

Measuring with Timed Patterns CAV'15

Thomas Ferrère¹ Oded Maler¹ Dejan Nickovic² Dogan Ulus¹

 1 VERIMAG University of Grenoble / CNRS ² AIT Austrian Institute of Technology

July 24, 2015

Measurements current practice...

- scripts, signal processing blocks, etc.
- ad-hoc approach

Declarative language for measurements

- timed regular expression φ describes intervals where measure can be taken
- continuous aggregating operators μ: duration, integral, maximum, etc.

Declarative language for measurements

- \blacktriangleright timed regular expression φ describes intervals where measure can be taken
- continuous aggregating operators μ : duration, integral, maximum, etc.

Timed regular expressions - interval semantics

Definition (Syntax of TRE)

$$\varphi := \epsilon ~|~ p ~|~ \varphi \cdot \varphi ~|~ \varphi \vee \varphi ~|~ \varphi \wedge \varphi ~|~ \varphi^* ~|~ \langle \varphi \rangle_{[l,u]}$$

 \boldsymbol{p} proposition, and $\boldsymbol{l},\boldsymbol{u}$ integer constants.

Definition (Semantics of TRE)

```
\begin{array}{lll} (t,t') \in \llbracket \epsilon \rrbracket_w & \text{iff} \quad t = t' \\ (t,t') \in \llbracket p \rrbracket_w & \text{iff} \quad \forall t < t'' < t', \ p \in w[t''] \\ (t,t') \in \llbracket \varphi \cdot \psi \rrbracket_w & \text{iff} \quad \exists t \leq t'' \leq t', \ (t,t'') \in \llbracket \varphi \rrbracket_w \text{ and } (t'',t') \in \llbracket \psi \rrbracket_w \\ (t,t') \in \llbracket \varphi \wedge \psi \rrbracket_w & \text{iff} \quad \dots \\ (t,t') \in \llbracket \varphi \wedge \psi \rrbracket_w & \text{iff} \quad \dots \\ (t,t') \in \llbracket \varphi^* \rrbracket_w & \text{iff} \quad \dots \\ (t,t') \in \llbracket (\varphi^* \rrbracket_w & \text{iff} \quad \dots \\ (t,t') \in \llbracket (\varphi \rangle_{[t,u]} \rrbracket_w & \text{iff} \quad \dots \end{array}
```

Timed regular expressions - interval semantics

Definition (Syntax of TRE)

$$\varphi := \epsilon ~|~ p ~|~ \varphi \cdot \varphi ~|~ \varphi \vee \varphi ~|~ \varphi \wedge \varphi ~|~ \varphi^* ~|~ \langle \varphi \rangle_{[l,u]}$$

 \boldsymbol{p} proposition, and $\boldsymbol{l},\boldsymbol{u}$ integer constants.

Definition (Semantics of TRE)

$(t, t') \in \llbracket \epsilon \rrbracket_w$	iff $t = t'$
$(t, t') \in \llbracket p \rrbracket_w$	$iff \ \forall t < t'' < t', \ p \in w[t'']$
$(\boldsymbol{t}, \boldsymbol{t'}) \in [\![\varphi \cdot \psi]\!]_w$	$\text{iff } \exists t \leq t'' \leq t', \ (t,t'') \in [\![\varphi]\!]_w \text{ and } (t'',t') \in [\![\psi]\!]_w$
$(\underline{t},\underline{t'}) \in \llbracket \varphi \lor \psi \rrbracket_w$	iff
$(\underline{t},\underline{t}')\in \llbracket \varphi \wedge \psi \rrbracket_w$	iff
$({t,t'})\in \llbracket arphi^* rbracket_w$	iff
$(t, t') \in \llbracket \langle \varphi \rangle_{[l,u]} \rrbracket_w$	$iff \ \ l \leq {\boldsymbol{t'}} - {\boldsymbol{t}} \leq u \; and \; ({\boldsymbol{t}}, {\boldsymbol{t'}}) \in \llbracket \varphi \rrbracket_w$

Timed pattern matching

Theorem (FORMATS'14)

The set of matches $[\![\varphi]\!]_w$ is computable as a finite union of 2d zones

Proof principle

Structural induction over φ

$$z_p \quad \rightsquigarrow \quad t_i < t < t' < t_{i+1}$$

$$z_{\varphi \cdot \psi} \quad \rightsquigarrow \quad z_{\varphi} \circ z_{\psi}$$

$$\dots$$

$$z_{\langle \varphi \rangle_{[l,u]}} \quad \rightsquigarrow \quad z_{\varphi} \land l < t' - t < u$$

Timed pattern matching

Theorem (FORMATS'14)

The set of matches $[\![\varphi]\!]_w$ is computable as a finite union of 2d zones

Proof principle

Structural induction over φ

$$\begin{array}{rcl} z_p & \rightsquigarrow & t_i < t < t' < t_{i+1} \\ z_{\varphi \cdot \psi} & \rightsquigarrow & z_{\varphi} \circ z_{\psi} \\ & & \\ & & \\ z_{\langle \varphi \rangle_{[l,u]}} & \rightsquigarrow & z_{\varphi} \wedge l < t' - t < u \end{array}$$

Example

Expressions:

$$\varphi = \langle p \rangle_{[1,5]} \qquad \qquad \psi = \langle q \rangle_{[0,2]} \qquad \qquad \varphi \cdot \psi$$

Set of matches:

Example

Expressions:

$$\varphi = \langle p \rangle_{[1,5]} \qquad \qquad \psi = \langle q \rangle_{[0,2]} \qquad \qquad \varphi \cdot \psi$$

Set of matches:

Conditional expressions

Introduce preconditions and postconditions.

Definition (Syntax of Conditional TRE)

 $\varphi := \dots | \varphi \cdot \varphi | \dots | \varphi ? \varphi | \varphi ! \varphi$

Definition (Semantics of Conditional TRE)

 $(t,t') \in \llbracket \varphi \cdot \psi \rrbracket_w \quad \text{iff} \quad \exists t \leq t'' \leq t' \quad (t,t'') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t'',t') \in \llbracket \psi \rrbracket_w$ \dots $(t,t') \in \llbracket \psi ? \varphi \rrbracket_w \quad \text{iff} \quad \exists t'' \leq t \qquad (t,t') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t'',t) \in \llbracket \psi \rrbracket_w$ $(t,t') \in \llbracket \varphi ! \psi \rrbracket_w \quad \text{iff} \quad \exists t' \leq t'' \qquad (t,t') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t',t'') \in \llbracket \psi \rrbracket_w$

Conditional expressions

Introduce preconditions and postconditions.

Definition (Syntax of Conditional TRE)

$$\varphi := \dots ~|~ \varphi \cdot \varphi ~|~ \dots ~|~ \varphi \, ? \, \varphi ~|~ \varphi \, ! \, \varphi$$

Definition (Semantics of Conditional TRE)

 $(t,t') \in \llbracket \varphi \cdot \psi \rrbracket_w \quad \text{iff} \quad \exists t \leq t'' \leq t' \quad (t,t'') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t'',t') \in \llbracket \psi \rrbracket_w$

 $\begin{array}{ll} (t,t') \in \llbracket \psi \, ? \, \varphi \rrbracket_w & \text{iff} \quad \exists t'' \leq t & (t,t') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t'',t) \in \llbracket \psi \rrbracket_w \\ (t,t') \in \llbracket \varphi \, ! \, \psi \rrbracket_w & \text{iff} \quad \exists t' \leq t'' & (t,t') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t',t'') \in \llbracket \psi \rrbracket_w \end{array}$

Conditional expressions

Introduce preconditions and postconditions.

Definition (Syntax of Conditional TRE)

$$\varphi := \dots \ | \ \varphi \cdot \varphi \ | \ \dots \ | \ \varphi \mathop{?} \varphi \ | \ \varphi \mathop{!} \varphi$$

Definition (Semantics of Conditional TRE)

 $\begin{array}{cccc} & & & \\ (t,t') \in \llbracket \varphi \cdot \psi \rrbracket_w & \text{iff} \quad \exists t \leq t'' \leq t' \quad (t,t'') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t'',t') \in \llbracket \psi \rrbracket_w \\ & & \\ (t,t') \in \llbracket \psi \mathop{?} \varphi \rrbracket_w & \text{iff} \quad \exists t'' \leq t \quad (t,t') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t'',t) \in \llbracket \psi \rrbracket_w \\ (t,t') \in \llbracket \varphi \mathop{!} \psi \rrbracket_w & \text{iff} \quad \exists t' \leq t'' \quad (t,t') \in \llbracket \varphi \rrbracket_w \quad \text{and} \quad (t',t'') \in \llbracket \psi \rrbracket_w \end{array}$

Example

Expressions:

$$\varphi = \langle p \rangle_{[1,5]} \qquad \qquad \psi = \langle q \rangle_{[0,2]} \qquad \qquad \varphi \, ! \, \psi \qquad \qquad \varphi \, ! \, \psi$$

Set of matches:

Expressions with events

Events

Zero-duration expressions:

$$\uparrow p = \overline{p} ? \epsilon ! p$$
$$\downarrow p = p ? \epsilon ! \overline{p}$$

(rising edge) (falling edge)

Event-bounded expressions

Syntactically enforced:

 $\psi := \mathop{\uparrow} p \mid \mathop{\downarrow} p \mid \psi \cdot \varphi \cdot \psi \mid \psi \cup \psi \mid \psi \cap \varphi$

with φ arbitrary expression

Proposition (Finiteness)

Event-bounded expressions have a finite set of matches.

Expressions with events

Events

Zero-duration expressions:

$$\uparrow p = \overline{p} ? \epsilon ! p$$
$$\downarrow p = p ? \epsilon ! \overline{p}$$

(rising edge) (falling edge)

Event-bounded expressions

Syntactically enforced:

$$\psi := \mathop{\uparrow} p \ | \ \mathop{\downarrow} p \ | \ \psi \cdot \varphi \cdot \psi \ | \ \psi \cup \psi \ | \ \psi \cap \varphi$$

with φ arbitrary expression

Proposition (Finiteness)

Event-bounded expressions have a finite set of matches.

Expressions with events

Events

Zero-duration expressions:

$$\uparrow p = \overline{p} ? \epsilon ! p$$
$$\downarrow p = p ? \epsilon ! \overline{p}$$

(rising edge) (falling edge)

Event-bounded expressions

Syntactically enforced:

$$\psi := \mathop{\uparrow} p \ | \ \mathop{\downarrow} p \ | \ \psi \cdot \varphi \cdot \psi \ | \ \psi \cup \psi \ | \ \psi \cap \varphi$$

with φ arbitrary expression

Proposition (Finiteness)

Event-bounded expressions have a finite set of matches.

Example

Expressions:

 $\downarrow p \qquad \qquad \uparrow q \qquad \varphi = \langle p \rangle_{[1,5]} \qquad \qquad \uparrow q \cdot \varphi \cdot \downarrow p$

Set of matches:

Measurements

Measure Pattern

A Conditional TRE

$$\varphi = \alpha ? \psi ! \beta$$

with arbitrary conditions $\alpha,\beta,$ and ψ event-bounded.

Measure Expression

An expression

$\mu(arphi)$

with φ a measure pattern, and $\mu =$ **duration**, **sup**_x, **integral**_x, ... continuous aggregation operator.

Measurements

Measure Pattern

A Conditional TRE

$$\varphi = \alpha ? \psi ! \beta$$

with arbitrary conditions α, β , and ψ event-bounded.

Measure Expression

An expression

 $\mu(\varphi)$

with φ a measure pattern, and $\mu =$ **duration**, \sup_x , integral_x, ... continuous aggregation operator.

DSI3 standard

Analog communication protocol

Communication via pulses on

- voltage line v
- current line i

Two phases with different nominal levels

- discovery mode: v in range V₀ to V₁
- command and response mode: v in range V₂ to V₃

DSI3 standard

- Analog communication protocol
- Communication via pulses on
 - voltage line v
 - current line i

Two phases with different nominal levels

- discovery mode: v in range V_0 to V_1
- command and response mode: v in range V₂ to V₃

DSI3 standard

- Analog communication protocol
- Communication via pulses on
 - ► voltage line v
 - current line i
- Two phases with different nominal levels
 - discovery mode: v in range V_0 to V_1
 - command and response mode: v in range V_2 to V_3

Behavioral model:

- gaussian distribution of pulse timing
- uniform distribution of sensor load resistance
- Simulation: 100 sequences of discovery + command and response

Measurements:

- 1. time between consecutive discovery pulses
- 2. energy transmitted through power pulses

- Behavioral model:
 - gaussian distribution of pulse timing
 - uniform distribution of sensor load resistance
- Simulation: 100 sequences of discovery + command and response
- Measurements:
 - 1. time between consecutive discovery pulses
 - 2. energy transmitted through power pulses

- Behavioral model:
 - gaussian distribution of pulse timing
 - uniform distribution of sensor load resistance

Simulation: 100 sequences of discovery + command and response

Measurements:

- 1. time between consecutive discovery pulses
- 2. energy transmitted through power pulses

- Behavioral model:
 - gaussian distribution of pulse timing
 - uniform distribution of sensor load resistance
- ► Simulation: 100 sequences of discovery + command and response
- Measurements:
 - 1. time between consecutive discovery pulses
 - 2. energy transmitted through power pulses

Measurement 1: time between consecutive discovery pulses

Voltage levels:

$$a \equiv v \le V_0$$
 $b \equiv V_0 \le v \le V_1$ $c \equiv v \ge V_1$

Pulse pattern:

$$\varphi_1 \equiv \downarrow c \cdot \langle b \cdot a \cdot b \rangle_{[l,u]} \cdot \uparrow c$$

• Measure expression: $M_1 = \mathsf{duration}(arphi_1 \cdot c \, ! \, arphi_1)$

Measurement 1: time between consecutive discovery pulses

Voltage levels:

$$a \equiv v \le V_0$$
 $b \equiv V_0 \le v \le V_1$ $c \equiv v \ge V_1$

Pulse pattern:

$$\varphi_1 \equiv \downarrow c \cdot \langle b \cdot a \cdot b \rangle_{[l,u]} \cdot \uparrow c$$

• Measure expression: $M_1 = \text{duration}(\varphi_1 \cdot c \, ! \, \varphi_1)$

Measurement 1: time between consecutive discovery pulses

Voltage levels:

$$a \equiv v \le V_0$$
 $b \equiv V_0 \le v \le V_1$ $c \equiv v \ge V_1$

Pulse pattern:

$$\varphi_1 \equiv \downarrow c \cdot \langle b \cdot a \cdot b \rangle_{[l,u]} \cdot \uparrow c$$

• Measure expression: $M_1 = \text{duration}(\varphi_1 \cdot c \,!\, \varphi_1)$

Measurement 2: energy transmitted during power pulses

Voltage levels:

$$e \equiv v \ge V_2$$
 $f \equiv V_2 \le v \le V_3$ $g \equiv v \ge V_3$

Pulse pattern:

$$\varphi_2 \equiv \uparrow e \cdot f \cdot g \cdot f \cdot \downarrow e$$

• Measure expression: $M_2 := \mathsf{integral}_{v \times i}(\varphi_2)$

Measurement 2: energy transmitted during power pulses

Voltage levels:

$$e \equiv v \ge V_2$$
 $f \equiv V_2 \le v \le V_3$ $g \equiv v \ge V_3$

Pulse pattern:

$$\varphi_2 \equiv \uparrow e \cdot f \cdot g \cdot f \cdot \downarrow e$$

• Measure expression: $M_2 := \mathsf{integral}_{v imes i}(\varphi_2)$

Measurement 2: energy transmitted during power pulses

Voltage levels:

$$e \equiv v \ge V_2$$
 $f \equiv V_2 \le v \le V_3$ $g \equiv v \ge V_3$

Pulse pattern:

$$\varphi_2 \equiv \uparrow e \cdot f \cdot g \cdot f \cdot \downarrow e$$

• Measure expression: $M_2 := integral_{v \times i}(\varphi_2)$

Results

Performance

	Measure 1				Measure 2			
samples	T_p	T_{φ}	T_{μ}	Т	T_p	T_{φ}	T_{μ}	Т
1M	0.047	0.617	0.000	0.664	0.009	0.004	0.011	0.024
5M	0.197	0.612	0.000	0.809	0.050	0.005	0.047	0.103
10M	0.386	0.606	0.000	0.992	0.101	0.005	0.100	0.216
20M	0.759	0.609	0.000	1.368	0.203	0.005	0.260	0.468

Computation time (seconds) relative to sampling rate:

Program:

- TRE matching algorithms based on IF library
- Python signal processing library

Conclusion

Present

- declarative language for mixed-signal measurements
- general and efficient to monitor

Future

- language extension
- online measurements