UNIVERSITE
¢ Grenoble
i Alpes

\/ Irini-Eleftheria Mens

VERIMAG, University of Grenoble-Alpes

Learning Regular Languages

over Large Alphabets

10 October 2017
Jury Members
Oded Maler Directeur de these Laurent Fribourg ~ Examinateur
Dana Angluin ~ Rapporteur Eric Gaussier ~ Examinateur

Peter Habermehl =~ Rapporteur Frits Vaandrager = Examinateur

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

000 [o]e] 00000 [e]e] 000000
Tech for Self-Driving Car
= Lidar
-
. Video
T=Camera
il T S

computer
” Radar sensors

Black Box Model

Learning

> Language

Identification
System OD\’

Identification

1/31

Introduction

A Short Prehistory and History of Automaton Learning

1956

1967

1972

1978

1987

1993

Edward F Moore. Gedanken-experiments on sequential machines.
Defines the problem as a black box model inference.

E. Mark Gold. Language identification in the limit.

E. Mark Gold. System identification via state characterization.
Learning finite automata is possible in finite time. He first uses
the basic idea that underlies table-based methods.

E. Mark Gold. Complexity of automaton identification from given data.
Finding the minimal automaton compatible with a given sample
is NP-hard.

Dana Angluin. Learning regular sets from queries and counter-examples.
The L* active learning algorithm with membership and equiva-
lence queries. Polynomial in the automaton size.

Ronald L. Rivest and Robert E. Schapire. Inference of finite au-
tomata using homing sequences.
An improved version of the L* algorithm using the breakpoint
method to treat counter-examples.

2/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

Machine Learning Model
f:X—=Y
a small sample m fx)=y,V(x,y) eM
M={(x,y):xeX, yeY} predict or identify f(x)
forallx € X

Learning Regular Languages
over large or infinite alphabets Model
f is a language
LCY*

e 3} an alphabet
e X = ¥* set of words

o Y ={+,-} The model is an

symbolic automaton

3/31

Introduction
Types of Learning

Off-line vs Online
The sample M is known before The sample M is updated
the learning procedure starts. during learning.

Passive vs Active

The sample M is given. The sample M is chosen by
the learning algorithm.

Learning using Queries
The learning algorithm can access queries e.g.,
membership queries, equivalence queries, etc.

?

weL LH)=L

wex* Yes / No Hypothesis H True /

Counter-example
(cex)

MQ(+)

4731

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Outline
Preliminaries
Regular Languages and Automata
The L* Algorithmic Scheme

Large Alphabets
Motivation
Symbolic Representation of Transitions - Symbolic Automata

Learning Symbolic Automata
Why L* cannot be applied?
Our Solution
The Algorithm

Equivalence Queries and Counter-Examples
Adaptation to the Boolean Alphabet
Experimental Results

Conclusion

5/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Outline

Preliminaries
Regular Languages and Automata
The L* Algorithmic Scheme

5/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
@00 (oo} 00000 (o] 000000

Regular Languages and Automata

suffixes

b a b 4 e a b aa ab ba bb aaa

a b a |- - + - — + - -

3 = {a,b} b - - - -+ = - _
aa | — — — - + - - -

L C ¥*is alanguage ga |+ + - + - - + +
e s an alphabet gl -+ - -+ - -
=bb |- - - - 4+ - - -

® w=ua---a,isaword

e 3* is the set of all words ;zba N . _ . _ 4 4
abb| - — + - - + - -

6/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 oo 00000 (o] 000000

Regular Languages and Automata

Y = {a,b}

L C ¥* is a language

Equivalence relation
u~pviffu-welLsv-weL

Nerode’s Theorem
L is a regular language iff ~ has
finitely many equivalence classes.

Q = ¥* /. (states in the minimal e~b~aa ar~ba~abb ab~ aba
representation of L.

6/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
o] le} (oo} 00000 [e]e] 000000

Regular Languages and Automata

A sufficient sample that
characterizes the language

A 1/./7
: Py N

b
.) q
N

a]
» {
) a b

a
»

7/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

o] le} (oo} 00000 (o] 000000

Regular Languages and Automata

A sufficient sample that

characterizes the language
E a 4
e a b

- /0\ 5
S a

ab | + + - . ‘lb

b Cwa) b

aa < -’
R apa + + -

abb

S prefixes (states)
R boundary (R=S-X\S)
E suffixes (distinguishing strings)

f:SUR x E — {4, —} classif. function
fi E = {+, =} residual functions

71731

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
o] le} oo 00000 (e]e) 000000

Regular Languages and Automata

A sufficient sample that
characterizes the language

E
e a b
; ®
g a
ab |+ + -
b (:zl;a\) ¢ (;d:b\)
aa N g
R aba + + -
abb

S prefixes (states) AL = (3,0,490,0, F)
R boundary (R=S-X\S) -0=S
E

suffixes (distinguishing strings) - qo = [E]
. . - 6([u],a) = [u-d]
f:SUR x E — {4, —} classif. function - F={[u]:(u-¢)eL}
G E—{+,— idual ti o
/ (o, =} residual functions The minimal automaton for L

71731

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
ooe (oo} 00000 (o] 000000

The L* Algorithmic Scheme*

Active learning using queries

Learner Teacher
a ~b
— LCY* RPN
< @
? 3 b v
Mo(:)
+/- ()
)
EQ(")
—_——

*D. Angluin. Learning regular sets from queries and counter-examples, 1987. 8/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
ooe (oo} 00000 (o] 000000

The L* Algorithmic Scheme*

Active learning using queries

Learner Teacher Db
P LCY* RN
< @

Fill in Table MQ(+)

Hypothesis H

| EQ(-)
= ,

*D. Angluin. Learning regular sets from queries and counter-examples, 1987. 8/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
ooe (oo} 00000 (o] 000000

The L* Algorithmic Scheme*

Active learning using queries

Learner Teacher
P LCX*
<
?
weL
—_—
Fill in Table MQ(+)
P
+/- ()
”)
Hypothesis H LH)=L
= 0
——
etunter-example
. True

Return H

*D. Angluin. Learning regular sets from queries and counter-examples, 1987. 8/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Outline

Large Alphabets
Motivation
Symbolic Representation of Transitions - Symbolic Automata

8/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 0 00000 (e]e) 000000

Languages over Large Alphabets

xp:10101010000100 - - -
Input: 2 ° 10100100100100- - -
put: X3+ 1010100001001 - - -

X4+ 10101000100100- - -

X3 X2 X1 X0

vlv|y

) f

]

\
|
7

Boolean Vectors (B")

o satEn
Ao 16,14 w
1 A\ \]
. \\ 3 ! \f RERTAREII
Ao 16,10 b P — [fw -~

B S S AR T R AR N

9/31

Large Alphabets
oe

Symbolic Automata

A= (EaszaQadaq(ﬁF)

ai

x < 10

- Q finite set of states,

- qo initial state,

- F accepting states,

- X large concrete alphabet,

-6COxX¥xQ

- X finite alphabet (symbols)

- Py X = 3g,9€0

- [al ={a e X[4(a) = a}

YCR

laoi] = {x € X :x <50} A is complete and deterministic if Vg € O
(w=20-40-60, +) {[a] | a € %,} forms a partition of 3.

W =dap) a3 - a4

10/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Outline

Learning Symbolic Automata
Why L* cannot be applied?
Our Solution
The Algorithm

10/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} @0000 (o] 000000

Learning over Large Alphabets

Why L* cannot be applied?
e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))
e Inefficient for large finite alphabets
e Not applicable to infinite alphabets

11/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} @0000 (o] 000000

Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))

e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

e Use a finite sample of evidences to learn the
transitions

Evidences: w(a) = {a',a®}

11/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 [o]e] @0000 [e]e] 000000

Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))

e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

a b
e Use a finite sample of evidences to learn the
transitions
d 2 &8 ak
— b e Form evidence compatible partitions
e Associate a symbol to each partition block
Evidences: w(a) = {a',a®}

11/31

Introduction Preliminaries

Alphabets Learning Symbolic Automata Counter-examples Booleans E
@0000 [e]e]

ental Results Conclusion

Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))
e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

a b

e Use a finite sample of evidences to learn the
transitions
al a2 P oon gt
- — 3 e Form evidence compatible partitions
fi(a) f(b) , ..
e Associate a symbol to each partition block
e Each symbol has one representative
Evidences: wu(a) = {da',d*} y P

evidence
Representative: fi(a) = a'

11/31

Introduction Preliminaries Alphabets Learning Symbolic Automata Counter-examples Booleans E

@0000 (o]e]

ental Results Conclusion

Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))
e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

a b

e Use a finite sample of evidences to learn the
transitions
d 2 &8 gk
- — 3 e Form evidence compatible partitions
fi(a) f(b) , ..
e Associate a symbol to each partition block
e Each symbol has one representative
Evidences: wu(a) = {da',d*} y P

evidence
Representative: fi(a) = a'

e The prefixes are symbolic

11/31

Symbolic Learning Algorithm

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 oo 0@000 (o] 000000

Symbolic Learning Algorithm

®

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 0@000 (o] 000000

Symbolic Learning Algorithm

Learner

Repeat for each new state g:

e Sample evidences

Fill in Table
partially

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

(e]e]e}

Learner

Fill in Table
partially

oo 0@000 (o] 000000

Symbolic Learning Algorithm

Repeat for each new state g:
e Sample evidences
e Ask MQ’s

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 0O@000 (o] 000000

Symbolic Learning Algorithm

Learner

Repeat for each new state g:
e Sample evidences
o Ask MQ’s

Fill in Table
partially

e Learn partitions

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 [o]e] 0e000 [e]e] 000000

Symbolic Learning Algorithm

Learner Y. ={a,a} ¥

Repeat for each new state g:
e Sample evidences
o Ask MQ’s

Fill in Table
partially

e Learn partitions

poe
(
N
e
i
“_/
[}

Define the symbolic
alphabet 3,

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 [o]e] 0e000 [e]e] 000000

Symbolic Learning Algorithm

Learner B = {a1, a2} Repeat for each new state g:
a, e Sample evidences
Fill in Table 4 * AskMQ’s
o R e Learn partitions
O O o L e Define the symbolic
alphabet 3,

e Select representative
j(a), Ya € 3,

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

(e]e]e} (oo} 0O@000 (o]

000000

Symbolic Learning Algorithm

Learner Y. ={a,a}

[]
[}
Fill in Table
partially °
\
7 o
[]

Repeat for each new state g:

Sample evidences
Ask MQ’s
Learn partitions

Define the symbolic
alphabet 3,

Select representative
j(a), Ya € 3,

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

(e]e]e}

Learner

Fill in Table
partially

L

Make
Hypothesis H

=

(oo} 0O@000 (o]

000000

Symbolic Learning Algorithm

3. ={ai, a2}

a

Repeat for each new state g:

Sample evidences
Ask MQ’s
Learn partitions

Define the symbolic
alphabet 3,

Select representative
j(a), Ya € 3,

12/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

(e]e]e}

Learner

Fill in Table
partially

Make
Hypothesis H

=

(oo}

X ’\
~

0O@000 (o]

000000

Symbolic Learning Algorithm

3. ={ai, a2}

l’\\ a2

a

Repeat for each new state g:

Sample evidences
Ask MQ’s
Learn partitions

Define the symbolic
alphabet 3,

Select representative
j(a), Ya € 3,

12/31

Introduction Preliminaries Alphabets Learning Symbolic Automata Counter-examples Booleans E ental Results Conclusion

[e]e] lo]e} (o]e]

Evidence Compatibility

Solve Incompatibility

Boundary Modification New Transition

Evidence Compatibility Evidence incompatibility at state u
A state u is evidence compatible | v
when
— u-ji(a +
Ju-a —fu-ﬂ(a) u ua() _

for every evidence a € [a]
13/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 [o]e] 00080 [e]e] 000000

Counter-example Treatment (Symbolic Breakpoint)

Letw=a----ai- -ay =ui-a-vibea counter-example.

fasio1 - ai) - vi) # f(fu(si) - vi) fla(si=1) - ai-vi) # f(a(si-1) - fu(ai) - vi)

si = 0(e,u; - a;)

s-a;isa
o new state
fi(uy) \

vertical expansion M horizontal expansion

14/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples

(e]e]e} (oo} [ele]e]e]) (o] 000000

Example over the alphabet > = [1, 100)

observation table

semantics hypothesis automaton
— x <27
2 ‘ EE - {al 7 a2} - _/CQ
27
13 41 68 78 92 =
—i—f—e oo x>27

f(az)

={a3}

2 18 26 44 53

Booleans Experimental Results Conclusion

15/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 oo 0000e (o] 000000

Example over the alphabet > = [1, 100)

observation table semantics

hypothesis automaton

41 68 78 92 =
* o—o—= x>27
f(az)
= {as}
Ask Equivalence Query:
2 1‘8 6 45 counter-example:
a(as) w=235-52-11,—

add distinguishing string 11

discover new state
(vertical expansion)

15/31

Introduction Preliminaries
000 [o]e]

[ee]ole] oo

Large Alphabets Learning Symbolic Automata Counter-examples

Booleans Experimental Results Conclusion
000000

Example over the alphabet > = [1, 100)

observation table semantics
e 11 O =-waw
27
13 41 68 78 92
f(ay)
={a3}
2 1826 4453
Aas)

a Eaz = {a4,a5}

43
17 28 58 75 94
_ —
(ag) f(as)

hypothesis automaton

15/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 oo 0000e (o] 000000

Example over the alphabet > = [1, 100)

observation table

semantics hypothesis automaton

— 27
e @ O ~-@—0
27
13 41 68 78 92 =
—an I A o—o A x> 43
fAar) f(az)
x>27
43
@ = o=r
63 .
2 1826 4453 73 Ask Equivalence Query:
~—® ® counter-example:
fa(az) fA(ag)

w=12-73-4,—

i B, = {as, a5} add 73 as evidence of a;

43
17 28 58 75 o4 ..
—0— —= add new transition
fi(ay) fu(as)

(horizontal expansion)

15/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
[eJele] [e]e} [ee]ole]

000000

Example over the alphabet > = [1, 100)

(o]

observation table

semantics hypothesis automaton
Sl @i g
27
13 41 68 78 92 x < 63
——f—e &—o—o x> 43
fifay) ffaz)

. Eal = {a3) a6}
63

2 1826 4453 73
——o —_—

fa(az) A(ag)

a Eaz = {a4,a5}

43
17 28 58 75 94
_ —
(ag) f(as)

15/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 oo 0000e (o] 000000

Example over the alphabet > = [1, 100)

observation table

semantics hypothesis automaton
27
R 68 78 92 x < 63
— i o —o x>4
fAar) faz)
x>27
43
@ 5-on Ozl
63 .
2 1826 4453 73 Ask Equivalence Query:
—e ® counter-example: w = 52 - 46, —
f(a3) fA(ag)
add 46 as evidence of a»
o X4 ={ay,as}
52 . . %)
72 46 53 75 o refine existing transition
— 00— o—= (horizontal expansion)
f(ag) f(as)

15/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000

(oo}

[ee]ole] oo

000000

Example over the alphabet > = [1, 100)

observation table

e 11

semantics
‘ ZE = {a17a2}
27
13 41 63 78 92
— } * o—o—o
alar) f(ay)

. Eal = {a3) aﬁ}
63

2 18 26 44 53 73
*—®e L}

fa(az) A(ag)

a Eaz = {a4,a5}

52
17 28 46 58 75 94

80—

Alas) i(as)

hypothesis automaton

x <27 x> 63

x < 63

x> 52

° x <52

Ask Equivalence Query:

True
return current hypothesis

return hypothesis

15/31

Outline
Preliminaries
Regular Languages and Automata
The L* Algorithmic Scheme

Large Alphabets
Motivation
Symbolic Representation of Transitions - Symbolic Automata

Learning Symbolic Automata
Why L* cannot be applied?
Our Solution
The Algorithm

Equivalence Queries and Counter-Examples
Adaptation to the Boolean Alphabet
Experimental Results

Conclusion

15/31

Counter-examples
0

Equivalence Queries and Counter-Examples

A helpful teacher can compute L & L(H) to
What is the error? find counter-examples.

L L(H) When the teacher provides minimal
counter-examples (i.e., minimal in length-
lexicographic order), then

e one evidence per partition is used

Allw e L& L(H) e the boundaries are exactly determined
are counter-examples

e final hypothesis contains no error

The algorithm terminates with a correct conjecture after asking at most O (mn?)
MQ’s and at most O(mn) EQ’s, when ¥ is totally-ordered.

16/31

Counter-examples
oe

Equivalence Queries and Counter-Examples

In the absence of a helpful teacher and the
What is the error? learner can use only MQ’s

L L(H) EQ’s are approximated by testing:
e select a set of words randomly

e ask MQ’s for them

e check if the result matches with H
Allw e L@ L(H)

e return counter-example
are counter-examples

A hypothesis automaton H is Probably Approximately Correct (PAC) iff
Pr(P(L®&L(H)) <€) >1-4.

Sufficient tests for a hypothesis H; to be PAC: r; = 1(In § + (i 4+ 1) In2).
[Ang87] 17/31

Outline

Preliminaries
Regular Languages and Automata
The L* Algorithmic Scheme

Large Alphabets
Motivation
Symbolic Representation of Transitions - Symbolic Automata

Learning Symbolic Automata
Why L* cannot be applied?
Our Solution
The Algorithm

Equivalence Queries and Counter-Examples
Adaptation to the Boolean Alphabet
Experimental Results

Conclusion

17/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 [e]e) 00000 [e]o) 000000

Adaptation to the Boolean Alphabet

Partition of R (or N) into finite Partition of B” into finite number of
number of intervals cubes

| a | a as

18/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
foYole} oo 00000 oo 000000

Adaptation to the Boolean Alphabet
Representations of the Boolean Cube
’(ﬁ : IB4 — {al,az,a3}

]B" . « . . .
AT
RNV . .
0000
X3X4
00 01 11 10
00
a;, ifx; o1 &
w(a) = ay, ifx;-x3 < a, |\
. =
as, ifx;-x3 1 as
10 _
Boolean Function Karnaugh map Binary Decision Tree

19/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Adaptation to the Boolean Alphabet

Learning Partitions

3 — B4 Learning Binary Decision Trees using the
Greedy Splitting Algorithm CARTT
X3X4
00 01 11 10
——F=t=F=%
00) : (b// \\\}
201 b |
= Kl
- 11 r i 8 1 X 0/ \1
i 3
10 | ng |
L R A
Best split: x; X3 173
a1, if% Use Information Gain (Entropy)
Pla) = § a2, ifx-x Measure to find Best Split

as, ifx1 + X3

*Breiman et al. Classification and regression trees, 1984.
20/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton
00 01 11 10 a o a o
MOEED @ ()0
. of 4 |] a o
| e] a0 o
10](e 1)

°
S

)

°

- o
T T =T
]
=
I [A A

21/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton
00 01 11 10 .
\ " a as o
e 0000 ROLED N _/@3
. o1 (a, W a
1 L o J ap o
10][e <1)
00 01 11 10
00 lo a oJ
. of |4 ||
nEe] Ask Equivalence Query:
10 f' °] counter-example:

w = (1010) - (0000) , +
w=ay-a, —

add distinguishing string (0000)
discover new state
evidence incompatibility
21/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton

IOO 01 I11 10
00 MO us:
. of 4 |

| e]
toma
00 01 11 10
o | °

()
o | 4. | |

. | e] Ask Equivalence Query:
f]

o JoHH

21/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton
00 01 11 10
g 0000 00 MO uS@

@ 1]
aa | — + offe] Y®

00 01 I1 10
o | °

()
o | 4. | |

. | e] Ask Equivalence Query:
f]

True

00

oo @) [A ;]

01 E]L terminate: Return H
11

21/31

aaz

Outline
Preliminaries
Regular Languages and Automata
The L* Algorithmic Scheme

Large Alphabets
Motivation
Symbolic Representation of Transitions - Symbolic Automata

Learning Symbolic Automata
Why L* cannot be applied?
Our Solution
The Algorithm

Equivalence Queries and Counter-Examples
Adaptation to the Boolean Alphabet
Experimental Results

Conclusion

21/31

Introduction

#states learned

#MQs (x10%)
=
S)

#EQs
w
o

Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results
00000 (o]

(e]e]e} (oo}

Empirical Results

Comparison to the best L* algorithm*

— Symbolic Algorithm

~— L* Reduced I

L s e e e

O r—r—T—TTTTT
w
o

L
100 150

alphabet size |3]

Conclusion
®00000

Experiment:

Target automaton:
-XCN

-10 <[] <200

- |0l =15,
‘|Eq|§57v‘]€Q

Structure is fixed

PAC criterion for
e=06=0.05

MQ’s = MQ’s for
learning + MQ’s for
testing

Rivest and Schapire. Inference of finite automata using homing sequences, 1993.

22/31

Introduct

#MQs (x10°)

#EQs

#states learned

ion

Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e}

(oo}

00000

Empirical Results

(o]

Comparison to the best L* algorithm®

— Symbolic Algorithm

~— L* Reduced I

L s

LI s s

o

10

L
15 20 25 30

number of states in target

35

0@0000

Experiment:

Target automaton:
-XCN

- 1% =150

-3 <0 <45
-|%41 <5, V€0

Random structure

PAC criterion for
e=06=0.05

MQ’s = MQ’s for
learning + MQ’s for
testing

§Rivest and Schapire. Inference of finite automata using homing sequences, 1993.

23/31

Introduction

#MQs (x10%)

(x10%)

[Mr|

#EQs (x10)

Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

(e]e]e}

(oo} 00000

(o]

Empirical Results

Applving the svmbolic aleorithm over the Booleans

= Symbolic Algorithm (B")

T T T T T T

L e

T T T T T

3 2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 2‘102I112I122I132I14215
alphabet size

o

10

20 30 40
states in target

008000

Experiment:

Target automaton:

Left: |Q| = 15
23 < |Z| < 215
Right: |X| = B®
3<10] <50

BDTs depth < 4,
Vg € O

PAC criterion for
e=0=0.05

MQ’s = MQ’s for
learning + MQ’s for
testing

24/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000e@00

Empirical Results
Valid passwords over the ASCII characters

0| NUL 16| DLE 32| SPC 43| 0 64| @ 80| P 96| ° 112| p
1son| 17[oca| 33[1 || as] 1 || es| A [s @[o7 a | 113] q
2| STX 18| DC2 34 " 50| 2 66| B 82| R 98| b 114| r
3| ETX 19| DC3 35| # 51 3 67 C 8 S 99| ¢ 115 s
4| EOT 20| DC4 36| S 52| 4 68| D 84| T 100, d 116 t
5|ENQ 21| NAK 37, % 53] 5 69] E 8| U 101 e 117 u
6| ACK 22| SYN 38 & 54| 6 70| F 86| V 102| f 118| v
7| BEL 23| ETB 39 ' 55| 7 71 G 87l W 103[g 119| w
8| BS 24| CAN 40((56| 8 72 H 88| X 104| h 120| x
9| HT 25| EM 41|) 57| 9 73] | 89| Y 105| i 121 y
10| LF 26| SUB 42 * 58| : 74|) 90| Z 106| j 122| z
11 vr 27| ESC 43| + 59| 75| K 91| [107| k 123 {
12| FF 28| FS a4 60| < 76 L 92| \ 108| | 124 |
13 R | 29) s || as| - 61] = [77l m | o3[1 [209] m [125] 3
14| SO 30| RS 46| . 62| > 78| N 94 ~ 110| n 126| ~
15 st | safwus| a7 /| e 2 | 79l of os| _ | 11| o || 127/ pEL
Control Characters Numerals Lower-Case Letters
Punctuation Symbols Upper-Case Letters

25/31

Introduction Preliminaries
000 [o]e]

00000

Large Alphabets Learning Symbolic Automata Counter-examples

(o]

000000

Empirical Results

Valid passwords over the ASCII characters
The Symbolic Algorithm, L* — Reduced: [RS93]

== Symbolic Algorithm

[0 L* Reduced I—'—

200 | T

BO e

T

#States learned

20

password type

A (pin)

Length: 4 to 8.
Contains only

B (easy)

B0

Length: 4 to 8.
It contains any

#MQs (x10°)

C (medium)

Length: 6 to 14.
Contains any printable

140

== symbotic Algorithm

120 -

=
o
=]

©
o

-3
o

IS
o

N
=]

password type

D (medium-strong)

Length: 6 to 14.
Contains at least 1 number

[0 L* Reduced I—'—

E (strong)

Length: 6 to 14.
Contains at least 1

Booleans Experimental Results Conclusion

character but punctuation
characters.

numbers. printable character.

and 1 lower-case letter.
Punctuation characters are
allowed.

character from each

group.

26/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples

(e]e]e} (oo} 00000 (o]

Booleans Experimental Results Conclusion

00000

Empirical Results

Valid passwords over the ASCII characters

A (pin)

B (easy)

Length: 4 to 8.
It contains any
printable character.

C (medium)

Length: 6 to 14.
Contains any printable
character but punctuation
characters.

Length: 4 to 8.
Contains only
numbers.

D (medium-strong)

Length: 6 to 14.
Contains at least 1 number
and 1 lower-case letter.
Punctuation characters are
allowed.

E (strong)

Length: 6 to 14.
Contains at least 1
character from each
group.

26/31

Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
foYole} oo 00000 oo 00000e

Empirical Results
Valid passwords over the ASCII characters

2 =1{01,...,127} S =B’

)
I as] o
I [1

7 6] 1]
6] 97 a | 113
o6] 8| s8] b | ual ¢
ol c | s | s ¢ [us] s
] [o] a | ue] ¢
ﬁ—— o a0 e | w
7 E N BT
ss| 7 | [103 115w
so| s | 7l [0 n | a20] «
s o | 7 S
ss| : | 74| 50| 106] 12 2
so| ;| | 1) 107 & | 123 (
oo < | 78] % o8 1| 12
al = | 7] 93]] | 109 m | 125] }
oo > | 7| Sa| ~ {110 n | 126 ~
6 2 | m| 5| il o DEL
.
B " 2
X 8 2
X g g
s i €
g £ g
*za 40| 200,
»
2

< < <
password type password type password type

271731

Outline

Preliminaries
Regular Languages and Automata
The L* Algorithmic Scheme

Large Alphabets
Motivation
Symbolic Representation of Transitions - Symbolic Automata

Learning Symbolic Automata
Why L* cannot be applied?
Our Solution
The Algorithm

Equivalence Queries and Counter-Examples
Adaptation to the Boolean Alphabet
Experimental Results

Conclusion

271731

Conclusion

Related Work

Ideas similar to ours have been suggested and explored in a series of papers,
which also adapt automaton learning and the L* algorithm to large alphabets.

F Howar, B Steffen, and M Merten (2011).
Automata learning with automated alphabet abstraction refinement.

M Isberner, F Howar, and B Steffen (2013).
Inferring automata with state-local alphabet abstractions.

e The hypothesis is a partially defined hypothesis where the
transition function is not defined outside the observed
evidence.

T Berg, B Jonsson, and H Raffelt (2006).
Regular inference for state machines with parameters.

e Based on alphabet refinement that generates new symbols indefinitely.

28/31

Conclusion

Related Work

Ideas similar to ours have been suggested and explored in a series of papers,
which also adapt automaton learning and the L* algorithm to large alphabets.

S Drews and L D’ Antoni (2017). Learning symbolic automata.

e Gives a more general justification for a learning scheme
like ours by providing that learnability is closed under
product and disjoint union.

M Botincan and D Babié (2013). Sigma*: Symbolic learning of input-output
specifications.

e Weaker termination results that is related to the
counter-example guided abstraction refinement
procedure. Handles transducers instead of automata.

28/31

Conclusion

Contribution

O Maler and IE Mens. Learning regular languages over large alphabets.
In TACAS, vol 8413 of LNCS, pages 485-499. Springer, 2014.

O Maler and IE Mens. Learning regular languages over large ordered
alphabets. Logical Methods in Computer Science (LMCS), 11(3), 2015.

O Maler and IE Mens. A Generic Algorithm for Learning Symbolic
Automata from Membership Queries. In Models, Algorithms, Logics
and Tools, vol 10460 of LNCS, pages 146-169. Springer, 2017.

29/31

Conclusion

Conclusions
We presented an algorithm for learning regular languages over large
alphabets using symbolic automata.

We decomposed the problem into learning new states (as in standard
automaton learning) and learning the alphabet partitions in each state.

Modification of alphabet partitions are treated in a rigorous way that
does not introduce superfluous symbols.

It can be done as static learning of concepts/partitions in the alphabet
domain.

We defined the notion of evidence compatibility which is an invariance
of the algorithm and extended the breakpoint method to detect its
violation.

We explored in detail and implemented the cases where alphabets are
numbers or Boolean vectors.

We handle both helpful and non-helpful teachers.

30/31

Conclusion

Future Work

Extend the algorithm to alphabets such as R” and R" x B" using
regression trees.

Explore the use of other “deep learning” methods to learn the alphabet
partitions.

Study more realistic situations where the learner does not have full
control over the sample and when some noise is present.

Make more experiments and algorithmic improvement for the Boolean
case.

Find and explore a convincing class of applications.

Thank you !

31/31

	Preliminaries
	Regular Languages and Automata
	The L* Algorithmic Scheme

	Large Alphabets
	Motivation
	Symbolic Representation of Transitions - Symbolic Automata

	Learning Symbolic Automata
	Why L* cannot be applied?
	Our Solution
	The Algorithm

	Equivalence Queries and Counter-Examples
	Adaptation to the Boolean Alphabet
	Experimental Results
	Conclusion

