Introduction Logic of Time Periods Computing Match Sets Conclusions

Specifying Timed Patterns using Temporal Logic

Dogan Ulus and Oded Maler

Verimag, University of Grenoble-Alpes/CNRS, France

CPSWEEK::HSCC 2018

Porto, Portugal April 13

Temporal Behaviors

Detecting Patterns in Temporal Behaviors

- Specific shapes on waveforms:
 - Rise and falls, various pulses, decays, ...
- Specific arrangements of physical observations.
 - High speed period after high acceleration, ...
- Sequences of actions, simultaneous occurrences.
 - Overtaking a car.
 - Speeding-up while overtaken. (illegal pattern)

Detecting Patterns in Temporal Behaviors

- Specific shapes on waveforms:
 - Rise and falls, various pulses, decays, ...
- Specific arrangements of physical observations.
 - High speed period after high acceleration, ...
- Sequences of actions, simultaneous occurrences.
 - Overtaking a car.
 - Speeding-up while overtaken. (illegal pattern)
- Find such pre-defined temporal patterns.

Timed Patterns

- We are inspired from textual pattern matching.
- Applications: Text search, lexers, parsers, NLP.

Timed Patterns

- We are inspired from textual pattern matching.
- Applications: Text search, lexers, parsers, NLP.
- A temporal behavior is different than a text one-dimensional discrete sequence of single chars.
 - Time is dense (continuous).
 - Temporal behaviors are multi-dimensional (multi-variate/multi-channel behaviors).
 - Many patterns in time talk about different dimensions.
 - Durations (and timings) are important.

An Example

— Find all falling behind periods begun by a deceleration period and followed by a period of safe and keeping distance at least 30 seconds.

Related Work

- Timed Pattern Matching (2014):
 - Inspired by textual pattern matching.
 - Defined to be a computation to find all instances of a timed pattern over temporal behaviors.
 - Solved for timed regular expressions by an offline algorithm over dense-time Boolean behaviors.

Related Work

- Timed Pattern Matching (2014):
 - Inspired by textual pattern matching.
 - Defined to be a computation to find all instances of a timed pattern over temporal behaviors.
 - Solved for timed regular expressions by an offline algorithm over dense-time Boolean behaviors.
- Later extended by online algorithms, measurements, timed automata patterns, skipping, quantitative semantics, and tools.

Contribution

- Explore temporal logic patterns for TPM.
- Propose period-based TL for the specs.
- Introduce Metric Compass Logic (MCL)
 - Period-based Temporal Logic + Timing Constraints.
- Present an offline pattern matching algorithm for MCL.

Logic of Time Periods

Time Periods

- A time period (t, t') is a pair such that t < t'.
- It begins at t, ends at t', and has a duration of t' - t.
- Illustrated on the xy-plane.

Relations between Time Periods

• Known as Allen's interval relations.

 Relations: Adjacent (A), Begins (B), Ends (E), Overlaps (O), Later (L), During (D), and their inverses.

Relations between Time Periods

- Relations: Adjacent (A), Begins (B), Ends (E), Overlaps (O), Later (L), During (D), and their inverses.
- You can ask questions if there exists or for all ... related periods.

A Temporal Logic of Time Periods

- We have more relations (Allen's) for time periods and consequently more temporal operators. (cf. time periods)
- It is shown that six of them is enough.
- Known as Halpern-Shoham (HS) logic¹.
- Intractable for satisfiability, validity, model checking.

¹Halpern and Shoham. A propositional modal logic of time intervals. 1986.

A Temporal Logic of Time Periods

- We have more relations (Allen's) for time periods and consequently more temporal operators. (cf. time periods)
- It is shown that six of them is enough.
- Known as Halpern-Shoham (HS) logic1.
- Intractable for satisfiability, validity, model checking.
- No problem for pattern matching. :)

¹Halpern and Shoham. A propositional modal logic of time intervals. 1986.

Temporal Operators (Diamonds and Boxes)

There exists a time period

- ♦ Begins (Begin at the same time, End earlier)
- ♦ Begun-by (Begin at the same time, End later)
- ♦ Ended-by (Begin later, End at the same time)
- ♦ Adjacent in the past (Ends where it begins)
- ullet igorplus Adjacent in the future (Begins where it ends)

the current time period.

- Boxes: $\Box \equiv \neg \diamondsuit \neg$
- Also called compass logic due to the decoration.

Metric Compass Logic (MCL)

- We add **timing constraints** to HS logic.
- Use as a timed pattern specification language.

Metric Compass Logic (MCL)

- We add timing constraints to HS logic.
- Use as a timed pattern specification language.
- Defined inductively over a set *P* of atomic propositions:
 - An atomic proposition $p \in P$ is a MCL formula.
 - If φ_1 and φ_2 are formulas, then $\varphi_1 \cup \varphi_2$, $\varphi_1 \cap \varphi_2$, and $\overline{\varphi_1}$ are formulas.
 - If φ is a formula, then $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, and $\diamondsuit_I \varphi$ are formulas.

Metric Compass Logic (MCL)

- We add timing constraints to HS logic.
- Use as a timed pattern specification language.
- Defined inductively over a set *P* of atomic propositions:
 - An atomic proposition $p \in P$ is a MCL formula.
 - If φ_1 and φ_2 are formulas, then $\varphi_1 \cup \varphi_2$, $\varphi_1 \cap \varphi_2$, and $\overline{\varphi_1}$ are formulas.
 - If φ is a formula, then $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, $\diamondsuit_I \varphi$, and $\diamondsuit_I \varphi$ are formulas.
- One diamond for relations A^{-1} , A, B^{-1} , B, E^{-1} , E.
- The rest of operators/relations is derivable.

One Diamond Explained

• ♦ — Ended-by (Begin later, End at the same time)

An Example

— Find all falling behind periods begun by a deceleration period and followed by a period of safe and keeping distance at least 30 seconds.

$$\varphi$$
: fall-behind $\land \diamondsuit$ decel $\land \diamondsuit_{[30,\infty)}$ (safe \land keep-dist)

Computing Match Sets

• A computation for identifying **all time periods** of a temporal behavior that satisfy a timed pattern.

- A computation for identifying **all time periods** of a temporal behavior that satisfy a timed pattern.
- Patterns specified in Metric Compass Logic. (This Paper)

- A computation for identifying all time periods of a temporal behavior that satisfy a timed pattern.
- Patterns specified in Metric Compass Logic. (This Paper)
- The set of all satisfying segments is called the **match set** of the pattern φ over a temporal behavior w.

$$\mathcal{M}_w(\varphi) = \{(t, t') \mid w[t, t'] \text{ satisfies } \varphi\}$$

- A computation for identifying all time periods of a temporal behavior that satisfy a timed pattern.
- Patterns specified in Metric Compass Logic. (This Paper)
- The set of all satisfying segments is called the match set of the pattern φ over a temporal behavior w.

$$\mathcal{M}_w(\varphi) = \{(t, t') \mid w[t, t'] \text{ satisfies } \varphi\}$$

Compute the match set $\mathcal{M}_{w}(\varphi)$ in the following.

Skeleton Algorithm

 $Z = \text{EVAL}_W(\varphi)$ is the match set of the pattern φ over W.

```
select (\varphi)
case p:
   Z := V(p)
case \psi:
   Z := \text{COMPLEMENT}(\text{EVAL}_{W}(\psi))
case \psi_1 \cup \psi_2:
   Z := \text{UNION}(\text{EVAL}_{W}(\psi_{2}), \text{EVAL}_{W}(\psi_{2}))
case \psi_1 \cap \psi_2:
   Z := \text{INTERSECT}(\text{EVAL}_W(\psi_2), \text{EVAL}_W(\psi_2))
case \diamondsuit_{l} \psi:
   Z := \diamondsuit-SHIFT(EVAL<sub>W</sub>(\psi), I)
end select
return 7
```

Shifting Time Periods

- Look at the effect of \diamondsuit_I on a single period.
- Need to represent and manipulate sets of time periods.

Representing Match Sets

 A zone is a convex set of time periods, formed by constraints on begins, ends, and durations.

$$c_1 \prec x \prec c_2$$
 $c_3 \prec y \prec c_4$
 $c_5 \prec y - x \prec c_6$

 We represent a match set Z by a finite union R_Z of zones.

Shifting Zones

• Theorem: Zones are closed under \diamondsuit_I operators.

Experiments

	Offline Algorithm Input Size		
Test Patterns	100K	500K	1M
$ \begin{array}{c} \overline{p} \\ \Leftrightarrow_{I} p \\ \Box_{I} p \\ \Leftrightarrow_{I} \Leftrightarrow_{J} p \\ \Leftrightarrow \Leftrightarrow (\Box p \cdot q) \\ \Leftrightarrow \Leftrightarrow (\Box p \cdot q) \cap \Leftrightarrow_{I} q \end{array} $	0.18/12 0.07/16 0.49/23 0.08/20 0.40/31 0.43/38	0.95/45 0.29/65 1.98/100 0.32/37 1.98/143 2.17/179	1.88/92 0.66/163 3.92/163 0.96/60 3.93/268 4.30/304

- Diamonds are cheap, complementation is expensive.
- Linear execution time for typical inputs.

Conclusions

- Presented a pattern matching solution for MCL.
- A substantial addition for timed pattern matching.

Conclusions

- Presented a pattern matching solution for MCL.
- A substantial addition for timed pattern matching.
- We should consider more concise, expressive, and elegant formalisms for monitoring and pattern matching even though they are not good for other tasks.

Conclusions

- Presented a pattern matching solution for MCL.
- A substantial addition for timed pattern matching.
- We should consider more concise, expressive, and elegant formalisms for monitoring and pattern matching even though they are not good for other tasks.
- Expressiveness? (FAQ):
 - \bullet \diamondsuit , \diamondsuit is not expressible in regular expressions.
 - Concatenation is not expressible in compass logic.
- Online algorithm? (A theoretical and practical challenge)

Thank you!