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● Automatic controller synthesis from high-level specifications

✦ Problem posed in [Chu63]
✦ Theoretically solved in [BL69,TB73]



Introduction

On Synthesizing Controllers from Bounded-Response Properties 4 / 23

BAD

r1

r2

r2

r1 g1g2

g2

g1

l0

l1 l2

. . .

. . .

r3 g1

0 (r1 → r1Sg1)0 (g1 → 1
[0,1]

r1)0 (g1 → 1
[0,2]

r1)

. . .

● Synthesizing controllers from temporal logic formulae [PR89]

✦ Recent improvements [PPS06,PP06]

● Property-based synthesis problem:
Given a temporal property ϕ defined over two distinct alphabets A and B, build a
finite-state transducer (controller) from Aω to Bω such that all of its behaviors satisfy
ϕ.

● We are interested in controller synthesis from real-time temporal logic specifications
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● Bounded-response correspond to safety properties

✦ → Limited scope wrt more general liveness properties

● Liveness properties abstract away the upper bound requirement of occurrence of
events

✦ But many applications require specifying explicitly such upper bound:

■ Hard real-time systems
■ Scheduling problems
■ . . .

● We choose Bounded Response Metric Temporal Logic - MTL-B as the specification
formalism

✦ MTL [Koy90] without unbounded until
✦ Punctual operators (unlike MITL [AFH96])
✦ Allows specifying non-trivial properties
✦ Can be interpreted both in discrete and dense time
✦ We consider specifications of type 0 ϕ where ϕ is an MTL-B formula
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● Syntax:
ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1S[a,b]ϕ2 | ϕ1Sϕ2 | ϕ1P[a,b]ϕ2

● Semantics:
. . .

(ξ, t) |= ϕ1 U[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′[t, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 P[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [0, b − a] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t − b, t′], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 S[a,b] ϕ2 ↔ ∃ t′ ∈ t ⊖ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

. . .
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● Two sources of non-determinism

● Acausality

✦ Semantics of future temporal
logics acausal

■ Satisfiability of ϕ at time t

depends on the input signal
value at time t′ ≥ t

✦ Past fragments of temporal logics
have causal semantics

● Unbounded Variability

✦ No bound on the variability of
input signals

✦ → remember unbounded number
of events

■ Example: Q
1
p - perfect shift

register for p
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● Key idea: Change the time direction from future to past

✦ MTL-B formula fully determined withing a bounded horizon
✦ → Eliminate the “predictive” aspect of the semantics

● Example: ϕ = p→ 1

[1,2]

0 [0,2] q

● What would be the “equivalent” past formula ψ that describes the same pattern from
t+ 4?

✦ ψ = Q 4 p→ Q [0,1] ` [0,2] q
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● What would be the “equivalent” past formula ψ that describes the same pattern from
t+ 4?

✦ ψ = Q 4 p→ Q [0,1] ` [0,2] q
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● Each future MTL-B formula admits a number D(ϕ) indicating its temporal depth

✦ The satisfaction of ϕ by a signal ξ from any position t is fully determined within the
interval [t, t+D(ϕ)]

D(p) = 0
D(¬ϕ) = D(ϕ)
D(ϕ1 ∨ ϕ2) = max{D(ϕ1),D(ϕ2)}
D(ϕ1U[a,b]ϕ2) = b+ max{D(ϕ1),D(ϕ2)}

● Syntax-dependent upper-bound on the actual depth

✦ Example: D(2[a,b]T) = b
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● Relation between ϕ and ψ = Π(ϕ, d):

(ξ, t) |= ϕ ↔ (ξ, t+ d) |= ψ

● Definition: The operator Π on future MTL-B formulae ϕ and a displacement d ≥ D(ϕ)
is defined recursively as:

Π(p, d) = Q

d
p

Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨Π(ϕ2, d)
Π(ϕ1U[a,b]ϕ2, d) = Π(ϕ1, d− b)P[a,b]Π(ϕ2, d− b)
Π(1

[a,b]
ϕ, d) = Q

[0,b−a]
Π(ϕ, d− b)

● Equisatisfaction of 0 ϕ and 0 ψ:

ξ |= 0 ϕ ↔ ξ |= 0 ψ
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● Definition:
● A signal ξ is of (∆, k)-bounded variability if for every interval of the form [t, t+ ∆] the

number of changes in the value of ξ is at most k

1 2 3 4 5 6 kk−2 k−1

t t + ∆

ξ

● The bounded variability is preserved by MTL-B operators
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● Temporal testers for LTL proposed in [KP05]

✦ Compositional basis for automata construction corresponding to LTL formulae
✦ Extension to real-time temporal logics

■ Past-MITL [MNP05]
■ MITL [MNP06]

● Temporal testers for Past-MITL are deterministic

✦ Under the bounded variability assumption, deterministic temporal tester
construction naturally extends to past MTL-B operators such as Q

d
or Sd

● How to build a deterministic temporal tester for P[a,b] operator?
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● Event recorder [MNP05]

✦ The core of the tester-based
translation from Past MITL to timed
automata

✦ Takes ϕ as input and Q

[a,b]
ϕ as

output
✦ The automaton outputs 1

whenever x1 ≥ a

● Trivial extension for Q

b
ϕ with the

bounded variability assumption

y1 ≤ b ϕ

010101

y1 ≤ b

01010

¬ϕ

y1 ≥ b/s

ϕ

y1 ≤ b y1 ≤ b

¬ϕ

¬ϕ ϕ

0 01

010 0101

y1 ≥ b/s

y1 ≥ b/s y1 ≥ b/s
¬ϕ/y1 := 0

¬ϕ/y2 := 0

¬ϕy1 ≤ b

(01)m0

. . .

ϕ/x1 := 0

ϕ/x2 := 0

ϕ/x3 := 0
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● Observation [MN04]: If p is a signal of (b, 1)-bounded variability, then

✦ (ξ, t) |= p U[a,b]q iff (ξ, t) |= p ∧ 1

[a,b]
(p ∧ q)

✦ (ξ, t) |= pP[a,b]q iff (ξ, t) |= Q

b
p ∧ Q

[0,b−a]
(p ∧ q)

p

q
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● Any signal p of (b, k) variability (k > 1), can be decomposed into k signals
p1, p2, . . . , pk, such that:

✦ p = p1 ∨ p2 ∨ . . . ∨ pk

✦ pi ∧ pj always false for every i 6= j

✦ pi is of (b, 1)-variability

p1

p3

p2

p

● For such pi’s we have:

(ξ, t) |= p U[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi U[a,b]q

(ξ, t) |= p P[a,b]q ↔ (ξ, t) |=
Wk

i=1 pi P[a,b]q

● The splitting of p can be achieved trivially using an automaton realizing a counter
modulo k.
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● Architecture of an arbiter

Arbiter
r1

rn gn

g1
· · · · · ·

● Typical timed interaction between the
arbiter an a client i

● Communication protocol between the
arbiter an a client i
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● Architecture of an arbiter

Arbiter
r1

rn gn

g1
· · · · · ·

● Typical timed interaction between the
arbiter an a client i

gi
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d2 d1 d3

● Communication protocol between the
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● Initial conditions

✦ IE :
V

i
ri

✦ IC :
V

i
gi

● Safety requirements

✦ SE :
V

i ri → riS (ri ∧ gi) ∧
V

i(ri → riB(ri ∧ gi)
✦ SC :

V

i(gi → giS(ri ∧ gi)) ∧
V

i(gi → giB(ri ∧ gi))

● Bounded liveness requirements

✦ LE :
V

i
(gi → 1

[0,d1]
ri)

✦ LC :
V

i
(ri → 1

[0,d2]
gi) ∧

V

i
(ri → 1

[0,d3]
gi)

● Main formula

✦ (IE → IC) ∧ 0 (` (Π(SE) ∧ Π(LE))→ (Π(SE) ∧ Π(LC)))
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● Discrete time synthesis
● d3 = 1

N d1 d2 Size Time d1 d2 Size Time d1 d2 Size Time
2 2 4 466 0.00 3 5 654 0.01 4 6 946 0.02
3 2 8 1382 0.14 3 10 2432 0.34 4 12 4166 0.51
4 2 12 4323 0.63 3 15 7402 1.12 4 18 16469 2.33
5 2 16 13505 1.93 3 20 26801 4.77 4 24 50674 10.50
6 2 20 43366 8.16 3 25 84027 22.55 4 30 168944 64.38
7 2 24 138937 44.38 3 30 297524 204.56 4 36 700126 1897.56

● Exponential growth of BDD nodes in N and d2

✦ Expected using discrete time
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● Complete chain that allows to synthesize controllers automatically from real-time
bounded-response temporal specifications

✦ Bounded-response temporal property→ deterministic timed automaton

■ Pastification of MTL-B formulae
■ Bounded-variability assumption

● Future work

✦ Focus on efficient symbolic algorithms in the spirit of [CDF+05]
✦ Apply the synthesis algorithm to more complex specifications of real-time

scheduling problems
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