On Synthesizing Controllers from Bounded-Response Properties

Oded Maler Verimag **Dejan Ničković** Verimag

Amir Pnueli Weizmann Institute NYU

Overview

- Introduction
- Property-based Synthesis
 - Bounded-response Properties
- MTL-B
 - Syntax and Semantics
 - Non-Determinism
- From MTL-B to Deterministic Temporal Testers
 - Pastification of MTL-B formulae
 - Bounded-variability assumption
- Application to Synthesis: Arbiter Example
 - Specification in MTL-B
 - Experimental Results
- Conclusion

- Automatic controller synthesis from high-level specifications
 - Problem posed in [Chu63]
 - ♦ Theoretically solved in [BL69,TB73]

- Synthesizing controllers from temporal logic formulae [PR89]
 - Recent improvements [PPS06,PP06]
- Property-based synthesis problem: Given a temporal property φ defined over two distinct alphabets A and B, build a finite-state transducer (controller) from A^{ω} to B^{ω} such that all of its behaviors satisfy φ .
- We are interested in controller synthesis from real-time temporal logic specifications

- Synthesizing controllers from temporal logic formulae [PR89]
 - Recent improvements [PPS06,PP06]
- Property-based synthesis problem: Given a temporal property φ defined over two distinct alphabets A and B, build a finite-state transducer (controller) from A^{ω} to B^{ω} such that all of its behaviors satisfy φ .
- We are interested in controller synthesis from **real-time** temporal logic specifications

- Synthesizing controllers from temporal logic formulae [PR89]
 - Recent improvements [PPS06,PP06]
- Property-based synthesis problem: Given a temporal property φ defined over two distinct alphabets A and B, build a finite-state transducer (controller) from A^{ω} to B^{ω} such that all of its behaviors satisfy φ .
- We are interested in controller synthesis from real-time temporal logic specifications

- Bounded-response correspond to safety properties
 - ♦ Limited scope wrt more general liveness properties
- Liveness properties abstract away the upper bound requirement of occurrence of events
 - But many applications require specifying explicitly such upper bound:
 - Hard real-time systems
 - Scheduling problems
 - **.** . . .
- We choose Bounded Response Metric Temporal Logic MTL-B as the specification formalism
 - ♦ MTL [Koy90] without unbounded until
 - Punctual operators (unlike MITL [AFH96])
 - Allows specifying non-trivial properties
 - ◆ Can be interpreted both in **discrete** and **dense** time
 - lacktriangle We consider specifications of type $\square \varphi$ where φ is an MTL-B formula

- Bounded-response correspond to safety properties
 - ◆ → Limited scope wrt more general liveness properties
- Liveness properties abstract away the upper bound requirement of occurrence of events
 - But many applications require specifying explicitly such upper bound:
 - Hard real-time systems
 - Scheduling problems
 -
- We choose Bounded Response Metric Temporal Logic MTL-B as the specification formalism
 - ◆ MTL [Koy90] without unbounded until
 - Punctual operators (unlike MITL [AFH96])
 - Allows specifying non-trivial properties
 - ◆ Can be interpreted both in **discrete** and **dense** time
 - lacktriangle We consider specifications of type $\square \varphi$ where φ is an MTL-B formula

- Bounded-response correspond to safety properties
 - ♦ Limited scope wrt more general liveness properties
- Liveness properties abstract away the upper bound requirement of occurrence of events
 - But many applications require specifying explicitly such upper bound:
 - Hard real-time systems
 - Scheduling problems
 -
- We choose Bounded Response Metric Temporal Logic MTL-B as the specification formalism
 - ◆ MTL [Koy90] without unbounded until
 - Punctual operators (unlike MITL [AFH96])
 - Allows specifying non-trivial properties
 - ◆ Can be interpreted both in **discrete** and **dense** time
 - lacktriangle We consider specifications of type $\square \varphi$ where φ is an MTL-B formula

- Bounded-response correspond to safety properties
 - ◆ → Limited scope wrt more general liveness properties
- Liveness properties abstract away the upper bound requirement of occurrence of events
 - But many applications require specifying explicitly such upper bound:
 - Hard real-time systems
 - Scheduling problems
 - . . .
- We choose Bounded Response Metric Temporal Logic MTL-B as the specification formalism
 - ♦ MTL [Koy90] without unbounded until
 - Punctual operators (unlike MITL [AFH96])
 - Allows specifying non-trivial properties
 - ◆ Can be interpreted both in **discrete** and **dense** time
 - lacktriangle We consider specifications of type $\square \varphi$ where φ is an MTL-B formula

- Bounded-response correspond to safety properties
 - ◆ → Limited scope wrt more general liveness properties
- Liveness properties abstract away the upper bound requirement of occurrence of events
 - But many applications require specifying explicitly such upper bound:
 - Hard real-time systems
 - Scheduling problems
 - **.** . . .
- We choose Bounded Response Metric Temporal Logic MTL-B as the specification formalism
 - ♦ MTL [Koy90] without unbounded until
 - Punctual operators (unlike MITL [AFH96])
 - Allows specifying non-trivial properties
 - Can be interpreted both in discrete and dense time
 - lacktriangle We consider specifications of type $\square \varphi$ where φ is an MTL-B formula

- Bounded-response correspond to safety properties
 - ♦ Limited scope wrt more general liveness properties
- Liveness properties abstract away the upper bound requirement of occurrence of events
 - But many applications require specifying explicitly such upper bound:
 - Hard real-time systems
 - Scheduling problems
 - **.** . . .
- We choose Bounded Response Metric Temporal Logic MTL-B as the specification formalism
 - ◆ MTL [Koy90] without unbounded until
 - Punctual operators (unlike MITL [AFH96])
 - Allows specifying non-trivial properties
 - Can be interpreted both in discrete and dense time
 - lacktriangle We consider specifications of type $\square \varphi$ where φ is an MTL-B formula

- Bounded-response correspond to safety properties
 - ♦ Limited scope wrt more general liveness properties
- Liveness properties abstract away the upper bound requirement of occurrence of events
 - But many applications require specifying explicitly such upper bound:
 - Hard real-time systems
 - Scheduling problems
 - **.** . . .
- We choose Bounded Response Metric Temporal Logic MTL-B as the specification formalism
 - ♦ MTL [Koy90] without unbounded until
 - Punctual operators (unlike MITL [AFH96])
 - Allows specifying non-trivial properties
 - Can be interpreted both in discrete and dense time
 - We consider specifications of type $\square \varphi$ where φ is an MTL-B formula

Syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{\varphi_2} \mid \varphi_1 \mathcal{P}_{[a,b]} \varphi_2$$

Semantics:

Syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{\varphi_2} \mid \varphi_1 \mathcal{P}_{[a,b]} \varphi_2$$

Semantics:

 $arphi_1 \mathcal{U}_{[a,b]} arphi_2$ $arphi_1 \mathcal{V}_2$ $arphi_1 \mathcal{V}$

Syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{\varphi_2} \mid \varphi_1 \mathcal{P}_{[a,b]} \varphi_2$$

Semantics:

$$(\xi,t) \models \varphi_1 \ \mathcal{U}_{[a,b]} \ \varphi_2 \qquad \leftrightarrow \qquad \exists \ t' \in t \oplus [a,b] \ (\xi,t') \models \varphi_2 \ \text{and}$$

$$\forall t''[t,t'], (\xi,t'') \models \varphi_1$$

$$(\xi,t) \models \varphi_1 \ \mathcal{P}_{[a,b]} \ \varphi_2 \qquad \leftrightarrow \qquad \exists \ t' \in t \ominus [0,b-a] \ (\xi,t') \models \varphi_2 \ \text{and}$$

$$\forall t'' \in [t-b,t'], (\xi,t'') \models \varphi_1$$

$$(\xi,t) \models \varphi_1 \ \mathcal{S}_{[a,b]} \ \varphi_2 \qquad \leftrightarrow \qquad \exists \ t' \in t \ominus [a,b] \ (\xi,t') \models \varphi_2 \ \text{and}$$

$$\forall t'' \in [t,t'], (\xi,t'') \models \varphi_1$$

Notes:

- "Handshake" semantics of bounded until
- ♦ Precedes operator ~ past equivalent of bounded until
- Derived operators: $\diamondsuit_{[a,b]}$, $\boxminus_{[a,b]}$, $\diamondsuit_{[a,b]}$, $\beth_{[a,b]}$

Syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{[a,b]} \varphi_2 \mid \varphi_1 \mathcal{S}_{\varphi_2} \mid \varphi_1 \mathcal{P}_{[a,b]} \varphi_2$$

Semantics:

$$(\xi,t) \models \varphi_1 \ \mathcal{U}_{[a,b]} \ \varphi_2 \qquad \leftrightarrow \qquad \exists \ t' \in t \oplus [a,b] \ (\xi,t') \models \varphi_2 \ \text{and}$$

$$\forall t''[t,t'], (\xi,t'') \models \varphi_1$$

$$(\xi,t) \models \varphi_1 \ \mathcal{P}_{[a,b]} \ \varphi_2 \qquad \leftrightarrow \qquad \exists \ t' \in t \ominus [0,b-a] \ (\xi,t') \models \varphi_2 \ \text{and}$$

$$\forall t'' \in [t-b,t'], (\xi,t'') \models \varphi_1$$

$$(\xi,t) \models \varphi_1 \ \mathcal{S}_{[a,b]} \ \varphi_2 \qquad \leftrightarrow \qquad \exists \ t' \in t \ominus [a,b] \ (\xi,t') \models \varphi_2 \ \text{and}$$

$$\forall t'' \in [t,t'], (\xi,t'') \models \varphi_1$$

$$\forall t'' \in [t,t'], (\xi,t'') \models \varphi_1$$

Notes:

- "Handshake" semantics of bounded until
- ♦ Precedes operator ~ past equivalent of bounded until
- Derived operators: $\diamondsuit_{[a,b]}$, $\boxminus_{[a,b]}$, $\diamondsuit_{[a,b]}$, $\beth_{[a,b]}$

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal

- Unbounded Variability
 - No bound on the variability of input signals
 - ◆ remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - ◆ remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - ◆ remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \hline & Satisfiability & of & φ & at time t \\ depends & on the input signal \\ value & at time $t' \geq t$ \\ \hline \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - ◆ remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \hline & Satisfiability & of & φ & at time t \\ depends & on the input signal \\ value & at time $t' \geq t$ \\ \hline \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - ◆ remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \hline & Satisfiability & of & φ & at time t \\ depends & on the input signal \\ value & at time $t' \geq t$ \\ \hline \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - ◆ remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - ◆ remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - → remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - → remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - → remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - → remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - → remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

- Two sources of non-determinism
- Acausality
 - Semantics of future temporal logics acausal
 - $\begin{tabular}{ll} \blacksquare & {\bf Satisfiability} & {\bf of} & \varphi & {\bf at} & {\bf time} & t \\ & {\bf depends} & {\bf on} & {\bf the} & {\bf input} & {\bf signal} \\ & {\bf value} & {\bf at} & {\bf time} & t' \geq t \\ \end{tabular}$

- Unbounded Variability
 - No bound on the variability of input signals
 - → remember unbounded number of events
 - **Example:** $\diamondsuit_1 p$ perfect shift register for p

MTL-B Property

- Key idea: Change the time direction from future to past
 - ♦ MTL-B formula fully determined withing a bounded horizon
 - ◆ → Eliminate the "predictive" aspect of the semantics
- Example: $\varphi = p \to \diamondsuit_{[1,2]} \ \square_{[0,2]} \ q$

- What would be the "equivalent" past formula ψ that describes the same pattern from t+4?

- Key idea: Change the time direction from future to past
 - ♦ MTL-B formula fully determined withing a bounded horizon
 - ♦ → Eliminate the "predictive" aspect of the semantics
- Example: $\varphi = p \to \diamondsuit_{[1,2]} \ \square_{[0,2]} \ q$

- What would be the "equivalent" past formula ψ that describes the same pattern from t+4?

- Key idea: Change the time direction from future to past
 - ♦ MTL-B formula fully determined withing a bounded horizon
 - ♦ → Eliminate the "predictive" aspect of the semantics
- Example: $\varphi = p \to \diamondsuit_{[1,2]} \ \square_{[0,2]} \ q$

	t+1	t+2	t+3	t+4	\longrightarrow
$\overline{p}*$	** *q **	**	**	**	
 p*	*q	*q	*q	**	
 p*	**	*q	*q	*q	

- What would be the "equivalent" past formula ψ that describes the same pattern from t+4?
 - $\bullet \quad \psi = \diamondsuit_4 \, p \to \diamondsuit_{[0,1]} \, \boxminus_{[0,2]} \, q$

- Key idea: Change the time direction from future to past
 - ♦ MTL-B formula fully determined withing a bounded horizon
 - ♦ → Eliminate the "predictive" aspect of the semantics
- ullet Example: $arphi=p oigotimes_{[1,2]}\;igsqcup_{[0,2]}q$

	t+1		t+3	t+4	\longrightarrow
$\overline{p}*$	**	**	**	**	
 p*	** *q **	*q	*q	**	
 p*	**	*q	*q	*q	

- What would be the "equivalent" past formula ψ that describes the same pattern from t+4?
 - $\bullet \quad \psi = \diamondsuit_4 \, p \to \diamondsuit_{[0,1]} \, \boxminus_{[0,2]} \, q$

- Key idea: Change the time direction from future to past
 - ♦ MTL-B formula fully determined withing a bounded horizon
 - ◆ → Eliminate the "predictive" aspect of the semantics
- ullet Example: $arphi=p oigotimes_{[1,2]}\;igsqcup_{[0,2]}q$

\longrightarrow	t	t+1	t+2	t+3	t+4	\longrightarrow
	$\overline{p}*$	**	**	**	**	
	$p* \\ p*$	*q	*q	*q	**	
	p*	**	*q	*q	*q	
\leftarrow	t-4	t-3	t-2	t-1	t	

- What would be the "equivalent" past formula ψ that describes the same pattern from t+4?
 - $\bullet \quad \psi = \diamondsuit_4 \, p \to \diamondsuit_{[0,1]} \, \boxminus_{[0,2]} \, q$

Temporal Depth of an MTL-B formula

- Each future MTL-B formula admits a number $D(\varphi)$ indicating its **temporal depth**
 - The satisfaction of φ by a signal ξ from any position t is fully determined within the interval $[t, t + D(\varphi)]$

```
\begin{array}{lll} D(p) & = & 0 \\ D(\neg \varphi) & = & D(\varphi) \\ D(\varphi_1 \lor \varphi_2) & = & \max\{D(\varphi_1), D(\varphi_2)\} \\ D(\varphi_1 \mathcal{U}_{[a,b]} \varphi_2) & = & b + \max\{D(\varphi_1), D(\varphi_2)\} \end{array}
```

- Syntax-dependent upper-bound on the actual depth
 - \bullet **Example:** $D(\Box_{[a,b]}\mathsf{T})=b$

Temporal Depth of an MTL-B formula

- Each future MTL-B formula admits a number $D(\varphi)$ indicating its **temporal depth**
 - The satisfaction of φ by a signal ξ from any position t is fully determined within the interval $[t, t + D(\varphi)]$

$$\begin{array}{lll} D(p) & = & 0 \\ D(\neg \varphi) & = & D(\varphi) \\ D(\varphi_1 \lor \varphi_2) & = & \max\{D(\varphi_1), D(\varphi_2)\} \\ D(\varphi_1 \mathcal{U}_{[a,b]} \varphi_2) & = & b + \max\{D(\varphi_1), D(\varphi_2)\} \end{array}$$

- Syntax-dependent upper-bound on the actual depth
 - \bullet **Example:** $D(\Box_{[a,b]}\mathsf{T})=b$

Pastify Operator

• Relation between φ and $\psi = \Pi(\varphi, d)$:

$$(\xi, t) \models \varphi \quad \leftrightarrow \quad (\xi, t + d) \models \psi$$

• **Definition:** The operator Π on future MTL-B formulae φ and a displacement $d \geq D(\varphi)$ is defined recursively as:

$$\Pi(p,d) = \diamondsuit_d p
\Pi(\neg \varphi, d) = \neg \Pi(\varphi, d)
\Pi(\varphi_1 \lor \varphi_2, d) = \Pi(\varphi_1, d) \lor \Pi(\varphi_2, d)
\Pi(\varphi_1 \mathcal{U}_{[a,b]} \varphi_2, d) = \Pi(\varphi_1, d - b) \mathcal{P}_{[a,b]} \Pi(\varphi_2, d - b)
\Pi(\diamondsuit_{[a,b]} \varphi, d) = \diamondsuit_{[0,b-a]} \Pi(\varphi, d - b)$$

• Equisatisfaction of $\square \varphi$ and $\square \psi$:

$$\xi \models \Box \varphi \leftrightarrow \xi \models \Box \psi$$

Pastify Operator

• Relation between φ and $\psi = \Pi(\varphi, d)$:

$$(\xi, t) \models \varphi \quad \leftrightarrow \quad (\xi, t + d) \models \psi$$

• **Definition:** The operator Π on future MTL-B formulae φ and a displacement $d \geq D(\varphi)$ is defined recursively as:

$$\Pi(p,d) = \bigoplus_{d} p
\Pi(\neg \varphi, d) = \neg \Pi(\varphi, d)
\Pi(\varphi_1 \lor \varphi_2, d) = \Pi(\varphi_1, d) \lor \Pi(\varphi_2, d)
\Pi(\varphi_1 \mathcal{U}_{[a,b]} \varphi_2, d) = \Pi(\varphi_1, d - b) \mathcal{P}_{[a,b]} \Pi(\varphi_2, d - b)
\Pi(\diamondsuit_{[a,b]} \varphi, d) = \diamondsuit_{[0,b-a]} \Pi(\varphi, d - b)$$

• Equisatisfaction of $\square \varphi$ and $\square \psi$:

$$\xi \models \Box \varphi \leftrightarrow \xi \models \Box \psi$$

Pastify Operator

• Relation between φ and $\psi = \Pi(\varphi, d)$:

$$(\xi, t) \models \varphi \quad \leftrightarrow \quad (\xi, t + d) \models \psi$$

• **Definition:** The operator Π on future MTL-B formulae φ and a displacement $d \geq D(\varphi)$ is defined recursively as:

$$\Pi(p,d) = \bigoplus_{d} p
\Pi(\neg \varphi, d) = \neg \Pi(\varphi, d)
\Pi(\varphi_1 \lor \varphi_2, d) = \Pi(\varphi_1, d) \lor \Pi(\varphi_2, d)
\Pi(\varphi_1 \mathcal{U}_{[a,b]} \varphi_2, d) = \Pi(\varphi_1, d - b) \mathcal{P}_{[a,b]} \Pi(\varphi_2, d - b)
\Pi(\diamondsuit_{[a,b]} \varphi, d) = \diamondsuit_{[0,b-a]} \Pi(\varphi, d - b)$$

• Equisatisfaction of $\square \varphi$ and $\square \psi$:

$$\xi \models \Box \varphi \quad \leftrightarrow \quad \xi \models \Box \psi$$

Bounded Variability of Input Signals

- Definition:
- A signal ξ is of (Δ, k) -bounded variability if for every interval of the form $[t, t + \Delta]$ the number of changes in the value of ξ is at most k

The bounded variability is preserved by MTL-B operators

Bounded Variability of Input Signals

- Definition:
- A signal ξ is of (Δ, k) -bounded variability if for every interval of the form $[t, t + \Delta]$ the number of changes in the value of ξ is at most k

The bounded variability is preserved by MTL-B operators

Temporal testers for MTL-B formulae

- Temporal testers for LTL proposed in [KP05]
 - ♦ Compositional basis for automata construction corresponding to LTL formulae
 - Extension to real-time temporal logics
 - Past-MITL [MNP05]
 - MITL [MNP06]
- Temporal testers for Past-MITL are deterministic
 - Under the bounded variability assumption, deterministic temporal tester construction naturally extends to past MTL-B operators such as \diamondsuit_d or \mathcal{S}_d
- How to build a deterministic temporal tester for $\mathcal{P}_{[a,b]}$ operator?

Temporal testers for MTL-B formulae

- Temporal testers for LTL proposed in [KP05]
 - ♦ Compositional basis for automata construction corresponding to LTL formulae
 - Extension to real-time temporal logics
 - Past-Mitl [MNP05]
 - MITL [MNP06]
- Temporal testers for Past-MITL are deterministic
 - Under the bounded variability assumption, deterministic temporal tester construction naturally extends to past MTL-B operators such as \diamondsuit_d or \mathcal{S}_d
- How to build a deterministic temporal tester for $\mathcal{P}_{[a,b]}$ operator?

Temporal testers for MTL-B formulae

- Temporal testers for LTL proposed in [KP05]
 - ♦ Compositional basis for automata construction corresponding to LTL formulae
 - Extension to real-time temporal logics
 - Past-Mitl [MNP05]
 - MITL [MNP06]
- Temporal testers for Past-MITL are deterministic
 - Under the bounded variability assumption, deterministic temporal tester construction naturally extends to past MTL-B operators such as \diamondsuit_d or \mathcal{S}_d
- How to build a deterministic temporal tester for $\mathcal{P}_{[a,b]}$ operator?

Deterministic Temporal Tester for $\diamondsuit_{[a,b]} \varphi$

Event recorder [MNP05]

- The core of the tester-based translation from Past MITL to timed automata
- $\bullet \quad \text{Takes } \varphi \text{ as input and } \diamondsuit_{[a,b]} \varphi \text{ as output}$
- lacktriangle The automaton outputs 1 whenever $x_1 \geq a$
- Trivial extension for $\diamondsuit_b \varphi$ with the bounded variability assumption

Deterministic Temporal Tester for $\diamondsuit_{[a,b]} \varphi$

Event recorder [MNP05]

- The core of the tester-based translation from Past MITL to timed automata
- $\bullet \quad \text{Takes } \varphi \text{ as input and } \diamondsuit_{[a,b]} \varphi \text{ as output}$
- lacktriangle The automaton outputs 1 whenever $x_1 \geq a$
- Trivial extension for $\diamondsuit_b \varphi$ with the bounded variability assumption

• Observation [MN04]: If p is a signal of (b, 1)-bounded variability, then

- $\bullet \quad (\xi, t) \models p \, \mathcal{P}_{[a,b]} q \text{ iff } (\xi, t) \models \bigoplus_b p \, \land \, \bigoplus_{[0,b-a]} (p \land q)$

- **Observation** [MN04]: If p is a signal of (b, 1)-bounded variability, then

 - $\bullet \quad (\xi, t) \models p \, \mathcal{P}_{[a,b]} q \text{ iff } (\xi, t) \models \bigotimes_b p \land \bigotimes_{[0,b-a]} (p \land q)$

- **Observation** [MN04]: If p is a signal of (b, 1)-bounded variability, then

 - $\bullet \quad (\xi, t) \models p \, \mathcal{P}_{[a,b]} q \text{ iff } (\xi, t) \models \bigotimes_b p \land \bigotimes_{[0,b-a]} (p \land q)$

- Observation [MN04]: If p is a signal of (b, 1)-bounded variability, then

 - $\bullet \quad (\xi, t) \models p \, \mathcal{P}_{[a,b]} q \text{ iff } (\xi, t) \models \bigotimes_b p \land \bigotimes_{[0,b-a]} (p \land q)$

- Any signal p of (b, k) variability (k > 1), can be decomposed into k signals p_1, p_2, \ldots, p_k , such that:

 - $p_i \wedge p_j$ always **false** for every $i \neq j$
 - p_i is of (b, 1)-variability

• For such p_i 's we have:

$$(\xi, t) \models p \, \mathcal{U}_{[a,b]} q \quad \leftrightarrow \quad (\xi, t) \models \bigvee_{i=1}^{k} p_i \, \mathcal{U}_{[a,b]} q$$
$$(\xi, t) \models p \, \mathcal{P}_{[a,b]} q \quad \leftrightarrow \quad (\xi, t) \models \bigvee_{i=1}^{k} p_i \, \mathcal{P}_{[a,b]} q$$

• The splitting of p can be achieved trivially using an automaton realizing a **counter** modulo k.

- Any signal p of (b, k) variability (k > 1), can be decomposed into k signals p_1, p_2, \ldots, p_k , such that:

 - $p_i \wedge p_j$ always **false** for every $i \neq j$
 - p_i is of (b, 1)-variability

• For such p_i 's we have:

$$(\xi, t) \models p \, \mathcal{U}_{[a,b]} q \quad \leftrightarrow \quad (\xi, t) \models \bigvee_{i=1}^{k} p_i \, \mathcal{U}_{[a,b]} q$$
$$(\xi, t) \models p \, \mathcal{P}_{[a,b]} q \quad \leftrightarrow \quad (\xi, t) \models \bigvee_{i=1}^{k} p_i \, \mathcal{P}_{[a,b]} q$$

• The splitting of p can be achieved trivially using an automaton realizing a **counter** modulo k.

- Any signal p of (b, k) variability (k > 1), can be decomposed into k signals p_1, p_2, \ldots, p_k , such that:

 - $p_i \wedge p_j$ always **false** for every $i \neq j$
 - p_i is of (b, 1)-variability

• For such p_i 's we have:

$$(\xi, t) \models p \, \mathcal{U}_{[a,b]} q \quad \leftrightarrow \quad (\xi, t) \models \bigvee_{i=1}^{k} p_i \, \mathcal{U}_{[a,b]} q$$
$$(\xi, t) \models p \, \mathcal{P}_{[a,b]} q \quad \leftrightarrow \quad (\xi, t) \models \bigvee_{i=1}^{k} p_i \, \mathcal{P}_{[a,b]} q$$

 The splitting of p can be achieved trivially using an automaton realizing a counter modulo k.

Synthesis of an Arbiter

Architecture of an arbiter

 Typical timed interaction between the arbiter an a client i Communication protocol between the arbiter an a client i

Synthesis of an Arbiter

Architecture of an arbiter

 Typical timed interaction between the arbiter an a client i Communication protocol between the arbiter an a client i

Synthesis of an Arbiter

Architecture of an arbiter

 Typical timed interaction between the arbiter an a client i

 Communication protocol between the arbiter an a client i

Initial conditions

- \bullet $I^E: \bigwedge_i \overline{r_i}$
- \bullet $I^C: \bigwedge_i \overline{g_i}$
- Safety requirements
- Bounded liveness requirements
 - \bullet $L^E: \bigwedge_i (g_i \to \bigotimes_{[0,d_1]} \overline{r_i})$
 - $\bullet \quad L^C: \bigwedge_i (r_i \to \diamondsuit_{[0,d_2]} g_i) \land \bigwedge_i (\overline{r_i} \to \diamondsuit_{[0,d_3]} \overline{g_i})$
- Main formula
 - $\bullet \quad (I^E \to I^C) \land \square(\square(\Pi(S^E) \land \Pi(L^E)) \to (\Pi(S^E) \land \Pi(L^C)))$

Initial conditions

- \bullet $I^E: \bigwedge_i \overline{r_i}$
- \bullet $I^C: \bigwedge_i \overline{g_i}$

Safety requirements

Bounded liveness requirements

- \bullet $L^E: \bigwedge_i (g_i \to \bigotimes_{[0,d_1]} \overline{r_i})$
- $\bullet \quad L^C: \bigwedge_i (r_i \to \bigotimes_{[0,d_2]} g_i) \land \bigwedge_i (\overline{r_i} \to \bigotimes_{[0,d_3]} \overline{g_i})$

$$\bullet \quad (I^E \to I^C) \land \square(\square(\Pi(S^E) \land \Pi(L^E)) \to (\Pi(S^E) \land \Pi(L^C)))$$

Initial conditions

- \bullet $I^E: \bigwedge_i \overline{r_i}$
- \bullet $I^C: \bigwedge_i \overline{g_i}$

Safety requirements

Bounded liveness requirements

- \bullet $L^E: \bigwedge_i (g_i \to \bigotimes_{[0,d_1]} \overline{r_i})$
- $L^C: \bigwedge_i (r_i \to \bigotimes_{[0,d_2]} g_i) \land \bigwedge_i (\overline{r_i} \to \bigotimes_{[0,d_3]} \overline{g_i})$

$$\bullet \quad (I^E \to I^C) \land \square(\square(S^E) \land \Pi(L^E)) \to (\Pi(S^E) \land \Pi(L^C)))$$

Initial conditions

- \bullet $I^E: \bigwedge_i \overline{r_i}$
- \bullet $I^C: \bigwedge_i \overline{g_i}$

Safety requirements

Bounded liveness requirements

- \bullet $L^E: \bigwedge_i (g_i \to \bigotimes_{[0,d_1]} \overline{r_i})$
- $L^C: \bigwedge_i (r_i \to \bigotimes_{[0,d_2]} g_i) \land \bigwedge_i (\overline{r_i} \to \bigotimes_{[0,d_3]} \overline{g_i})$

$$\bullet \quad (I^E \to I^C) \land \square(\square(S^E) \land \Pi(L^E)) \to (\Pi(S^E) \land \Pi(L^C)))$$

Initial conditions

- \bullet $I^E: \bigwedge_i \overline{r_i}$
- \bullet $I^C: \bigwedge_i \overline{g_i}$

Safety requirements

Bounded liveness requirements

- \bullet $L^E: \bigwedge_i (g_i \to \bigotimes_{[0,d_1]} \overline{r_i})$
- $L^C: \bigwedge_i (r_i \to \bigotimes_{[0,d_2]} g_i) \land \bigwedge_i (\overline{r_i} \to \bigotimes_{[0,d_3]} \overline{g_i})$

$$\bullet \quad (I^E \to I^C) \land \square(\square(\Pi(S^E) \land \Pi(L^E)) \to (\Pi(S^E) \land \Pi(L^C)))$$

Synthesis of an Arbiter: Experimental Results

- Discrete time synthesis
- $d_3 = 1$

N	d_1	d_2	Size	Time	d_1	d_2	Size	Time	d_1	d_2	Size	Time
2	2	4	466	0.00	3	5	654	0.01	4	6	946	0.02
3	2	8	1382	0.14	3	10	2432	0.34	4	12	4166	0.51
4	2	12	4323	0.63	3	15	7402	1.12	4	18	16469	2.33
5	2	16	13505	1.93	3	20	26801	4.77	4	24	50674	10.50
6	2	20	43366	8.16	3	25	84027	22.55	4	30	168944	64.38
7	2	24	138937	44.38	3	30	297524	204.56	4	36	700126	1897.56

- Exponential growth of BDD nodes in N and d_2
 - Expected using discrete time

Synthesis of an Arbiter: Experimental Results

- Discrete time synthesis
- $d_3 = 1$

N	d_1	d_2	Size	Time	d_1	d_2	Size	Time	d_1	d_2	Size	Time
2	2	4	466	0.00	3	5	654	0.01	4	6	946	0.02
3	2	8	1382	0.14	3	10	2432	0.34	4	12	4166	0.51
4	2	12	4323	0.63	3	15	7402	1.12	4	18	16469	2.33
5	2	16	13505	1.93	3	20	26801	4.77	4	24	50674	10.50
6	2	20	43366	8.16	3	25	84027	22.55	4	30	168944	64.38
7	2	24	138937	44.38	3	30	297524	204.56	4	36	700126	1897.56

- Exponential growth of BDD nodes in N and d_2
 - Expected using discrete time

Conclusion

- Complete chain that allows to synthesize controllers automatically from real-time bounded-response temporal specifications
 - ♦ Bounded-response temporal property → deterministic timed automaton
 - Pastification of MTL-B formulae
 - Bounded-variability assumption
- Future work
 - Focus on efficient symbolic algorithms in the spirit of [CDF⁺05]
 - Apply the synthesis algorithm to more complex specifications of real-time scheduling problems

Conclusion

- Complete chain that allows to synthesize controllers automatically from real-time bounded-response temporal specifications
 - ♦ Bounded-response temporal property → deterministic timed automaton
 - Pastification of MTL-B formulae
 - Bounded-variability assumption
- Future work
 - Focus on efficient symbolic algorithms in the spirit of [CDF⁺05]
 - Apply the synthesis algorithm to more complex specifications of real-time scheduling problems

Conclusion

- Complete chain that allows to synthesize controllers automatically from real-time bounded-response temporal specifications
 - ♦ Bounded-response temporal property → deterministic timed automaton
 - Pastification of MTL-B formulae
 - Bounded-variability assumption
- Future work
 - ♦ Focus on efficient symbolic algorithms in the spirit of [CDF⁺05]
 - Apply the synthesis algorithm to more complex specifications of real-time scheduling problems

References

- [AFH96] R. Alur, T. Feder, and T.A. Henzinger, The Benefits of Relaxing Punctuality, Journal of the ACM 43, 116–146, 1996 (first published in PODC'91).
- [AMP95] E. Asarin, O. Maler and A. Pnueli, Symbolic Controller Synthesis for Discrete and Timed Systems, *Hybrid Systems II*, 1–20, LNCS 999, 1995.
- [BL69] J.R. Büchi and L.H. Landweber, Solving Sequential Conditions by Finite-state Operators, *Trans. of the AMS* **138**, 295–311, 1969.
- [CDF⁺05] F. Cassez, A. David, E. Fleury, K.G. Larsen and D. Lime, Efficient On-the-Fly Algorithms for the Analysis of Timed Games, *CONCUR'05*, 66–80, 2005.
- [Chu63] A. Church, Logic, Arithmetic and Automata, in *Proc. of the Int. Cong. of Mathematicians 1962*, 23–35, 1963.
- [KP05] Y. Kesten and A. Pnueli, A Compositional Approach to CTL* Verification, Theoretical Computer Science **331**, 397–428, 2005.
- [Koy90] R. Koymans, Specifying Real-time Properties with Metric Temporal Logic, Real-time Systems 2, 255–299, 1990.

References

- [MN04] O. Maler and D. Nickovic, Monitoring Temporal Properties of Continuous Signals, *FORMATS/FTRTFT'04*, 152–166, LNCS 3253, 2004.
- [MNP05] O. Maler, D. Nickovic and A. Pnueli, Real Time Temporal Logic: Past, Present, Future, *FORMATS'05*, 2–16, LNCS 3829, 2005.
- [MNP06] O. Maler, D. Nickovic and A. Pnueli, From MITL to Timed Automata, FORMATS'06, 274–289, LNCS 4202, 2006.
- [MPS95] O. Maler, A. Pnueli and J. Sifakis, On the Synthesis of Discrete Controllers for Timed Systems, *STACS'95*, 229–242, LNCS 900, 1995.
- [PPS06] N. Piterman, A. Pnueli and Y. Sa'ar, Synthesis of Reactive(1) Designs, *VMCAI'06*, 364–380, 2006.
- [PP06] N. Piterman and A. Pnueli, Faster Solutions of Rabin and Streett Games, *LICS'06*, 275–284, 2006.
- [RW89] P.J. Ramadge and W.M. Wonham, The Control of Discrete Event Systems, *Proc. of the IEEE* **77**, 81–98, 1989.