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Introduction

A Short Prehistory and History of Automaton Learning

1956

1967

1972

1978

1987

1993

Edward F Moore. Gedanken-experiments on sequential machines.
Defines the problem as a black box model inference.

E. Mark Gold. Language identification in the limit.

E. Mark Gold. System identification via state characterization.
Learning finite automata is possible in finite time. He first uses
the basic idea that underlies table-based methods.

E. Mark Gold. Complexity of automaton identification from given data.
Finding the minimal automaton compatible with a given sample
is NP-hard.

Dana Angluin. Learning regular sets from queries and counter-examples.
The L* active learning algorithm with membership and equiva-
lence queries. Polynomial in the automaton size.

Ronald L. Rivest and Robert E. Schapire. Inference of finite au-
tomata using homing sequences.
An improved version of the L* algorithm using the breakpoint
method to treat counter-examples.
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Machine Learning Model
f:X—=Y
a small sample m fx)=y,V(x,y) eM
M={(x,y):xeX, yeY} predict or identify f(x)
forallx € X

Learning Regular Languages
over large or infinite alphabets Model
f is a language
LCY*

e 3} an alphabet
e X = ¥* set of words

o Y ={+,-} The model is an

symbolic automaton
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Introduction
Types of Learning

Off-line vs Online
The sample M is known before The sample M is updated
the learning procedure starts. during learning.

Passive vs Active

The sample M is given. The sample M is chosen by
the learning algorithm.

Learning using Queries
The learning algorithm can access queries e.g.,
membership queries, equivalence queries, etc.

?

weL LH)=L

wex* Yes / No Hypothesis H True /

Counter-example
(cex)

MQ(+)
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Regular Languages and Automata

suffixes

b a b 4 e a b aa ab ba bb aaa

a b a |- - + - — + - -

3 = {a,b} b - - - -+ = - _
aa | — — — - + - - -

L C ¥*is alanguage ga |+ + - + - - + +
e s an alphabet gl -+ - -+ - -
=bb |- - - - 4+ - - -

® w=ua---a,isaword

e 3* is the set of all words ;zba N . _ . _ 4 4
abb| - — + - - + - -
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Regular Languages and Automata

Y = {a,b}

L C ¥* is a language

Equivalence relation
u~pviffu-welLsv-weL

Nerode’s Theorem
L is a regular language iff ~ has
finitely many equivalence classes.

Q = ¥* /. (states in the minimal e~b~aa ar~ba~abb ab~ aba
representation of L.
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Regular Languages and Automata

A sufficient sample that
characterizes the language

A 1/./7
: Py N

b
. ) q
N

a ]
» {
) a b

a
»
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Regular Languages and Automata

A sufficient sample that

characterizes the language
E a 4
e a b

- /0\ 5
S a

ab | + + - . ‘lb

b Cwa) b

aa < -’
R apa + + -

abb

S prefixes (states)
R boundary (R=S-X\S)
E  suffixes (distinguishing strings)

f:SUR x E — {4, —} classif. function
fi  E = {+, =} residual functions

71731
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Regular Languages and Automata

A sufficient sample that
characterizes the language

E
e a b
; ®
g a
ab |+ + -
b (:zl;a\) ¢ (;d:b\)
aa N g
R aba + + -
abb

S prefixes (states) AL = (3,0,490,0, F)
R boundary (R=S-X\S) -0=S
E

suffixes (distinguishing strings) - qo = [E]
. . - 6([u],a) = [u-d]
f:SUR x E — {4, —} classif. function - F={[u]:(u-¢)eL}
G E—{+,— idual ti o
/ (o, =} residual functions The minimal automaton for L

71731
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The L* Algorithmic Scheme*

Active learning using queries

Learner Teacher
a ~b
— LCY* RPN
< @
? 3 b v
Mo(:)
+/- ( )
)
EQ(")
—_——

*D. Angluin. Learning regular sets from queries and counter-examples, 1987. 8/31
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The L* Algorithmic Scheme*

Active learning using queries

Learner Teacher Db
P LCY* RN
< @

Fill in Table MQ(+)

Hypothesis H

| EQ(-)
= ,

*D. Angluin. Learning regular sets from queries and counter-examples, 1987. 8/31
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The L* Algorithmic Scheme*

Active learning using queries

Learner Teacher
P LCX*
<
?
weL
—_—
Fill in Table MQ(+)
P
+/- ( )
” )
Hypothesis H LH)=L
= 0
——
etunter-example
. True

Return H

*D. Angluin. Learning regular sets from queries and counter-examples, 1987. 8/31




Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
(e]e]e} (oo} 00000 (o] 000000

Outline

Large Alphabets
Motivation
Symbolic Representation of Transitions - Symbolic Automata

8/31



Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion
000 0 00000 (e]e) 000000

Languages over Large Alphabets

xp:10101010000100 - - -
Input: 2 ° 10100100100100- - -
put: X3+ 1010100001001 - - -

X4+ 10101000100100- - -

X3 X2 X1 X0

vlv|y

) f

]

\
|
7

Boolean Vectors (B")

o satEn
Ao 16,14 w
1 A\ \ ]
. \\ 3 ! \f RERTAREII
Ao 16,10 b P — [ fw -~

B S S AR T R AR N
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Large Alphabets
oe

Symbolic Automata

A= (EaszaQadaq(ﬁF)

ai

x < 10

- Q finite set of states,

- qo initial state,

- F accepting states,

- X large concrete alphabet,

-6COxX¥xQ

- X finite alphabet (symbols)

- Py X = 3g,9€0

- [al ={a e X[ 4(a) = a}

YCR

laoi] = {x € X :x <50} A is complete and deterministic if Vg € O
(w=20-40-60, +) {[a] | a € %,} forms a partition of 3.

W =dap) a3 - a4
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Outline

Learning Symbolic Automata
Why L* cannot be applied?
Our Solution
The Algorithm
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Learning over Large Alphabets

Why L* cannot be applied?
e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))
e Inefficient for large finite alphabets
e Not applicable to infinite alphabets
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Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))

e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

e Use a finite sample of evidences to learn the
transitions

Evidences: w(a) = {a',a®}
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Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))

e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

a b
e Use a finite sample of evidences to learn the
transitions
d 2 &8 ak
— b e Form evidence compatible partitions
e Associate a symbol to each partition block
Evidences: w(a) = {a',a®}
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Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))
e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

a b

e Use a finite sample of evidences to learn the
transitions
al a2 P oon gt
- — 3 e Form evidence compatible partitions
fi(a) f(b) , ..
e Associate a symbol to each partition block
e Each symbol has one representative
Evidences: wu(a) = {da',d*} y P

evidence
Representative:  fi(a) = a'
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Learning over Large Alphabets

Why L* cannot be applied?

e The learner asks MQ’s for all continuations
of a state (Va € X, ask MQ(u - a))
e Inefficient for large finite alphabets

e Not applicable to infinite alphabets

Our solution:

a b

e Use a finite sample of evidences to learn the
transitions
d 2 &8 gk
- — 3 e Form evidence compatible partitions
fi(a) f(b) , ..
e Associate a symbol to each partition block
e Each symbol has one representative
Evidences: wu(a) = {da',d*} y P

evidence
Representative:  fi(a) = a'

e The prefixes are symbolic
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Symbolic Learning Algorithm
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Symbolic Learning Algorithm

®
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Symbolic Learning Algorithm

Learner

Repeat for each new state g:

e Sample evidences

Fill in Table
partially
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(e]e]e}

Learner

Fill in Table
partially

oo 0@000 (o] 000000

Symbolic Learning Algorithm

Repeat for each new state g:
e Sample evidences
e Ask MQ’s
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Symbolic Learning Algorithm

Learner

Repeat for each new state g:
e Sample evidences
o Ask MQ’s

Fill in Table
partially

e Learn partitions
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Symbolic Learning Algorithm

Learner Y. ={a,a} ¥

Repeat for each new state g:
e Sample evidences
o Ask MQ’s

Fill in Table
partially

e Learn partitions

poe
(
N
e
i
“_/
[}

Define the symbolic
alphabet 3,
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Symbolic Learning Algorithm

Learner B = {a1, a2} Repeat for each new state g:
a, e Sample evidences
Fill in Table 4 * AskMQ’s
o R e Learn partitions
O O o L e Define the symbolic
alphabet 3,

e Select representative
j(a), Ya € 3,

12/31



Introduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

(e]e]e} (oo} 0O@000 (o]

000000

Symbolic Learning Algorithm

Learner Y. ={a,a}

[ ]
[}
Fill in Table
partially °
\
7 o
[ ]

Repeat for each new state g:

Sample evidences
Ask MQ’s
Learn partitions

Define the symbolic
alphabet 3,

Select representative
j(a), Ya € 3,
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(e]e]e}

Learner

Fill in Table
partially

L

Make
Hypothesis H

=

(oo} 0O@000 (o]

000000

Symbolic Learning Algorithm

3. ={ai, a2}

a

Repeat for each new state g:

Sample evidences
Ask MQ’s
Learn partitions

Define the symbolic
alphabet 3,

Select representative
j(a), Ya € 3,
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(e]e]e}

Learner

Fill in Table
partially

Make
Hypothesis H

=

(oo}

X ’\
~

0O@000 (o]

000000

Symbolic Learning Algorithm

3. ={ai, a2}

l’\\ a2

a

Repeat for each new state g:

Sample evidences
Ask MQ’s
Learn partitions

Define the symbolic
alphabet 3,

Select representative
j(a), Ya € 3,
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[e]e] lo]e} (o]e]

Evidence Compatibility

Solve Incompatibility

Boundary Modification New Transition

Evidence Compatibility Evidence incompatibility at state u
A state u is evidence compatible | v
when
— u-ji(a +
Ju-a —fu-ﬂ(a) u ua( ) _

for every evidence a € [a]
13/31
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Counter-example Treatment (Symbolic Breakpoint)

Letw=a----ai- -ay =ui-a-vibea counter-example.

fasio1 - ai) - vi) # f(fu(si) - vi) fla(si=1) - ai-vi) # f(a(si-1) - fu(ai) - vi)

si = 0(e,u; - a;)

s-a;isa
o new state
fi(uy) \

vertical expansion M horizontal expansion
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Example over the alphabet > = [1, 100)

observation table

semantics hypothesis automaton
— x <27
2 ‘ EE - {al 7 a2} - \_/CQ
27
13 41 68 78 92 =
—i—f—e oo x>27

f(az)

={a3}

2 18 26 44 53

Booleans Experimental Results Conclusion
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Example over the alphabet > = [1, 100)

observation table semantics

hypothesis automaton

41 68 78 92 =
* o—o—= x>27
f(az)
= {as}
Ask Equivalence Query:
2 1‘8 6 45 counter-example:
a(as) w=235-52-11,—

add distinguishing string 11

discover new state
(vertical expansion)
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000000

Example over the alphabet > = [1, 100)

observation table semantics
e 11 O =-waw
27
13 41 68 78 92
f(ay)
={a3}
2 1826 4453
Aas)

a Eaz = {a4,a5}

43
17 28 58 75 94
_ —
(ag) f(as)

hypothesis automaton
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Example over the alphabet > = [1, 100)

observation table

semantics hypothesis automaton

— 27
e @ O ~-@—0
27
13 41 68 78 92 =
—an I A o—o A x> 43
fAar) f(az)
x>27
43
@ = o=r
63 .
2 1826 4453 73 Ask Equivalence Query:
~—® ® counter-example:
fa(az) fA(ag)

w=12-73-4,—

i B, = {as, a5} add 73 as evidence of a;

43
17 28 58 75 o4 ..
—0— —= add new transition
fi(ay) fu(as)

(horizontal expansion)
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000000

Example over the alphabet > = [1, 100)

(o]

observation table

semantics hypothesis automaton
Sl @i g
27
13 41 68 78 92 x < 63
——f—e &—o—o x> 43
fifay) ffaz)

. Eal = {a3 ) a6}
63

2 1826 4453 73
——o —_—

fa(az) A(ag)

a Eaz = {a4,a5}

43
17 28 58 75 94
_ —
(ag) f(as)
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Example over the alphabet > = [1, 100)

observation table

semantics hypothesis automaton
27
R 68 78 92 x < 63
— i o —o x>4
fAar) faz)
x>27
43
@ 5-on Ozl
63 .
2 1826 4453 73 Ask Equivalence Query:
—e ® counter-example: w = 52 - 46, —
f(a3) fA(ag)
add 46 as evidence of a»
o X4 ={ay,as}
52 . . %)
72 46 53 75 o refine existing transition
— 00— o—= (horizontal expansion)
f(ag) f(as)
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000
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[ee]ole] oo

000000

Example over the alphabet > = [1, 100)

observation table

e 11

semantics
‘ ZE = {a17a2}
27
13 41 63 78 92
— } * o—o—o
alar) f(ay)

. Eal = {a3 ) aﬁ}
63

2 18 26 44 53 73
*—®e L}

fa(az) A(ag)

a Eaz = {a4,a5}

52
17 28 46 58 75 94

80—

Alas) i(as)

hypothesis automaton

x <27 x> 63

x < 63

x> 52

° x <52

Ask Equivalence Query:

True
return current hypothesis

return hypothesis
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Counter-examples
0

Equivalence Queries and Counter-Examples

A helpful teacher can compute L & L(H) to
What is the error? find counter-examples.

L L(H) When the teacher provides minimal
counter-examples (i.e., minimal in length-
lexicographic order), then

e one evidence per partition is used

Allw e L& L(H) e the boundaries are exactly determined
are counter-examples

e final hypothesis contains no error

The algorithm terminates with a correct conjecture after asking at most O (mn?)
MQ’s and at most O(mn) EQ’s, when ¥ is totally-ordered.

16/31



Counter-examples
oe

Equivalence Queries and Counter-Examples

In the absence of a helpful teacher and the
What is the error? learner can use only MQ’s

L L(H) EQ’s are approximated by testing:
e select a set of words randomly

e ask MQ’s for them

e check if the result matches with H
Allw e L@ L(H)

e return counter-example
are counter-examples

A hypothesis automaton H is Probably Approximately Correct (PAC) iff
Pr(P(L®&L(H)) <€) >1-4.

Sufficient tests for a hypothesis H; to be PAC: r; = 1(In § + (i 4+ 1) In2).
[Ang87] 17/31
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Adaptation to the Boolean Alphabet

Partition of R (or N) into finite Partition of B” into finite number of
number of intervals cubes

| a | a as

18/31
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Adaptation to the Boolean Alphabet
Representations of the Boolean Cube
’(ﬁ : IB4 — {al,az,a3}

]B" . « . . .
AT
RNV . .
0000
X3X4
00 01 11 10
00
a;, ifx; o1 &
w(a) = ay, ifx;-x3 < a, |\
. =
as, ifx;-x3 1 as
10 _
Boolean Function Karnaugh map Binary Decision Tree

19/31
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Adaptation to the Boolean Alphabet

Learning Partitions

3 — B4 Learning Binary Decision Trees using the
Greedy Splitting Algorithm CARTT
X3X4
00 01 11 10
——F=t=F=%
00 ) : (b// \\\}
201 b |
= Kl
- 11  r i 8 1 X 0/ \1
i 3
10 | ng |
L R A
Best split: x; X3 173
a1, if% Use Information Gain (Entropy)
Pla) = § a2, ifx-x Measure to find Best Split

as, ifx1 + X3

*Breiman et al. Classification and regression trees, 1984.
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Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton
00 01 11 10 a o a o
MOEED @ ()0
. of 4 |] a o
| e ] a0 o
10](e 1)

°
S

)

°

- o
T T =T
]
=
I [ A A
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Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton
00 01 11 10 .
\ " a as o
e 0000 ROLED N \_/@3
. o1 ( a, W a
1 L o J ap o
10][e <1 )
00 01 11 10
00 lo a oJ
. of |4 ||
nEe ] Ask Equivalence Query:
10 f' ° ] counter-example:

w = (1010) - (0000) , +
w=ay-a, —

add distinguishing string (0000)
discover new state
evidence incompatibility
21/31
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Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton

IOO 01 I11 10
00 MO us:
. of 4 |

| e ]
toma
00 01 11 10
o | °

( )
o | 4. | |

. | e ] Ask Equivalence Query:
f ]

o JoHH
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Adaptation to the Boolean Alphabet

Example over & = B*

observation table semantics hypothesis automaton
00 01 11 10
g 0000 00 MO uS@

@ 1]
aa | — + offe] Y®

00 01 I1 10
o | °

( )
o | 4. | |

. | e ] Ask Equivalence Query:
f ]

True

00

oo @) [ A ;]

01 E]L terminate: Return H
11

21/31
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Introduction

#states learned
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Conclusion

Related Work

Ideas similar to ours have been suggested and explored in a series of papers,
which also adapt automaton learning and the L* algorithm to large alphabets.

F Howar, B Steffen, and M Merten (2011).
Automata learning with automated alphabet abstraction refinement.

M Isberner, F Howar, and B Steffen (2013).
Inferring automata with state-local alphabet abstractions.

e The hypothesis is a partially defined hypothesis where the
transition function is not defined outside the observed
evidence.

T Berg, B Jonsson, and H Raffelt (2006).
Regular inference for state machines with parameters.

e Based on alphabet refinement that generates new symbols indefinitely.
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Conclusion

Related Work

Ideas similar to ours have been suggested and explored in a series of papers,
which also adapt automaton learning and the L* algorithm to large alphabets.

S Drews and L D’ Antoni (2017). Learning symbolic automata.

e Gives a more general justification for a learning scheme
like ours by providing that learnability is closed under
product and disjoint union.

M Botincan and D Babié (2013). Sigma*: Symbolic learning of input-output
specifications.

e Weaker termination results that is related to the
counter-example guided abstraction refinement
procedure. Handles transducers instead of automata.
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Conclusion

Contribution

O Maler and IE Mens. Learning regular languages over large alphabets.
In TACAS, vol 8413 of LNCS, pages 485-499. Springer, 2014.

O Maler and IE Mens. Learning regular languages over large ordered
alphabets. Logical Methods in Computer Science (LMCS), 11(3), 2015.

O Maler and IE Mens. A Generic Algorithm for Learning Symbolic
Automata from Membership Queries. In Models, Algorithms, Logics
and Tools, vol 10460 of LNCS, pages 146-169. Springer, 2017.
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Conclusion

Conclusions
We presented an algorithm for learning regular languages over large
alphabets using symbolic automata.

We decomposed the problem into learning new states (as in standard
automaton learning) and learning the alphabet partitions in each state.

Modification of alphabet partitions are treated in a rigorous way that
does not introduce superfluous symbols.

It can be done as static learning of concepts/partitions in the alphabet
domain.

We defined the notion of evidence compatibility which is an invariance
of the algorithm and extended the breakpoint method to detect its
violation.

We explored in detail and implemented the cases where alphabets are
numbers or Boolean vectors.

We handle both helpful and non-helpful teachers.
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Conclusion

Future Work

Extend the algorithm to alphabets such as R” and R" x B" using
regression trees.

Explore the use of other “deep learning” methods to learn the alphabet
partitions.

Study more realistic situations where the learner does not have full
control over the sample and when some noise is present.

Make more experiments and algorithmic improvement for the Boolean
case.

Find and explore a convincing class of applications.

Thank you !
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