Timed Pattern Matching FORMATS'14

Doğan Ulus ${ }^{1}$ Thomas Ferrère ${ }^{1} \quad$ Eugene Asarin ${ }^{2}$ Oded Maler ${ }^{1}$

${ }^{1}$ VERIMAG, CNRS and the University of Grenoble-Alpes
${ }^{2}$ LIAFA, University of Paris Diderot / CNRS

September 10, 2014

Pattern matching

Problem (Pattern matching for regular expressions)

Given a word $w \in \Sigma^{*}$ and a regular expression φ find subwords v of w that match φ.

Classical solutions

- algorithms: often based on automata
- tools: grep, sed, programming languages: PERL, PYTHON etc.

Timed pattern matching

Why do it?

- Monitoring of embedded systems
- Hardware specification languages
- Timed texts (music, speech)
- Quantitative pattern matching (texts, DNA sequences)

Why is it not straightforward?

- Classical algorithms based on (implicit) determinization \Rightarrow heavy subset construction
- Timed automaton does not explicitely provide all matches

Example

- Expression:

$$
\varphi=\langle(p \wedge q) \cdot \bar{q} \cdot q\rangle_{[4,5]} \cdot \bar{p}
$$

- Signals:

- Matches:

Outline

(1) Problem statement
(2) The solution
(3) Practical algorithmics
(4) Experiments

Outline

(1) Problem statement

(2) The solution

3 Practical algorithmics

(4) Experiments

Timed Boolean signals

\begin{abstract}
Example

Definition (Boolean Signals)
Let $\mathbb{T}=[0, d]$ (time domain).

- a Boolean signal is a function $w: \mathbb{T} \rightarrow \mathbb{B}^{m}$.
- can be represented using m Boolean variables $p(t)$.
- assumption: the number of discontinuities is finite.

Timed regular expressions - to specify sets of signals

Definition (Syntax of TRE)

$$
\varphi:=\epsilon|p| \bar{p}|\varphi \cdot \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi^{*} \mid\langle\varphi\rangle_{I}
$$

p propositional variable, I integer bounded interval

Timed regular expressions - to specify sets of signals

Definition (Syntax of TRE)

$$
\varphi:=\epsilon|p| \bar{p}|\varphi \cdot \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi^{*} \mid\langle\varphi\rangle_{I}
$$

p propositional variable, I integer bounded interval

Definition (Semantics of TRE)

$$
\begin{array}{rlll}
\left(w, t, t^{\prime}\right) & \vDash \epsilon & \leftrightarrow & t=t^{\prime} \\
\left(w, t, t^{\prime}\right) & \vDash p & \leftrightarrow & \leftrightarrow<t^{\prime} \text { and } \forall t^{\prime \prime} \in\left(t, t^{\prime}\right), p\left[t^{\prime \prime}\right]=1 \\
\left(w, t, t^{\prime}\right) & \vDash \bar{p} & \leftrightarrow & \ldots \\
\left(w, t, t^{\prime}\right) & \vDash \varphi \cdot \psi & \leftrightarrow & \exists t^{\prime \prime} \in\left(t, t^{\prime}\right),\left(w, t, t^{\prime \prime}\right) \vDash \varphi \text { and }\left(w, t^{\prime \prime}, t^{\prime}\right) \vDash \psi \\
\left(w, t, t^{\prime}\right) & \vDash \varphi \vee \psi & \leftrightarrow & \left(w, t, t^{\prime}\right) \vDash \varphi \text { or }\left(w, t, t^{\prime}\right) \vDash \psi \\
\left(w, t, t^{\prime}\right) & \vDash \varphi \wedge \psi & \leftrightarrow & \cdots \\
\left(w, t, t^{\prime}\right) & \vDash \varphi^{*} & \leftrightarrow & \exists k \geq 0,\left(w, t, t^{\prime}\right) \vDash \varphi^{k} \\
\left(w, t, t^{\prime}\right) & \vDash\langle\varphi\rangle_{I} & \leftrightarrow & t^{\prime}-t \in I \text { and }\left(w, t, t^{\prime}\right) \vDash \varphi
\end{array}
$$

Problem statement

Definition (Match-set)

For a signal w and an expression φ the match-set is

$$
\mathcal{M}(\varphi, w):=\left\{\left(t, t^{\prime}\right) \in \mathbb{T} \times \mathbb{T}:\left(w, t, t^{\prime}\right) \vDash \varphi\right\}
$$

Problem statement

Definition (Match-set)
For a signal w and an expression φ the match-set is

$$
\mathcal{M}(\varphi, w):=\left\{\left(t, t^{\prime}\right) \in \mathbb{T} \times \mathbb{T}:\left(w, t, t^{\prime}\right) \vDash \varphi\right\}
$$

Problem (Timed pattern matching)
Given a signal and an expression compute the match-set.

Outline

(1) Problem statement

(2) The solution

(3) Practical algorithmics

(4) Experiments

Data structure

Definition (2d zone)

A 2 d zone is a subset of \mathbb{R}^{2} described by inequalities

$$
a<x<b \quad c<y<d \quad e<x-y<f
$$

with a, b, c, d, e, f real constants.

Data structure

Definition (2d zone)

A 2 d zone is a subset of \mathbb{R}^{2} described by inequalities

$$
a<x<b \quad c<y<d \quad e<x-y<f
$$

with a, b, c, d, e, f real constants.

About 2d zones

- convex polygons (with up to 6 edges)
- only vertical, horizontal and diagonal edges

Main result

Theorem
The match-set $\mathcal{M}(\varphi, w)$ is computable as a finite union of $2 d$ zones.

Main result

Theorem
The match-set $\mathcal{M}(\varphi, w)$ is computable as a finite union of $2 d$ zones.

Proof principle

Structural induction over φ
\Rightarrow recursive algorithm over the expression syntactic tree

Structural induction: base cases

Empty word

$\mathcal{M}(\epsilon, w)=\left\{\left(t, t^{\prime}\right): t=t^{\prime}\right\}$ and the diagonal is a zone

Structural induction: base cases

Empty word

$\mathcal{M}(\epsilon, w)=\left\{\left(t, t^{\prime}\right): t=t^{\prime}\right\}$ and the diagonal is a zone

A literal

$\mathcal{M}(p, w)$ is a union of triangles over the diagonal

Example

Structural induction: Boolean closure

Intersection

Zones are closed under intersection

Structural induction: Boolean closure

Intersection

Zones are closed under intersection

```
Union
Unions of zones are closed under union
```


Structural induction: Boolean closure

Intersection

Zones are closed under intersection

Union

Unions of zones are closed under union

Time restriction
$\mathcal{M}\left(\langle\varphi\rangle_{I}, w\right)=\mathcal{M}(\varphi, w) \cap\left\{\left(t, t^{\prime}\right): t^{\prime}-t \in I\right\}$ is an intersection of zones

Example

Structural induction: concatenation

Lemma (Concatenation $=$ composition of binary relations)

$$
\mathcal{M}(\varphi \cdot \psi, w)=\mathcal{M}(\varphi, w) \circ \mathcal{M}(\psi, w)
$$

Structural induction: concatenation

Lemma (Concatenation $=$ composition of binary relations)

$$
\mathcal{M}(\varphi \cdot \psi, w)=\mathcal{M}(\varphi, w) \circ \mathcal{M}(\psi, w)
$$

Composition preserves zones

$$
\left(t, t^{\prime}\right) \in z_{1} \circ z_{2} \leftrightarrow \exists t^{\prime \prime}:\left(t, t^{\prime \prime}\right) \in z_{1} \wedge\left(t^{\prime \prime}, t^{\prime}\right) \in z_{2} .
$$

Can be obtained using standard zones operations.

Example

Concatenation of $\varphi=\langle p\rangle_{[1, \infty]}$ with $\psi=\langle q\rangle_{[0,2]}$

zones for φ, ψ and $\varphi \cdot \psi$

a match $\left(t, t^{\prime}\right)$ of $\varphi \cdot \psi$

Structural induction: Kleene star

Definition (size of a signal)

$\sigma(w)$ - minimal number of intervals that:

- cover the time domain of w
- are of length <1
- w is constant in each interval

Structural induction: Kleene star

Definition (size of a signal)

$\sigma(w)$ - minimal number of intervals that:

- cover the time domain of w
- are of length <1
- w is constant in each interval

Lemma (Star is bounded)
If $\sigma(w)=k$ then $\mathcal{M}\left(\varphi^{*}, w\right)=\mathcal{M}\left(\varphi^{\leq 2 k+1}, w\right)$.

Example (from introduction)

$$
\langle(p \wedge q) \cdot \bar{q} \cdot q\rangle_{[4,5]} \cdot \bar{p}
$$

Inductive steps:

Outline

(1) Problem statement

(2) The solution
(3) Practical algorithmics
(4) Experiments

Overall program structure

function $\operatorname{ZONES}(\varphi, w)$
select φ
case ϵ, p, \bar{p} :
$Z_{\varphi}:=\operatorname{ATOM}(\varphi, w)$
case • ψ :

```
    \(Z_{\psi}:=\operatorname{ZONES}(\psi, w)\)
    \(Z_{\varphi}:=\operatorname{Combine}\left(\bullet, Z_{\psi}\right)\)
case \(\psi_{1} \bullet \psi_{2}\) :
    \(Z_{\psi_{1}}:=\operatorname{ZONES}\left(\psi_{1}, w\right)\)
    \(Z_{\psi_{2}}:=\operatorname{ZONES}\left(\psi_{2}, w\right)\)
    \(Z_{\varphi}:=\operatorname{Combine}\left(\bullet, Z_{\psi_{1}}, Z_{\psi_{2}}\right)\)
```

end select
return Z_{φ}
COMBINE implemented for all operations $\bullet \in\left\{\cdot, \vee, \wedge,{ }^{*},\langle \rangle_{I}\right\}$

An important issue for intersection and concatenation

Does it explode?

$$
\bigcup_{i} z_{i} \cap \bigcup_{j} z_{j}^{\prime}=\bigcup_{i j} z_{i} \cap z_{j}^{\prime} \quad \bigcup_{i} z_{i} \circ \bigcup_{j} z_{j}^{\prime}=\bigcup_{i j} z_{i} \circ z_{j}^{\prime}
$$

An important issue for intersection and concatenation

Does it explode?

$$
\bigcup_{i} z_{i} \cap \bigcup_{j} z_{j}^{\prime}=\bigcup_{i j} z_{i} \cap z_{j}^{\prime} \quad \bigcup_{i} z_{i} \circ \bigcup_{j} z_{j}^{\prime}=\bigcup_{i j} z_{i} \circ z_{j}^{\prime}
$$

Not in practice

- Most resulting zones are empty.
- Plane-sweep algorithm: sorting zones by start / end time allows to avoid most empty operations

Star: computed by squaring

```
function \(\operatorname{Combine}\left({ }^{*}, Z\right)\)
\(X:=\emptyset\)
\(Y:=Z\)
while \(\exists z \in Y, \forall z^{\prime} \in X, z \nsubseteq z^{\prime}\) do
    \(X:=X \cup Y \cup \operatorname{COMBINE}(\cdot, X, Y)\)
    \(Y:=\operatorname{COMBINE}(\cdot, Y, Y)\)
```

end while
return $X \cup\{\varepsilon\}$

Invariant

After k iterations $\cup X_{k}=(\cup Z)^{<2^{k}}$ and $\cup Y_{k}=(\cup Z)^{2^{k}}$

Star: computed by squaring

function Combine($\left.{ }^{*}, Z\right)$
$X:=\emptyset$
$Y:=Z$
while $\exists z \in Y, \forall z^{\prime} \in X, z \nsubseteq z^{\prime}$ do
$X:=X \cup Y \cup$ Combine (\cdot, X, Y)
$Y:=\operatorname{Combine}(\cdot, Y, Y)$
end while
return $X \cup\{\varepsilon\}$

Invariant

After k iterations $\cup X_{k}=(\cup Z)^{<2^{k}}$ and $\cup Y_{k}=(\cup Z)^{2^{k}}$

Lemma

The algorithm stops after $\log (|Z|+\Delta(Z))$ iterations

Outline

(1) Problem statement

(2) The solution
(3) Practical algorithmics
(4) Experiments

Experimental setting

- Program: Python implementation calling IF zones library.
- Signals: random signals of given
- variability \mathcal{V} (discontinuities per time unit)
- length \mathcal{L} (number of time units)
- Expression: $\varphi=\left\langle\left(\langle p \cdot \bar{p}\rangle_{[0,10]}\right)^{*} \wedge\left(\langle q \cdot \bar{q}\rangle_{[0,10]}\right)^{*}\right\rangle_{[80, \infty]}$

A table of results

\mathcal{V}	\mathcal{L}	$\left\|Z_{\varphi}\right\|$	Time (s)
0.025	40000	0	0.08
0.025	80000	0	0.17
0.025	160000	0	0.37
0.05	40000	0	0.27
0.05	80000	0	0.60
0.05	160000	0	1.27
0.075	40000	1	0.64
0.075	80000	4	1.40
0.075	160000	5	2.88
0.1	40000	10	1.35
0.1	80000	23	2.73
0.1	160000	47	5.83

Conclusion

Contribution

- The problem of timed pattern matching stated and solved
- A prototype tool developed
- Experiments on synthetic data witness scalability

Perspectives

- Online matching / monitoring
- New operators (mixing expressions and logic, as in hardware specification languages)
- Extending from signals to timed event sequences

