
GoBack

On Synthesizing Controllers from Bounded-Response Properties 1 / 23

On Synthesizing Controllers from Bounded-Response Proper ties

Oded Maler
Verimag

Dejan Ni čkovi ć
Verimag

Amir Pnueli
Weizmann Institute

NYU

Overview

On Synthesizing Controllers from Bounded-Response Properties 2 / 23

● Introduction
● Property-based Synthesis

✦ Bounded-response Properties

● MTL-B

✦ Syntax and Semantics
✦ Non-Determinism

● From MTL-B to Deterministic Temporal Testers

✦ Pastification of MTL-B formulae
✦ Bounded-variability assumption

● Application to Synthesis: Arbiter Example

✦ Specification in MTL-B
✦ Experimental Results

● Conclusion

Introduction

On Synthesizing Controllers from Bounded-Response Properties 3 / 23

Controller
· · ·· · ·

r1

r2

rm gn

g2

g1

Environment
variables

Controller
variables

BAD

r1

r2

r2

r1 g1g2

g2

g1

l0

l1 l2

. . .

. . .

r3 g1

● Automatic controller synthesis from high-level specifications

✦ Problem posed in [Chu63]
✦ Theoretically solved in [BL69,TB73]

Introduction

On Synthesizing Controllers from Bounded-Response Properties 4 / 23

BAD

r1

r2

r2

r1 g1g2

g2

g1

l0

l1 l2

. . .

. . .

r3 g1

0 (r1 → r1Sg1)0 (g1 → 1
[0,1]

r1)0 (g1 → 1
[0,2]

r1)

. . .

● Synthesizing controllers from temporal logic formulae [PR89]

✦ Recent improvements [PPS06,PP06]

● Property-based synthesis problem:
Given a temporal property ϕ defined over two distinct alphabets A and B, build a
finite-state transducer (controller) from Aω to Bω such that all of its behaviors satisfy
ϕ.

● We are interested in controller synthesis from real-time temporal logic specifications

Introduction

On Synthesizing Controllers from Bounded-Response Properties 4 / 23

BAD

r1

r2

r2

r1 g1g2

g2

g1

l0

l1 l2

. . .

. . .

r3 g1

0 (r1 → r1Sg1)0 (g1 → 1
[0,1]

r1)0 (g1 → 1
[0,2]

r1)

. . .

● Synthesizing controllers from temporal logic formulae [PR89]

✦ Recent improvements [PPS06,PP06]

● Property-based synthesis problem:
Given a temporal property ϕ defined over two distinct alphabets A and B, build a
finite-state transducer (controller) from Aω to Bω such that all of its behaviors satisfy
ϕ.

● We are interested in controller synthesis from real-time temporal logic specifications

Introduction

On Synthesizing Controllers from Bounded-Response Properties 4 / 23

BAD

r1

r2

r2

r1 g1g2

g2

g1

l0

l1 l2

. . .

. . .

r3 g1

0 (r1 → r1Sg1)0 (g1 → 1
[0,1]

r1)0 (g1 → 1
[0,2]

r1)

. . .

● Synthesizing controllers from temporal logic formulae [PR89]

✦ Recent improvements [PPS06,PP06]

● Property-based synthesis problem:
Given a temporal property ϕ defined over two distinct alphabets A and B, build a
finite-state transducer (controller) from Aω to Bω such that all of its behaviors satisfy
ϕ.

● We are interested in controller synthesis from real-time temporal logic specifications

Temporal Logic and Controller Synthesis

On Synthesizing Controllers from Bounded-Response Properties 5 / 23

Specification
Temporal Logic Non−Deterministic

Game Automaton

Deterministic
Game Automaton

Controller

translation

determinization

controller synthesis alg.

Temporal Logic and Controller Synthesis

On Synthesizing Controllers from Bounded-Response Properties 5 / 23

Specification
Temporal Logic Non−Deterministic

Game Automaton

Deterministic
Game Automaton

Controller

acceptance conditions
non−determinism

translation

determinization

controller synthesis alg.

timed automata

Temporal Logic and Controller Synthesis

On Synthesizing Controllers from Bounded-Response Properties 5 / 23

Specification
Temporal Logic

Deterministic
Game Automaton

Controller

safety
deterministic

controller synthesis alg.

translation

Non−Deterministic
Game Automaton

Past

Temporal Logic and Controller Synthesis

On Synthesizing Controllers from Bounded-Response Properties 5 / 23

Specification
Temporal Logic Non−Deterministic

Game Automaton

Deterministic
Game Automaton

Controller

translation

determinization

controller synthesis alg.

timed automata

Bounded Response

non−determinism
safety

Temporal Logic and Controller Synthesis

On Synthesizing Controllers from Bounded-Response Properties 5 / 23

Specification
Temporal Logic

Deterministic
Game Automaton

Controller

safety
deterministic

Eliminate sources of
non−determinism

controller synthesis alg.

translation

Non−Deterministic
Game Automaton

Bounded Response

Motivation for Bounded-Response Properties

On Synthesizing Controllers from Bounded-Response Properties 6 / 23

● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula

Motivation for Bounded-Response Properties

On Synthesizing Controllers from Bounded-Response Properties 6 / 23

● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula

Motivation for Bounded-Response Properties

On Synthesizing Controllers from Bounded-Response Properties 6 / 23

● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula

Motivation for Bounded-Response Properties

On Synthesizing Controllers from Bounded-Response Properties 6 / 23

● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula

Motivation for Bounded-Response Properties

On Synthesizing Controllers from Bounded-Response Properties 6 / 23

● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula

Motivation for Bounded-Response Properties

On Synthesizing Controllers from Bounded-Response Properties 6 / 23

● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula

Motivation for Bounded-Response Properties

On Synthesizing Controllers from Bounded-Response Properties 6 / 23

● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula

MTL-B: Syntax and Semantics

On Synthesizing Controllers from Bounded-Response Properties 7 / 23

● Syntax:
ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1S[a,b]ϕ2 | ϕ1Sϕ2 | ϕ1P[a,b]ϕ2

● Semantics:
. . .

(ξ, t) |= ϕ1 U[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′[t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 P[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [0, b − a] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t − b, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 S[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

. . .

MTL-B: Syntax and Semantics

On Synthesizing Controllers from Bounded-Response Properties 7 / 23

● Syntax:
ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1S[a,b]ϕ2 | ϕ1Sϕ2 | ϕ1P[a,b]ϕ2

● Semantics:
. . .

(ξ, t) |= ϕ1 U[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′[t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 P[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [0, b − a] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t − b, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 S[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

. . .

ϕ2ϕ1

ϕ1P[a,b]ϕ2

ϕ2 ϕ1

ϕ1S[a,b]ϕ2

ϕ2ϕ1

ϕ1U[a,b]ϕ2

t t + a t + bt − at − b
t − (b − a)

MTL-B: Syntax and Semantics

On Synthesizing Controllers from Bounded-Response Properties 7 / 23

● Syntax:
ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1S[a,b]ϕ2 | ϕ1Sϕ2 | ϕ1P[a,b]ϕ2

● Semantics:
. . .

(ξ, t) |= ϕ1 U[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′[t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 P[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [0, b − a] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t − b, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 S[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

. . .

● Notes:

✦ “Handshake” semantics of bounded until
✦ Precedes operator ∼ past equivalent of bounded until

● Derived operators: Q [a,b], ` [a,b], 1 [a,b], 0 [a,b]

MTL-B: Syntax and Semantics

On Synthesizing Controllers from Bounded-Response Properties 7 / 23

● Syntax:
ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1S[a,b]ϕ2 | ϕ1Sϕ2 | ϕ1P[a,b]ϕ2

● Semantics:
. . .

(ξ, t) |= ϕ1 U[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′[t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 P[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [0, b − a] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t − b, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 S[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

. . .

● Notes:

✦ “Handshake” semantics of bounded until
✦ Precedes operator ∼ past equivalent of bounded until

● Derived operators: Q [a,b], ` [a,b], 1 [a,b], 0 [a,b]

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

3[a,b]p

p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

p

Q 1 p

tt − 1

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

p

Q 1 p

t

x0 := 0

t − 1

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

p

Q 1 p

tt − 1

x0 := 0

x1 := 0

MTL-B and Non-Determinism

On Synthesizing Controllers from Bounded-Response Properties 8 / 23

● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

t t + a t + b

p

3[a,b]p

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p

p

Q 1 p

tt − 1

x0 := 0

· · ·

x2 := 0

x1 := 0

From MTL-B to Deterministic Timed Automata: Overview

On Synthesizing Controllers from Bounded-Response Properties 9 / 23

MTL-B Property

From MTL-B to Deterministic Timed Automata: Overview

On Synthesizing Controllers from Bounded-Response Properties 9 / 23

non−determinism
Eliminates acausality−based

Pastification
MTL-B Property MTL-B Property

Past

From MTL-B to Deterministic Timed Automata: Overview

On Synthesizing Controllers from Bounded-Response Properties 9 / 23

non−determinism
Eliminates acausality−based

Assumption
Bounded−variability

Input−deterministic
Timed Game Automaton

Pastification

Eliminates unbounded
variability−based
non−determinism

Translation to DTA
[MNP05]

MTL-B Property MTL-B Property
Past

From MTL-B to Deterministic Timed Automata: Overview

On Synthesizing Controllers from Bounded-Response Properties 9 / 23

non−determinism
Eliminates acausality−based

Assumption
Bounded−variability

Input−deterministic
Timed Game Automaton

Pastification

Controller Synthesis Algorithm

Eliminates unbounded
variability−based
non−determinism

Translation to DTA
[MNP05]

[AMP95]
Real−time Controller

[CDF+05]

MTL-B Property MTL-B Property
Past

From MTL-B to Deterministic Timed Automata: Overview

On Synthesizing Controllers from Bounded-Response Properties 9 / 23

non−determinism
Eliminates acausality−based

Assumption
Bounded−variability

Input−deterministic
Timed Game Automaton

Pastification

Controller Synthesis Algorithm

Eliminates unbounded
variability−based
non−determinism

Translation to DTA
[MNP05]

[AMP95]
Real−time Controller

[CDF+05]

MTL-B Property MTL-B Property
Past

Pastification of MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 10 / 23

● Key idea: Change the time direction from future to past

✦ MTL-B formula fully determined withing a bounded horizon
✦ → Eliminate the “predictive” aspect of the semantics

● Example: ϕ = p→ 1

[1,2]

0 [0,2] q

● What would be the “equivalent” past formula ψ that describes the same pattern from
t+ 4?

✦ ψ = Q 4 p→ Q [0,1] ` [0,2] q

Pastification of MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 10 / 23

● Key idea: Change the time direction from future to past

✦ MTL-B formula fully determined withing a bounded horizon
✦ → Eliminate the “predictive” aspect of the semantics

● Example: ϕ = p→ 1

[1,2]

0 [0,2] q

● What would be the “equivalent” past formula ψ that describes the same pattern from
t+ 4?

✦ ψ = Q 4 p→ Q [0,1] ` [0,2] q

Pastification of MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 10 / 23

● Key idea: Change the time direction from future to past

✦ MTL-B formula fully determined withing a bounded horizon
✦ → Eliminate the “predictive” aspect of the semantics

● Example: ϕ = p→ 1

[1,2]

0 [0,2] q

→ t t+ 1 t+ 2 t+ 3 t+ 4 →

p∗ ∗∗ ∗∗ ∗∗ ∗∗
. . . p∗ ∗q ∗q ∗q ∗∗ . . .

p∗ ∗∗ ∗q ∗q ∗q

● What would be the “equivalent” past formula ψ that describes the same pattern from
t+ 4?

✦ ψ = Q 4 p→ Q [0,1] ` [0,2] q

Pastification of MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 10 / 23

● Key idea: Change the time direction from future to past

✦ MTL-B formula fully determined withing a bounded horizon
✦ → Eliminate the “predictive” aspect of the semantics

● Example: ϕ = p→ 1

[1,2]

0 [0,2] q

→ t t+ 1 t+ 2 t+ 3 t+ 4 →

p∗ ∗∗ ∗∗ ∗∗ ∗∗
. . . p∗ ∗q ∗q ∗q ∗∗ . . .

p∗ ∗∗ ∗q ∗q ∗q

● What would be the “equivalent” past formula ψ that describes the same pattern from
t+ 4?

✦ ψ = Q 4 p→ Q [0,1] ` [0,2] q

Pastification of MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 10 / 23

● Key idea: Change the time direction from future to past

✦ MTL-B formula fully determined withing a bounded horizon
✦ → Eliminate the “predictive” aspect of the semantics

● Example: ϕ = p→ 1

[1,2]

0 [0,2] q

→ t t+ 1 t+ 2 t+ 3 t+ 4 →

p∗ ∗∗ ∗∗ ∗∗ ∗∗
. . . p∗ ∗q ∗q ∗q ∗∗ . . .

p∗ ∗∗ ∗q ∗q ∗q

← t− 4 t− 3 t− 2 t− 1 t ←

● What would be the “equivalent” past formula ψ that describes the same pattern from
t+ 4?

✦ ψ = Q 4 p→ Q [0,1] ` [0,2] q

Temporal Depth of an MTL-B formula

On Synthesizing Controllers from Bounded-Response Properties 11 / 23

● Each future MTL-B formula admits a number D(ϕ) indicating its temporal depth

✦ The satisfaction of ϕ by a signal ξ from any position t is fully determined within the
interval [t, t+D(ϕ)]

D(p) = 0
D(¬ϕ) = D(ϕ)
D(ϕ1 ∨ ϕ2) = max{D(ϕ1),D(ϕ2)}
D(ϕ1U[a,b]ϕ2) = b+ max{D(ϕ1),D(ϕ2)}

● Syntax-dependent upper-bound on the actual depth

✦ Example: D(2[a,b]T) = b

Temporal Depth of an MTL-B formula

On Synthesizing Controllers from Bounded-Response Properties 11 / 23

● Each future MTL-B formula admits a number D(ϕ) indicating its temporal depth

✦ The satisfaction of ϕ by a signal ξ from any position t is fully determined within the
interval [t, t+D(ϕ)]

D(p) = 0
D(¬ϕ) = D(ϕ)
D(ϕ1 ∨ ϕ2) = max{D(ϕ1),D(ϕ2)}
D(ϕ1U[a,b]ϕ2) = b+ max{D(ϕ1),D(ϕ2)}

● Syntax-dependent upper-bound on the actual depth

✦ Example: D(2[a,b]T) = b

Pastify Operator

On Synthesizing Controllers from Bounded-Response Properties 12 / 23

● Relation between ϕ and ψ = Π(ϕ, d):

(ξ, t) |= ϕ ↔ (ξ, t+ d) |= ψ

● Definition: The operator Π on future MTL-B formulae ϕ and a displacement d ≥ D(ϕ)
is defined recursively as:

Π(p, d) = Q

d
p

Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨Π(ϕ2, d)
Π(ϕ1U[a,b]ϕ2, d) = Π(ϕ1, d− b)P[a,b]Π(ϕ2, d− b)
Π(1

[a,b]
ϕ, d) = Q

[0,b−a]
Π(ϕ, d− b)

● Equisatisfaction of 0 ϕ and 0 ψ:

ξ |= 0 ϕ ↔ ξ |= 0 ψ

Pastify Operator

On Synthesizing Controllers from Bounded-Response Properties 12 / 23

● Relation between ϕ and ψ = Π(ϕ, d):

(ξ, t) |= ϕ ↔ (ξ, t+ d) |= ψ

● Definition: The operator Π on future MTL-B formulae ϕ and a displacement d ≥ D(ϕ)
is defined recursively as:

Π(p, d) = Q

d
p

Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨Π(ϕ2, d)
Π(ϕ1U[a,b]ϕ2, d) = Π(ϕ1, d− b)P[a,b]Π(ϕ2, d− b)
Π(1

[a,b]
ϕ, d) = Q

[0,b−a]
Π(ϕ, d− b)

● Equisatisfaction of 0 ϕ and 0 ψ:

ξ |= 0 ϕ ↔ ξ |= 0 ψ

Pastify Operator

On Synthesizing Controllers from Bounded-Response Properties 12 / 23

● Relation between ϕ and ψ = Π(ϕ, d):

(ξ, t) |= ϕ ↔ (ξ, t+ d) |= ψ

● Definition: The operator Π on future MTL-B formulae ϕ and a displacement d ≥ D(ϕ)
is defined recursively as:

Π(p, d) = Q

d
p

Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨Π(ϕ2, d)
Π(ϕ1U[a,b]ϕ2, d) = Π(ϕ1, d− b)P[a,b]Π(ϕ2, d− b)
Π(1

[a,b]
ϕ, d) = Q

[0,b−a]
Π(ϕ, d− b)

● Equisatisfaction of 0 ϕ and 0 ψ:

ξ |= 0 ϕ ↔ ξ |= 0 ψ

Bounded Variability of Input Signals

On Synthesizing Controllers from Bounded-Response Properties 13 / 23

● Definition:
● A signal ξ is of (∆, k)-bounded variability if for every interval of the form [t, t+ ∆] the

number of changes in the value of ξ is at most k

1 2 3 4 5 6 kk−2 k−1

t t + ∆

ξ

● The bounded variability is preserved by MTL-B operators

Bounded Variability of Input Signals

On Synthesizing Controllers from Bounded-Response Properties 13 / 23

● Definition:
● A signal ξ is of (∆, k)-bounded variability if for every interval of the form [t, t+ ∆] the

number of changes in the value of ξ is at most k

1 2 3 4 5 6 kk−2 k−1

t t + ∆

ξ

● The bounded variability is preserved by MTL-B operators

Temporal testers for MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 14 / 23

● Temporal testers for LTL proposed in [KP05]

✦ Compositional basis for automata construction corresponding to LTL formulae
✦ Extension to real-time temporal logics

■ Past-MITL [MNP05]
■ MITL [MNP06]

● Temporal testers for Past-MITL are deterministic

✦ Under the bounded variability assumption, deterministic temporal tester
construction naturally extends to past MTL-B operators such as Q

d
or Sd

● How to build a deterministic temporal tester for P[a,b] operator?

Temporal testers for MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 14 / 23

● Temporal testers for LTL proposed in [KP05]

✦ Compositional basis for automata construction corresponding to LTL formulae
✦ Extension to real-time temporal logics

■ Past-MITL [MNP05]
■ MITL [MNP06]

● Temporal testers for Past-MITL are deterministic

✦ Under the bounded variability assumption, deterministic temporal tester
construction naturally extends to past MTL-B operators such as Q

d
or Sd

● How to build a deterministic temporal tester for P[a,b] operator?

Temporal testers for MTL-B formulae

On Synthesizing Controllers from Bounded-Response Properties 14 / 23

● Temporal testers for LTL proposed in [KP05]

✦ Compositional basis for automata construction corresponding to LTL formulae
✦ Extension to real-time temporal logics

■ Past-MITL [MNP05]
■ MITL [MNP06]

● Temporal testers for Past-MITL are deterministic

✦ Under the bounded variability assumption, deterministic temporal tester
construction naturally extends to past MTL-B operators such as Q

d
or Sd

● How to build a deterministic temporal tester for P[a,b] operator?

Deterministic Temporal Tester for Q [a,b] ϕ

On Synthesizing Controllers from Bounded-Response Properties 15 / 23

● Event recorder [MNP05]

✦ The core of the tester-based
translation from Past MITL to timed
automata

✦ Takes ϕ as input and Q

[a,b]
ϕ as

output
✦ The automaton outputs 1

whenever x1 ≥ a

● Trivial extension for Q

b
ϕ with the

bounded variability assumption

y1 ≤ b ϕ

010101

y1 ≤ b

01010

¬ϕ

y1 ≥ b/s

ϕ

y1 ≤ b y1 ≤ b

¬ϕ

¬ϕ ϕ

0 01

010 0101

y1 ≥ b/s

y1 ≥ b/s y1 ≥ b/s
¬ϕ/y1 := 0

¬ϕ/y2 := 0

¬ϕy1 ≤ b

(01)m0

. . .

ϕ/x1 := 0

ϕ/x2 := 0

ϕ/x3 := 0

Deterministic Temporal Tester for Q [a,b] ϕ

On Synthesizing Controllers from Bounded-Response Properties 15 / 23

● Event recorder [MNP05]

✦ The core of the tester-based
translation from Past MITL to timed
automata

✦ Takes ϕ as input and Q

[a,b]
ϕ as

output
✦ The automaton outputs 1

whenever x1 ≥ a

● Trivial extension for Q

b
ϕ with the

bounded variability assumption

y1 ≤ b ϕ

010101

y1 ≤ b

01010

¬ϕ

y1 ≥ b/s

ϕ

y1 ≤ b y1 ≤ b

¬ϕ

¬ϕ ϕ

0 01

010 0101

y1 ≥ b/s

y1 ≥ b/s y1 ≥ b/s
¬ϕ/y1 := 0

¬ϕ/y2 := 0

¬ϕy1 ≤ b

(01)m0

. . .

ϕ/x1 := 0

ϕ/x2 := 0

ϕ/x3 := 0

Deterministic Temporal Tester for ϕ1Pϕ2

On Synthesizing Controllers from Bounded-Response Properties 16 / 23

● Observation [MN04]: If p is a signal of (b, 1)-bounded variability, then

✦ (ξ, t) |= p U[a,b]q iff (ξ, t) |= p ∧ 1

[a,b]
(p ∧ q)

✦ (ξ, t) |= pP[a,b]q iff (ξ, t) |= Q

b
p ∧ Q

[0,b−a]
(p ∧ q)

p

q

Deterministic Temporal Tester for ϕ1Pϕ2

On Synthesizing Controllers from Bounded-Response Properties 16 / 23

● Observation [MN04]: If p is a signal of (b, 1)-bounded variability, then

✦ (ξ, t) |= p U[a,b]q iff (ξ, t) |= p ∧ 1

[a,b]
(p ∧ q)

✦ (ξ, t) |= pP[a,b]q iff (ξ, t) |= Q

b
p ∧ Q

[0,b−a]
(p ∧ q)

p

q

t t + a t + bt′

Deterministic Temporal Tester for ϕ1Pϕ2

On Synthesizing Controllers from Bounded-Response Properties 16 / 23

● Observation [MN04]: If p is a signal of (b, 1)-bounded variability, then

✦ (ξ, t) |= p U[a,b]q iff (ξ, t) |= p ∧ 1

[a,b]
(p ∧ q)

✦ (ξ, t) |= pP[a,b]q iff (ξ, t) |= Q

b
p ∧ Q

[0,b−a]
(p ∧ q)

p

q

t t + a t + bt′

p p ∧ q

Deterministic Temporal Tester for ϕ1Pϕ2

On Synthesizing Controllers from Bounded-Response Properties 16 / 23

● Observation [MN04]: If p is a signal of (b, 1)-bounded variability, then

✦ (ξ, t) |= p U[a,b]q iff (ξ, t) |= p ∧ 1

[a,b]
(p ∧ q)

✦ (ξ, t) |= pP[a,b]q iff (ξ, t) |= Q

b
p ∧ Q

[0,b−a]
(p ∧ q)

��������
��������
��������
��������

p

q

t t + a t + bt′

p p ∧ q

p

Deterministic Temporal Tester for ϕ1Pϕ2

On Synthesizing Controllers from Bounded-Response Properties 17 / 23

● Any signal p of (b, k) variability (k > 1), can be decomposed into k signals
p1, p2, . . . , pk, such that:

✦ p = p1 ∨ p2 ∨ . . . ∨ pk

✦ pi ∧ pj always false for every i 6= j

✦ pi is of (b, 1)-variability

p1

p3

p2

p

● For such pi’s we have:

(ξ, t) |= p U[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi U[a,b]q

(ξ, t) |= p P[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi P[a,b]q

● The splitting of p can be achieved trivially using an automaton realizing a counter
modulo k.

Deterministic Temporal Tester for ϕ1Pϕ2

On Synthesizing Controllers from Bounded-Response Properties 17 / 23

● Any signal p of (b, k) variability (k > 1), can be decomposed into k signals
p1, p2, . . . , pk, such that:

✦ p = p1 ∨ p2 ∨ . . . ∨ pk

✦ pi ∧ pj always false for every i 6= j

✦ pi is of (b, 1)-variability

p1

p3

p2

p

● For such pi’s we have:

(ξ, t) |= p U[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi U[a,b]q

(ξ, t) |= p P[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi P[a,b]q

● The splitting of p can be achieved trivially using an automaton realizing a counter
modulo k.

Deterministic Temporal Tester for ϕ1Pϕ2

On Synthesizing Controllers from Bounded-Response Properties 17 / 23

● Any signal p of (b, k) variability (k > 1), can be decomposed into k signals
p1, p2, . . . , pk, such that:

✦ p = p1 ∨ p2 ∨ . . . ∨ pk

✦ pi ∧ pj always false for every i 6= j

✦ pi is of (b, 1)-variability

p1

p3

p2

p

● For such pi’s we have:

(ξ, t) |= p U[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi U[a,b]q

(ξ, t) |= p P[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi P[a,b]q

● The splitting of p can be achieved trivially using an automaton realizing a counter
modulo k.

Synthesis of an Arbiter

On Synthesizing Controllers from Bounded-Response Properties 18 / 23

● Architecture of an arbiter

Arbiter
r1

rn gn

g1
· · · · · ·

● Typical timed interaction between the
arbiter an a client i

● Communication protocol between the
arbiter an a client i

Synthesis of an Arbiter

On Synthesizing Controllers from Bounded-Response Properties 18 / 23

● Architecture of an arbiter

Arbiter
r1

rn gn

g1
· · · · · ·

● Typical timed interaction between the
arbiter an a client i

● Communication protocol between the
arbiter an a client i

rigi

rigi

rigi rigi

Synthesis of an Arbiter

On Synthesizing Controllers from Bounded-Response Properties 18 / 23

● Architecture of an arbiter

Arbiter
r1

rn gn

g1
· · · · · ·

● Typical timed interaction between the
arbiter an a client i

gi

ri

d2 d1 d3

● Communication protocol between the
arbiter an a client i

rigi

rigi

rigi rigi

Synthesis of an Arbiter: MTL-B Specification

On Synthesizing Controllers from Bounded-Response Properties 19 / 23

● Initial conditions

✦ IE :
V

i
ri

✦ IC :
V

i
gi

● Safety requirements

✦ SE :
V

i ri → riS (ri ∧ gi) ∧
V

i(ri → riB(ri ∧ gi)
✦ SC :

V

i(gi → giS(ri ∧ gi)) ∧
V

i(gi → giB(ri ∧ gi))

● Bounded liveness requirements

✦ LE :
V

i
(gi → 1

[0,d1]
ri)

✦ LC :
V

i
(ri → 1

[0,d2]
gi) ∧

V

i
(ri → 1

[0,d3]
gi)

● Main formula

✦ (IE → IC) ∧ 0 (` (Π(SE) ∧ Π(LE))→ (Π(SE) ∧ Π(LC)))

Synthesis of an Arbiter: MTL-B Specification

On Synthesizing Controllers from Bounded-Response Properties 19 / 23

● Initial conditions

✦ IE :
V

i
ri

✦ IC :
V

i
gi

● Safety requirements

✦ SE :
V

i ri → riS (ri ∧ gi) ∧
V

i(ri → riB(ri ∧ gi)
✦ SC :

V

i(gi → giS(ri ∧ gi)) ∧
V

i(gi → giB(ri ∧ gi))

● Bounded liveness requirements

✦ LE :
V

i
(gi → 1

[0,d1]
ri)

✦ LC :
V

i
(ri → 1

[0,d2]
gi) ∧

V

i
(ri → 1

[0,d3]
gi)

● Main formula

✦ (IE → IC) ∧ 0 (` (Π(SE) ∧ Π(LE))→ (Π(SE) ∧ Π(LC)))

Synthesis of an Arbiter: MTL-B Specification

On Synthesizing Controllers from Bounded-Response Properties 19 / 23

● Initial conditions

✦ IE :
V

i
ri

✦ IC :
V

i
gi

● Safety requirements

✦ SE :
V

i ri → riS (ri ∧ gi) ∧
V

i(ri → riB(ri ∧ gi)
✦ SC :

V

i(gi → giS(ri ∧ gi)) ∧
V

i(gi → giB(ri ∧ gi))

● Bounded liveness requirements

✦ LE :
V

i
(gi → 1

[0,d1]
ri)

✦ LC :
V

i
(ri → 1

[0,d2]
gi) ∧

V

i
(ri → 1

[0,d3]
gi)

● Main formula

✦ (IE → IC) ∧ 0 (` (Π(SE) ∧ Π(LE))→ (Π(SE) ∧ Π(LC)))

Synthesis of an Arbiter: MTL-B Specification

On Synthesizing Controllers from Bounded-Response Properties 19 / 23

● Initial conditions

✦ IE :
V

i
ri

✦ IC :
V

i
gi

● Safety requirements

✦ SE :
V

i ri → riS (ri ∧ gi) ∧
V

i(ri → riB(ri ∧ gi)
✦ SC :

V

i(gi → giS(ri ∧ gi)) ∧
V

i(gi → giB(ri ∧ gi))

● Bounded liveness requirements

✦ LE :
V

i
(gi → 1

[0,d1]
ri)

✦ LC :
V

i
(ri → 1

[0,d2]
gi) ∧

V

i
(ri → 1

[0,d3]
gi)

● Main formula

✦ (IE → IC) ∧ 0 (` (Π(SE) ∧ Π(LE))→ (Π(SE) ∧ Π(LC)))

Synthesis of an Arbiter: MTL-B Specification

On Synthesizing Controllers from Bounded-Response Properties 19 / 23

● Initial conditions

✦ IE :
V

i
ri

✦ IC :
V

i
gi

● Safety requirements

✦ SE :
V

i ri → riS (ri ∧ gi) ∧
V

i(ri → riB(ri ∧ gi)
✦ SC :

V

i(gi → giS(ri ∧ gi)) ∧
V

i(gi → giB(ri ∧ gi))

● Bounded liveness requirements

✦ LE :
V

i
(gi → 1

[0,d1]
ri)

✦ LC :
V

i
(ri → 1

[0,d2]
gi) ∧

V

i
(ri → 1

[0,d3]
gi)

● Main formula

✦ (IE → IC) ∧ 0 (` (Π(SE) ∧ Π(LE))→ (Π(SE) ∧ Π(LC)))

Synthesis of an Arbiter: Experimental Results

On Synthesizing Controllers from Bounded-Response Properties 20 / 23

● Discrete time synthesis
● d3 = 1

N d1 d2 Size Time d1 d2 Size Time d1 d2 Size Time
2 2 4 466 0.00 3 5 654 0.01 4 6 946 0.02
3 2 8 1382 0.14 3 10 2432 0.34 4 12 4166 0.51
4 2 12 4323 0.63 3 15 7402 1.12 4 18 16469 2.33
5 2 16 13505 1.93 3 20 26801 4.77 4 24 50674 10.50
6 2 20 43366 8.16 3 25 84027 22.55 4 30 168944 64.38
7 2 24 138937 44.38 3 30 297524 204.56 4 36 700126 1897.56

● Exponential growth of BDD nodes in N and d2

✦ Expected using discrete time

Synthesis of an Arbiter: Experimental Results

On Synthesizing Controllers from Bounded-Response Properties 20 / 23

● Discrete time synthesis
● d3 = 1

N d1 d2 Size Time d1 d2 Size Time d1 d2 Size Time
2 2 4 466 0.00 3 5 654 0.01 4 6 946 0.02
3 2 8 1382 0.14 3 10 2432 0.34 4 12 4166 0.51
4 2 12 4323 0.63 3 15 7402 1.12 4 18 16469 2.33
5 2 16 13505 1.93 3 20 26801 4.77 4 24 50674 10.50
6 2 20 43366 8.16 3 25 84027 22.55 4 30 168944 64.38
7 2 24 138937 44.38 3 30 297524 204.56 4 36 700126 1897.56

● Exponential growth of BDD nodes in N and d2

✦ Expected using discrete time

Conclusion

On Synthesizing Controllers from Bounded-Response Properties 21 / 23

● Complete chain that allows to synthesize controllers automatically from real-time
bounded-response temporal specifications

✦ Bounded-response temporal property→ deterministic timed automaton

■ Pastification of MTL-B formulae
■ Bounded-variability assumption

● Future work

✦ Focus on efficient symbolic algorithms in the spirit of [CDF+05]
✦ Apply the synthesis algorithm to more complex specifications of real-time

scheduling problems

Conclusion

On Synthesizing Controllers from Bounded-Response Properties 21 / 23

● Complete chain that allows to synthesize controllers automatically from real-time
bounded-response temporal specifications

✦ Bounded-response temporal property→ deterministic timed automaton

■ Pastification of MTL-B formulae
■ Bounded-variability assumption

● Future work

✦ Focus on efficient symbolic algorithms in the spirit of [CDF+05]
✦ Apply the synthesis algorithm to more complex specifications of real-time

scheduling problems

Conclusion

On Synthesizing Controllers from Bounded-Response Properties 21 / 23

● Complete chain that allows to synthesize controllers automatically from real-time
bounded-response temporal specifications

✦ Bounded-response temporal property→ deterministic timed automaton

■ Pastification of MTL-B formulae
■ Bounded-variability assumption

● Future work

✦ Focus on efficient symbolic algorithms in the spirit of [CDF+05]
✦ Apply the synthesis algorithm to more complex specifications of real-time

scheduling problems

References

On Synthesizing Controllers from Bounded-Response Properties 22 / 23

[AFH96] R. Alur, T. Feder, and T.A. Henzinger, The Benefits of Relaxing Punctuality,
Journal of the ACM 43, 116–146, 1996 (first published in PODC’91).

[AMP95] E. Asarin, O. Maler and A. Pnueli, Symbolic Controller Synthesis for Discrete
and Timed Systems, Hybrid Systems II, 1–20, LNCS 999, 1995.

[BL69] J.R. Büchi and L.H. Landweber, Solving Sequential Conditions by Finite-state
Operators, Trans. of the AMS 138, 295–311, 1969.

[CDF+05] F. Cassez, A. David, E. Fleury, K.G. Larsen and D. Lime, Efficient On-the-Fly
Algorithms for the Analysis of Timed Games, CONCUR’05, 66–80, 2005.

[Chu63] A. Church, Logic, Arithmetic and Automata, in Proc. of the Int. Cong. of
Mathematicians 1962, 23–35, 1963.

[KP05] Y. Kesten and A. Pnueli, A Compositional Approach to CTL∗ Verification,
Theoretical Computer Science 331, 397–428, 2005.

[Koy90] R. Koymans, Specifying Real-time Properties with Metric Temporal Logic,
Real-time Systems 2, 255–299, 1990.

References

On Synthesizing Controllers from Bounded-Response Properties 23 / 23

[MN04] O. Maler and D. Nickovic, Monitoring Temporal Properties of Continuous
Signals, FORMATS/FTRTFT’04, 152–166, LNCS 3253, 2004.

[MNP05] O. Maler, D. Nickovic and A. Pnueli, Real Time Temporal Logic: Past, Present,
Future, FORMATS’05, 2–16, LNCS 3829, 2005.

[MNP06] O. Maler, D. Nickovic and A. Pnueli, From MITL to Timed Automata,
FORMATS’06, 274–289, LNCS 4202, 2006.

[MPS95] O. Maler, A. Pnueli and J. Sifakis, On the Synthesis of Discrete Controllers for
Timed Systems, STACS’95, 229–242, LNCS 900, 1995.

[PPS06] N. Piterman, A. Pnueli and Y. Sa’ar, Synthesis of Reactive(1) Designs,
VMCAI’06, 364–380, 2006.

[PP06] N. Piterman and A. Pnueli, Faster Solutions of Rabin and Streett Games,
LICS’06, 275–284, 2006.

[RW89] P.J. Ramadge and W.M. Wonham, The Control of Discrete Event Systems,
Proc. of the IEEE 77, 81–98, 1989.

	Overview
	Introduction
	Introduction
	Temporal Logic and Controller Synthesis
	Motivation for Bounded-Response Properties
	Mtl-B: Syntax and Semantics
	Mtl-B and Non-Determinism
	From Mtl-B to Deterministic Timed Automata: Overview
	Pastification of Mtl-B formulae
	Temporal Depth of an Mtl-B formula
	Pastify Operator
	Bounded Variability of Input Signals
	Temporal testers for Mtl-B formulae
	Deterministic Temporal Tester for '121[a,b]
	Deterministic Temporal Tester for 1 P 2
	Deterministic Temporal Tester for 1 P 2
	Synthesis of an Arbiter
	Synthesis of an Arbiter: Mtl-B Specification
	Synthesis of an Arbiter: Experimental Results
	Conclusion
	References
	References

