Measuring with Timed Patterns

CAV'15

Thomas Ferrère ${ }^{1} \quad$ Oded Maler $^{1} \quad$ Dejan Nickovic ${ }^{2} \quad$ Dogan Ulus ${ }^{1}$
${ }^{1}$ VERIMAG University of Grenoble / CNRS
${ }^{2}$ AIT Austrian Institute of Technology

July 24, 2015

Measurements current practice...

- scripts, signal processing blocks, etc.
- ad-hoc approach

Declarative language for measurements

Declarative language for measurements

- timed regular expression φ describes intervals where measure can be taken
- continuous aggregating operators μ : duration, integral, maximum, etc.

Timed regular expressions - interval semantics

Definition (Syntax of TRE)

$$
\varphi:=\epsilon|p| \varphi \cdot \varphi|\varphi \vee \varphi| \varphi \wedge \varphi\left|\varphi^{*}\right|\langle\varphi\rangle_{[l, u]}
$$

p proposition, and l, u integer constants.

Timed regular expressions - interval semantics

Definition (Syntax of TRE)

$$
\varphi:=\epsilon|p| \varphi \cdot \varphi|\varphi \vee \varphi| \varphi \wedge \varphi\left|\varphi^{*}\right|\langle\varphi\rangle_{[l, u]}
$$

p proposition, and l, u integer constants.

Definition (Semantics of TRE)

$$
\begin{array}{ll}
\left(t, t^{\prime}\right) \in \llbracket \epsilon \rrbracket_{w} & \text { iff } t=t^{\prime} \\
\left(t, t^{\prime}\right) \in \llbracket p \rrbracket_{w} & \text { iff } \forall t<t^{\prime \prime}<t^{\prime}, p \in w\left[t^{\prime \prime} \rrbracket\right. \\
\left(t, t^{\prime}\right) \in \llbracket \varphi \cdot \psi \rrbracket_{w} & \text { iff } \exists t \leq t^{\prime \prime} \leq t^{\prime}, \quad\left(t, t^{\prime \prime}\right) \in \llbracket \varphi \rrbracket_{w} \text { and }\left(t^{\prime \prime}, t^{\prime}\right) \in \llbracket \psi \rrbracket_{w} \\
\left(t, t^{\prime}\right) \in \llbracket \varphi \vee \psi \rrbracket_{w} & \text { iff } \ldots \\
\left(t, t^{\prime}\right) \in \llbracket \varphi \wedge \psi \rrbracket_{w} & \text { iff } \ldots \\
\left(t, t^{\prime}\right) \in \llbracket \varphi^{*} \rrbracket_{w} & \text { iff } \ldots \\
\left(t, t^{\prime}\right) \in \llbracket\langle\varphi\rangle_{[l, u \rrbracket} \rrbracket_{w} & \text { iff } l \leq t^{\prime}-t \leq u \text { and }\left(t, t^{\prime}\right) \in \llbracket \varphi \rrbracket_{w}
\end{array}
$$

Timed pattern matching

Theorem (FORMATS'14)

The set of matches $\llbracket \varphi \rrbracket_{w}$ is computable as a finite union of $2 d$ zones

Timed pattern matching

Theorem (FORMATS'14)

The set of matches $\llbracket \varphi \rrbracket_{w}$ is computable as a finite union of $2 d$ zones

Proof principle

Structural induction over φ

$$
\begin{array}{rll}
z_{p} & \rightsquigarrow & t_{i}<t<t^{\prime}<t_{i+1} \\
z_{\varphi \cdot \psi} & \rightsquigarrow & z_{\varphi} \circ z_{\psi} \\
& \cdots & \\
z_{\langle\varphi\rangle_{[l, u]}} & \rightsquigarrow & z_{\varphi} \wedge l<t^{\prime}-t<u
\end{array}
$$

Example

Expressions:

$$
\varphi=\langle p\rangle_{[1,5]} \quad \psi=\langle q\rangle_{[0,2]} \quad \varphi \cdot \psi
$$

Set of matches:

Example

Expressions:

$$
\varphi=\langle p\rangle_{[1,5]} \quad \psi=\langle q\rangle_{[0,2]} \quad \varphi \cdot \psi
$$

Set of matches:

Conditional expressions

Introduce preconditions and postconditions.

Conditional expressions

Introduce preconditions and postconditions.
Definition (Syntax of Conditional TRE)

$$
\varphi:=\ldots|\varphi \cdot \varphi| \ldots|\varphi ? \varphi| \varphi!\varphi
$$

Conditional expressions

Introduce preconditions and postconditions.

Definition (Syntax of Conditional TRE)

$$
\varphi:=\ldots|\varphi \cdot \varphi| \ldots|\varphi ? \varphi| \varphi!\varphi
$$

Definition (Semantics of Conditional TRE)

$$
\left.\begin{array}{ccc}
\left(t, t^{\prime}\right) \in \llbracket \varphi \cdot \psi \rrbracket_{w} & \text { iff } \quad \exists t \leq t^{\prime \prime} \leq t^{\prime} & \left(t, t^{\prime \prime}\right) \in \llbracket \varphi \rrbracket_{w} \quad \text { and } \quad\left(t^{\prime \prime}, t^{\prime}\right) \in \llbracket \psi \rrbracket_{w} \\
& \ldots & \\
\left(t, t^{\prime}\right) \in \llbracket \psi ? \varphi \rrbracket_{w} & \text { iff } \quad \exists t^{\prime \prime} \leq t & \left(t, t^{\prime}\right) \in \llbracket \varphi \rrbracket_{w}
\end{array} \quad \text { and } \quad\left(t^{\prime \prime}, t\right) \in \llbracket \psi \rrbracket_{w}\right) \quad\left(t, t^{\prime}\right) \in \llbracket \varphi \rrbracket_{w} \quad \text { and } \quad\left(t^{\prime}, t^{\prime \prime}\right) \in \llbracket \psi \rrbracket_{w}
$$

Example

Expressions:

$$
\varphi=\langle p\rangle_{[1,5]} \quad \psi=\langle q\rangle_{[0,2]} \quad \varphi!\psi \quad \varphi!\psi
$$

Set of matches:

Expressions with events

Events

Zero-duration expressions:

$$
\begin{array}{ll}
\uparrow p=\bar{p} ? \epsilon!p & \text { (rising edge) } \\
\downarrow p=p ? \epsilon!\bar{p} & \text { (falling edge) }
\end{array}
$$

Expressions with events

Events

Zero-duration expressions:

$$
\begin{array}{ll}
\uparrow p=\bar{p} ? \epsilon!p & \text { (rising edge) } \\
\downarrow p=p ? \epsilon!\bar{p} & \text { (falling edge) }
\end{array}
$$

Event-bounded expressions

Syntactically enforced:

$$
\psi:=\uparrow p|\downarrow p| \psi \cdot \varphi \cdot \psi|\psi \cup \psi| \psi \cap \varphi
$$

with φ arbitrary expression

Expressions with events

Events

Zero-duration expressions:

$$
\begin{array}{ll}
\uparrow p=\bar{p} ? \epsilon!p & \text { (rising edge) } \\
\downarrow p=p ? \epsilon!\bar{p} & \text { (falling edge) }
\end{array}
$$

Event-bounded expressions

Syntactically enforced:

$$
\psi:=\uparrow p|\downarrow p| \psi \cdot \varphi \cdot \psi|\psi \cup \psi| \psi \cap \varphi
$$

with φ arbitrary expression

Proposition (Finiteness)

Event-bounded expressions have a finite set of matches.

Example

Expressions:

$$
\downarrow p \quad \uparrow q \quad \varphi=\langle p\rangle_{[1,5]} \quad \uparrow q \cdot \varphi \cdot \downarrow p
$$

Set of matches:

Measurements

Measure Pattern

A Conditional TRE

$$
\varphi=\alpha ? \psi!\beta
$$

with arbitrary conditions α, β, and ψ event-bounded.

Measurements

Measure Pattern

A Conditional TRE

$$
\varphi=\alpha ? \psi!\beta
$$

with arbitrary conditions α, β, and ψ event-bounded.

Measure Expression

An expression

$$
\mu(\varphi)
$$

with φ a measure pattern, and $\mu=$ duration, $\sup _{x}$, integral ${ }_{x}, \ldots$ continuous aggregation operator.

DSI3 standard

- Analog communication protocol

DSI3 standard

- Analog communication protocol
- Communication via pulses on
- voltage line v
- current line i

DSI3 standard

- Analog communication protocol
- Communication via pulses on
- voltage line v
- current line i
- Two phases with different nominal levels
- discovery mode: v in range V_{0} to V_{1}
- command and response mode: v in range V_{2} to V_{3}

Model and requirements

CONTROLER

Model and requirements

- Behavioral model:
- gaussian distribution of pulse timing
- uniform distribution of sensor load resistance

Model and requirements

- Behavioral model:
- gaussian distribution of pulse timing
- uniform distribution of sensor load resistance
- Simulation: 100 sequences of discovery + command and response

Model and requirements

- Behavioral model:
- gaussian distribution of pulse timing
- uniform distribution of sensor load resistance
- Simulation: 100 sequences of discovery + command and response
- Measurements:

1. time between consecutive discovery pulses
2. energy transmitted through power pulses

Measurement 1: time between consecutive discovery pulses

- Voltage levels:

$$
a \equiv v \leq V_{0} \quad b \equiv V_{0} \leq v \leq V_{1} \quad c \equiv v \geq V_{1}
$$

Measurement 1: time between consecutive discovery pulses

- Voltage levels:

$$
a \equiv v \leq V_{0} \quad b \equiv V_{0} \leq v \leq V_{1} \quad c \equiv v \geq V_{1}
$$

- Pulse pattern:

$$
\varphi_{1} \equiv \downarrow c \cdot\langle b \cdot a \cdot b\rangle_{[l, u]} \cdot \uparrow c
$$

Measurement 1: time between consecutive discovery pulses

- Voltage levels:

$$
a \equiv v \leq V_{0} \quad b \equiv V_{0} \leq v \leq V_{1} \quad c \equiv v \geq V_{1}
$$

- Pulse pattern:

$$
\varphi_{1} \equiv \downarrow c \cdot\langle b \cdot a \cdot b\rangle_{[l, u]} \cdot \uparrow c
$$

- Measure expression: $M_{1}=$ duration $\left(\varphi_{1} \cdot c!\varphi_{1}\right)$

Measurement 2: energy transmitted during power pulses

- Voltage levels:

$$
e \equiv v \geq V_{2} \quad f \equiv V_{2} \leq v \leq V_{3} \quad g \equiv v \geq V_{3}
$$

Measurement 2: energy transmitted during power pulses

- Voltage levels:

$$
e \equiv v \geq V_{2} \quad f \equiv V_{2} \leq v \leq V_{3} \quad g \equiv v \geq V_{3}
$$

- Pulse pattern:

$$
\varphi_{2} \equiv \uparrow e \cdot f \cdot g \cdot f \cdot \downarrow e
$$

Measurement 2: energy transmitted during power pulses

- Voltage levels:

$$
e \equiv v \geq V_{2} \quad f \equiv V_{2} \leq v \leq V_{3} \quad g \equiv v \geq V_{3}
$$

- Pulse pattern:

$$
\varphi_{2} \equiv \uparrow e \cdot f \cdot g \cdot f \cdot \downarrow e
$$

- Measure expression: $M_{2}:=$ integral $_{v \times i}\left(\varphi_{2}\right)$

Results

Performance

Computation time (seconds) relative to sampling rate:

	Measure 1						Measure 2				
samples	T_{p}	T_{φ}	T_{μ}	T		T_{p}	T_{φ}	T_{μ}	T		
1 M	0.047	0.617	0.000	$\mathbf{0 . 6 6 4}$		0.009	0.004	0.011	$\mathbf{0 . 0 2 4}$		
5 M	0.197	0.612	0.000	$\mathbf{0 . 8 0 9}$		0.050	0.005	0.047	$\mathbf{0 . 1 0 3}$		
10 M	0.386	0.606	0.000	$\mathbf{0 . 9 9 2}$		0.101	0.005	0.100	$\mathbf{0 . 2 1 6}$		
20 M	0.759	0.609	0.000	$\mathbf{1 . 3 6 8}$		0.203	0.005	0.260	$\mathbf{0 . 4 6 8}$		

Program:

- TRE matching algorithms based on IF library
- Python signal processing library

Conclusion

Present

- declarative language for mixed-signal measurements
- general and efficient to monitor

Future

- language extension
- online measurements

