Timed Pattern Matching FORMATS'14

Doğan Ulus¹ <u>Thomas Ferrère</u>¹ Eugene Asarin² Oded Maler¹

¹ VERIMAG, CNRS and the University of Grenoble-Alpes ² LIAFA, University of Paris Diderot / CNRS

September 10, 2014

Pattern matching

Problem (Pattern matching for regular expressions)

Given a word $w \in \Sigma^*$ and a regular expression φ find subwords v of w that match φ .

Classical solutions

- algorithms: often based on automata
- ▶ tools: grep, sed, programming languages: PERL, PYTHON etc.

Timed pattern matching

Why do it?

- Monitoring of embedded systems
- Hardware specification languages
- Timed texts (music, speech)
- Quantitative pattern matching (texts, DNA sequences)

Why is it not straightforward?

- Classical algorithms based on (implicit) determinization
 heavy subset construction
- Timed automaton does not explicitely provide all matches

Example

Expression:

$$\varphi = \langle (p \wedge q) \cdot \bar{q} \cdot q \rangle_{[4,5]} \cdot \bar{p}$$

► Signals:

Matches:

Outline

Practical algorithmics

Outline

Problem statement

- 2 The solution
- **3** Practical algorithmics

Experiments

Timed Boolean signals

Definition (Boolean Signals)

Let $\mathbb{T} = [0, d]$ (time domain).

- a Boolean signal is a function $w : \mathbb{T} \to \mathbb{B}^m$.
- can be represented using m Boolean variables p(t).
- assumption: the number of discontinuities is finite.

Timed regular expressions - to specify sets of signals

Definition (Syntax of TRE)

$$\varphi := \epsilon \mid p \mid \overline{p} \mid \varphi \cdot \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi^* \mid \langle \varphi \rangle_I$$

p propositional variable, I integer bounded interval

Definition (Semantics of TRE)

 $\begin{array}{cccc} (w,t,t') &\vDash \epsilon & \leftarrow \\ (w,t,t') &\vDash p & \leftarrow \\ (w,t,t') &\vDash \overline{p} & \leftarrow \\ (w,t,t') &\vDash \varphi \cdot \psi &\leftarrow \\ (w,t,t') &\vDash \varphi \lor \psi &\leftarrow \\ (w,t,t') &\vDash \varphi \land \psi &\leftarrow \\ (w,t,t') &\vDash \varphi^* &\leftarrow \\ (w,t,t') &\vDash \langle \varphi \rangle_I &\leftarrow \\ \end{array}$

$$\begin{split} t &= t' \\ t < t' \text{ and } \forall t'' \in (t, t'), \ p[t''] = 1 \\ \dots \\ \exists t'' \in (t, t'), \ (w, t, t'') \vDash \varphi \text{ and } (w, t'', t') \vDash \psi \\ (w, t, t') \vDash \varphi \text{ or } (w, t, t') \vDash \psi \\ \dots \\ \exists k \ge 0, \ (w, t, t') \vDash \varphi^k \\ t' - t \in I \text{ and } (w, t, t') \vDash \varphi \end{split}$$

Timed regular expressions - to specify sets of signals

Definition (Syntax of TRE)

$$\varphi := \epsilon \mid p \mid \overline{p} \mid \varphi \cdot \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi^* \mid \langle \varphi \rangle_I$$

p propositional variable, I integer bounded interval

Definition (Semantics of TRE)

Timed Pattern Matching

Problem statement

Definition (Match-set)

For a signal w and an expression φ the match-set is

$$\mathcal{M}(\varphi, w) := \{(t, t') \in \mathbb{T} \times \mathbb{T} : (w, t, t') \vDash \varphi\}$$

Problem (Timed pattern matching)

Given a signal and an expression compute the match-set.

Problem statement

Definition (Match-set)

For a signal w and an expression φ the match-set is

$$\mathcal{M}(\varphi, w) := \{(t, t') \in \mathbb{T} \times \mathbb{T} : (w, t, t') \vDash \varphi\}$$

Problem (Timed pattern matching)

Given a signal and an expression compute the match-set.

Outline

Problem statement

3 Practical algorithmics

4 Experiments

Data structure

Definition (2d zone)

A 2d zone is a subset of \mathbb{R}^2 described by inequalities

$$a < x < b$$
 $c < y < d$ $e < x - y < f$

with a, b, c, d, e, f real constants.

About 2d zones

- convex polygons (with up to 6 edges)
- only vertical, horizontal and diagonal edges

Data structure

Definition (2d zone)

A 2d zone is a subset of \mathbb{R}^2 described by inequalities

$$a < x < b$$
 $c < y < d$ $e < x - y < f$

with a, b, c, d, e, f real constants.

About 2d zones

- convex polygons (with up to 6 edges)
- only vertical, horizontal and diagonal edges

Main result

Theorem

The match-set $\mathcal{M}(\varphi, w)$ is computable as a finite union of 2d zones.

Proof principle

Structural induction over arphi \Rightarrow recursive algorithm over the expression syntactic tree

Main result

Theorem

The match-set $\mathcal{M}(\varphi, w)$ is computable as a finite union of 2d zones.

Proof principle

Structural induction over φ

 \Rightarrow recursive algorithm over the expression syntactic tree

Structural induction: base cases

Empty word $\mathcal{M}(\epsilon,w) = \{(t,t'): t=t'\} \text{ and the diagonal is a zone }$

A literal

 $\mathcal{M}(p,w)$ is a union of triangles over the diagonal

Structural induction: base cases

Empty word $\mathcal{M}(\epsilon,w) = \{(t,t'): t=t'\} \text{ and the diagonal is a zone}$

A literal

 $\mathcal{M}(p,w)$ is a union of triangles over the diagonal

Structural induction: Boolean closure

Intersection

Zones are closed under intersection

Union

Unions of zones are closed under union

Time restriction

 $\mathcal{M}(\langle \varphi \rangle_I, w) = \mathcal{M}(\varphi, w) \cap \{(t, t') : t' - t \in I\}$ is an intersection of zones Example

Structural induction: Boolean closure

Intersection

Zones are closed under intersection

Union

Unions of zones are closed under union

Time restriction $\mathcal{M}(\langle \varphi \rangle_I, w) = \mathcal{M}(\varphi, w) \cap \{(t, t') : t' - t \in I\}$ is an intersection of zones Example

Structural induction: Boolean closure

Intersection

Zones are closed under intersection

Union

Unions of zones are closed under union

Time restriction $\mathcal{M}(\langle \varphi \rangle_I, w) = \mathcal{M}(\varphi, w) \cap \{(t, t') : t' - t \in I\}$ is an intersection of zones

Structural induction: concatenation

Lemma (Concatenation = composition of binary relations) $\mathcal{M}(\varphi \cdot \psi, w) = \mathcal{M}(\varphi, w) \circ \mathcal{M}(\psi, w)$

Composition preserves zones

$$(t,t') \in z_1 \circ z_2 \leftrightarrow \exists t'' : (t,t'') \in z_1 \land (t'',t') \in z_2.$$

Can be obtained using standard zones operations.

Structural induction: concatenation

Lemma (Concatenation = composition of binary relations)

$$\mathcal{M}(\varphi \cdot \psi, w) = \mathcal{M}(\varphi, w) \circ \mathcal{M}(\psi, w)$$

Composition preserves zones

$$(t,t') \in z_1 \circ z_2 \leftrightarrow \exists t'' : (t,t'') \in z_1 \land (t'',t') \in z_2.$$

Can be obtained using standard zones operations.

Example

Concatenation of $\varphi = \langle p \rangle_{[1,\infty]}$ with $\psi = \langle q \rangle_{[0,2]}$

zones for φ , ψ and $\varphi \cdot \psi$

a match (t,t') of $\varphi \cdot \psi$

Timed Pattern Matching

Structural induction: Kleene star

Definition (size of a signal)

 $\sigma(w)$ – minimal number of intervals that:

- cover the time domain of w
- ▶ are of length < 1</p>
- w is constant in each interval

Lemma (Star is bounded)

If $\sigma(w) = k$ then $\mathcal{M}(\varphi^*, w) = \mathcal{M}(\varphi^{\leq 2k+1}, w)$.

Structural induction: Kleene star

Definition (size of a signal)

 $\sigma(w)$ – minimal number of intervals that:

- cover the time domain of w
- ▶ are of length < 1</p>
- w is constant in each interval

Lemma (Star is bounded)

If $\sigma(w)=k$ then $\mathcal{M}(\varphi^*,w)=\mathcal{M}(\varphi^{\leq 2k+1},w).$

Inductive steps:

Timed Pattern Matching

Outline

Problem statement

Practical algorithmics

Experiments

Overall program structure

function $ZONES(\varphi, w)$ select φ case ϵ , p, \overline{p} : $Z_{\varphi} := \operatorname{ATOM}(\varphi, w)$ case • ψ : $Z_{\psi} := \operatorname{ZONES}(\psi, w)$ $Z_{\omega} := \text{COMBINE}(\bullet, Z_{\psi})$ case $\psi_1 \bullet \psi_2$: $Z_{\psi_1} := \operatorname{ZONES}(\psi_1, w)$ $Z_{\psi_2} := \operatorname{ZONES}(\psi_2, w)$ $Z_{\varphi} := \text{COMBINE}(\bullet, Z_{\psi_1}, Z_{\psi_2})$ end select return Z_{ω}

COMBINE implemented for all operations $\bullet \in \{\cdot, \lor, \land, *, \langle \rangle_I\}$

Timed Pattern Matching

An important issue for intersection and concatenation

Does it explode?

$$\bigcup_{i} z_{i} \cap \bigcup_{j} z_{j}' = \bigcup_{ij} z_{i} \cap z_{j}' \qquad \bigcup_{i} z_{i} \circ \bigcup_{j} z_{j}' = \bigcup_{ij} z_{i} \circ z_{j}'$$

Not in practice

- Most resulting zones are empty.
- Plane-sweep algorithm: sorting zones by start / end time allows to avoid most empty operations

An important issue for intersection and concatenation

Does it explode?

$$\bigcup_{i} z_{i} \cap \bigcup_{j} z_{j}' = \bigcup_{ij} z_{i} \cap z_{j}' \qquad \bigcup_{i} z_{i} \circ \bigcup_{j} z_{j}' = \bigcup_{ij} z_{i} \circ z_{j}'$$

Not in practice

- Most resulting zones are empty.
- Plane-sweep algorithm: sorting zones by start / end time allows to avoid most empty operations

Star: computed by squaring

function COMBINE(*, Z) $X := \emptyset$ Y := Zwhile $\exists z \in Y, \forall z' \in X, z \nsubseteq z'$ do $X := X \cup Y \cup$ COMBINE(\cdot, X, Y) Y := COMBINE(\cdot, Y, Y) end while return $X \cup \{\varepsilon\}$

Invariant

After
$$k$$
 iterations $\cup X_k = (\cup Z)^{<2^k}$ and $\cup Y_k = (\cup Z)^{2^k}$

Lemma

The algorithm stops after $\log(|Z|+\Delta(Z))$ iterations

Timed Pattern Matching

Star: computed by squaring

function COMBINE(*, Z) $X := \emptyset$ Y := Zwhile $\exists z \in Y, \forall z' \in X, z \nsubseteq z'$ do $X := X \cup Y \cup$ COMBINE(\cdot, X, Y) Y := COMBINE(\cdot, Y, Y) end while return $X \cup \{\varepsilon\}$

Invariant

After
$$k$$
 iterations $\cup X_k = (\cup Z)^{<2^k}$ and $\cup Y_k = (\cup Z)^{2^k}$

Lemma

The algorithm stops after $\log(|Z| + \Delta(Z))$ iterations

Timed Pattern Matching

Outline

Problem statement

- 2 The solution
- 3 Practical algorithmics

- Program: Python implementation calling IF zones library.
- Signals: random signals of given
 - ► variability V (discontinuities per time unit)
 - length L (number of time units)
- Expression: $\varphi = \langle (\langle p \cdot \bar{p} \rangle_{[0,10]})^* \wedge (\langle q \cdot \bar{q} \rangle_{[0,10]})^* \rangle_{[80,\infty]}$

A table of results

\mathcal{V}	\mathcal{L}	$ Z_{\varphi} $	Time (s)
0.025	40000	0	0.08
0.025	80000	0	0.17
0.025	160000	0	0.37
0.05	40000	0	0.27
0.05	80000	0	0.60
0.05	160000	0	1.27
0.075	40000	1	0.64
0.075	80000	4	1.40
0.075	160000	5	2.88
0.1	40000	10	1.35
0.1	80000	23	2.73
0.1	160000	47	5.83

Conclusion

Contribution

- > The problem of timed pattern matching stated and solved
- A prototype tool developed
- Experiments on synthetic data witness scalability

Perspectives

- Online matching / monitoring
- New operators (mixing expressions and logic, as in hardware specification languages)
- Extending from signals to timed event sequences