behavior of the network is more statistical in nature, bulk
reasoning, load balancing, etc.



Half Baked ldeas

» Current conceptual challenge: how to combine these points of
views, exact scheduling and throughput reasoning

» Reasoning only by quantity of work ignores precedence
constraints

» On the othe hand, pipelined execution may render precedence
less important

» Maybe should invent or reinvent a computational model with
computation and transportation as basic entities

» You start with x at some location and want to have some
complex f(x) at another location

» How you map the “parse tree” of f on the architecture



Timed Automata

>

We use timed automata (and the IF toolbox) as the
underlying model for performance analysis

» ldeal for modeling a task that takes some time to execute

» Can express timing nondeterminism (lower and upper bound)
> In the past (with Y. Abdeddaim and E. Asarin) we have

shown how to reduce optimal scheduling to shortest path in
timed automata

Showed also how to derive dynamic scheduling strategies for
task graph with temporal undertainty (unfortunately it does
not scale up)

Currently (with JF Kempf, M. Bozga and R. Ben Salah) we
develop a toolset for defining tasks, architectures, request
generators and scheduling policies, and evalutate their
performance using IF

Can serve for design-space exploration at early stages of the
development process before code is written



Thank you



