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Executive Summary

Describe our (me and colleagues) efforts over the last decade to push the
capabilities of timed automata technology beyond toy problems

Try to justify the waste of such public resources and lifetimes by the
importance of timed models, which goes much beyond the verification of real-
time software (and verification in general).

With contributions of A. Pnueli, J. Sifakis, S. Yovine, E. Asarin, M. Bozga,
C. Daws, S. Tripakis, Y. Abdeddaim, O. Bournez, M. Mahfoudh, P. Niebert,
R. Ben Salah and S. Cotton

Partially sponsored by the European project AMETIST (Advanced Methods
for Timed Systems, 2002-2005)
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Plan

• Introduction: the importance of the timed level of abstraction
• A crash course in timed automata

• Attack 1: Numerical Decision Diagrams

• Attack 2: Timed Polyhedra

• Attack 3: Getting rid of Zones

• Attack 4: SAT

• Attack 5: Abstraction

• Attack 6: Interleaving

• Conclusions(?)
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Levels of Abstraction in Dynamic Description

It is well known that the same phenomenon can be described at different
levels of abstraction

The more detailed level should give better predictions but would
be computationally harder to analyze (and will require more detailed
observations).

The trick of science/math has always been to find the level which is sufficiently
refined to give meaningful results and sufficiently abstract to be tractable
computationally

Physics, chemistry, biology, physiology, psychology, sociology, economy, ...
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From Grenoble to Nancy: Continuous View

Let x = (x1, x2, x3) be a real-valued vector representing the location of my
center of mass in a coordinate system adapted to the surface of the earth

The trip is specified as a 3-dimensional signal x(t)

t

x1

t

x2

t

x3

Such behaviors (signals, trajectories) are generated by differential equations
(or hybrid automata)
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From Grenoble to Nancy: Discrete View

The trip is described as a sequence of states and transitions:

Grenoble bus
−→ Lyon

plane
−→ Metz bus

−→ Nancy

Transitions are considered as atomic, instantaneous events

Such behaviors are generated by automata, transition systems, discrete-
event systems, petri nets, process algebra, and worse

Sometimes we want to keep some of the continuous information, to express
the fact that things take time
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From Grenoble to Nancy: Timed View

The process of moving from one place to another is abstracted from it
numerical details, but the time from initiation and termination is maintained

Grenoble bus
−→ on.bus 50

−→ Lyon
plane
−→ on.plane 70

−→ Metz bus
−→ on.bus 25

−→ Nancy

t t

s1

s2

s1

s2

Continuous Timed Dirscrete
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Mathematically Speaking

Discrete behaviors are viewed as sequences of events without metric timing
information, only order or partial-order between the events.

A timed behavior involves the embedding of the sequence into the real time
axis.

a, b, a, b, a, b, a, b
a

b

a a a

b b b

a a

bb

a a

b b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b
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Timed Dynamical Systems

What is the appropriate dynamical system model for the intermediate timed
level?

We do not need arbitrary continuous variables

We need discrete states that tell us where we are (in the abstract state space)

We need additional information that tell us how long we have been in this or
that state

This additional information is encoded using “clock” variables
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Timed Automata are n-Tuples...

A timed automaton is A = (Q,C, I,∆) where...

The above is a sad fact that dooms timed automata into the formal verification
circles and prevents it from being comprehensible to those who really need it

I’ll try to avoid this as much as possible by giving intuitive explanations (hope
you will not be offended)
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Adding Time to Automata

Consider two processes that take 3 and 2 times units, respectively, after they
start. We model the passage of 1 unit of time by a special tick transition.

0

start1

tick

tick

end1

1

3

tick

start2

1

tick

22

end2

0

tick

tick

tick

tick tick

p1

p
1

p2

p
2
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Possible Behaviors of the Processes

0

start1

tick

tick

end1

1

3

tick

start2

1

tick

22

end2

0

tick

tick

tick

tick tick

p1

p
1

p2

p
2

P1 waits one time unit and then starts:

p1
tick
−→ p1

start1
−→ 0

tick
−→ 1

tick
−→ 2

tick
−→ 3

end1
−→ p

1
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The Two Processes in Parallel

end1

tick

tick

tick

start1

end2

tick

end2

tick

tick

end1

tick

tick

end2tick start1tickticktickstart2

tick

start2tick

tick

start1

start2 start1 tick

start1 start2

tick

p
1

p
2

3 p
2

2 p
2

p1 p
2

p
1

2

p
1

1 1 p
2

0 p
23 1

3 p2 0 21 22 22 12 0

p1 p2

0 0

1 0 1 1 p1 2

1 p2

0 p2 p1 0

0 12 p2

p11
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Possible Joint Behaviors

Both processes start at time 2:
(p1, p2)

tick
−→ (p1, p2)

tick
−→ (p1, p2)

start1
−→ (0, p2)

start2
−→ (0, 0)

tick
−→ (1, 1)

tick
−→ (2, 2)

end2
−→ (2, p

2
)

tick
−→ (3, p

2
)

end1
−→

(p
1
, p

2
)

P1 starts at 0 and P2 starts at 2:
(p1, p2)

start1
−→ (0, p2)

tick
−→ (1, p2)

tick
−→ (2, p2)

start2
−→ (2, 0)

tick
−→ (3, 1)

end1
−→ (p

1
, 1)

tick
−→ (p

1
, 2)

end2
−→ (p

1
, p

2
)

P2 starts at 0 and P1 starts after P2 ends:
(p1, p2)

start2
−→ (p1, 0)

tick
−→ (p1, 1)

tick
−→ (p1, 2)

end2
−→ (p1, p

2
)

start1
−→ (0, p

2
)

tick
−→ (1, p

2
)

tick
−→ (2, p

2
)

tick
−→ (3, p

2
)

end1
−→

(p
1
, p

2
)

Interleaving:
(p1, p2)

start1
−→ (0, p2)

start2
−→ (0, 0) = (p1, p2)

start2
−→ (p2, 0)

start1
−→ (0, 0)
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Using Clock Variables

tick

start2

tick

end2

tick

tick

start1

tick

tick

end1

tick

tick

tick

start1

end1

tick

tick

tick

end2

start2

tick

tick

tick

(p2, 2)

(p2, 1)

(p2, 0)

(p2,⊥)

(p
2
,⊥)(p1, 3)

(p1, 2)

(p1, 1)

(p1, 0)

(p1,⊥)

(p
1
,⊥)

p1

x2 = 2

x2 := x2 + 1

x2 := 0

p2

p1

p
2p

1

x1 := 0

x1 = 3

x1 := x1 + 1

p2
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Clock Variables: the Composition

start1

end2

start2

end1

end2
end1

start2

start2

tick

start1

tick

start1

tick

tick

end2

tick

tick

tick tick

tick

end1

p1 p
2

p
1

p2

p1 p2

p
1

p
2

p1 p
2

x2 := 0

x2 = 2

x2 = 2

x2 = 2

p1 p2

p1 p2

p
1

p2

x2 := x2 + 1p1 p2

x1 := 0 x2 := 0

x1 = 3
x1 := 0

x2 := 0
x1 = 3

x1 := 0

x1 = 3

x2 := x2 + 1
x1 := x1 + 1

x1 := x1 + 1

x1 := x1 + 1
x2 := x2 + 1
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The Notion of a State

Warning: in automata augmented with variables, the state is encoded in both
the discrete state (location) and the values of the variables.

The merging into (p1, p2) is misleading: via different paths you reach different
clock valuations.

start1

tick

start2

start2

tick tick

start1

p1 p2

x2 := 0

x1 := x1 + 1 p1 p2

p1 p2

p1 p2

x1 := 0 x2 := 0

x1 := 0

x2 := x2 + 1
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The Joy of Clock Variables

They allow succinct and natural representation of the system.

Transitions are labeled by guards and resets .

Different clocks represent the time elapsed since certain events.

In the worst-case, however, one needs to expand the automaton by adding
clock values to states.

You can use symbolic rather than enumerative encoding of the set of
reachable states.

You can work in dense time without committing a-priori to time granularity.
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Symbolic Representation
Assume the two processes with durations d1 and d2 such that d1 < d2 and
that p2 starts 2 time units after p1.

tick

start1

start2

start2

tick

start1

tick

x1 = d1 x2 = d2

p1 p2

x2 := 0

p1 p2

p1 p2

p1 p2

x1 := 0 x2 := 0

x1 := 0

x2 := x2 + 1x1 := x1 + 1 d1 < d2

The set of clock values that can be reached at state (p1, p2) is
{(2, 0), (3, 1), (4, 2), . . . (d1, d1 − 2)} and its size depends on d1.

It can be, however, represented by a fixed size formula X1−X2 = 2∧X1 ≤ d1
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From Discrete to Dense Time

So far we have assumed a fixed time granularity ∆ associated with a tick.

Discrete time flows in ∆ quanta by the tick transitions. These transitions
induce self-loops on the states of all automata.

Other transitions can be taken only at time points n∆, n ∈ N.

By considering clocks as continuous variables we can use time-passage of
arbitrary length.

Time passage, instead of being represented by tick transitions, can be
modeled by all active clocks advancing with derivative 1 when the automaton
stays in a state.

The timed automaton is viewed as a simple kind of a hybrid automaton whose
evolution alternates between passage of time and discrete transitions.
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The Two Processes as Two Timed Automata

end2end1

start1 start2

x2 = 2x1 = 3

x2 := 0x1 := 0

ẋ2 = 1ẋ1 = 1 p2

p
2

p
1
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p1 p2

start1

end1end2

end2

start2

start1

start2

end2end1

start1

end1

start2

ẋ1 = 1

ẋ2 = 1

x2 = 2
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p1 p2

p1 p2

p1 p2
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p2

p
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2

p1 p
2

p1 p2

x2 := 0x1 := 0

x1 := 0
x1 = 3

x1 = 3

x2 := 0
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1
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Modeling Temporal Uncertainty

The major strength of timed automata is their ability to express temporal
uncertainty .

“The duration of a task (or the distance between two events) is somewhere in
the interval [l, u]”

Using dense time this means anywhere in [l, u] not just l or u

Verification can be done with respect to all choices of values in the interval

This CS non-determinism is an alternative/complement to probabilistic
modeling of uncertainty (for example exponential distribution of durations)
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Modeling Temporal Uncertainty with TA
There are different ways to model urgency/non-urgency in TA:

1) Invariants (staying conditions) that the clocks must satisfy in order to
remain in a state and “let” time progress.

2) Deadlines on transitions.

Example: a task whose duration is between 3 and 7 time “units”:

3 ≤ x < 7x := 0
p

x := 0

pp

3 ≤ x
p pp

Invariants Deadlines

x < 7

(p,⊥)
2.5
−→ (p,⊥)

start
−→ (p, 0)

3.8
−→ (p, 3.8)

end
−→ (p,⊥)

(p,⊥)
t1−→ (p,⊥)

start
−→ (p, 0)

t2−→ (p, t2)
end
−→ (p,⊥)

t1 ∈ [0,∞), t2 ∈ [3, 7].
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Verification (Reachability) of Timed Automata

q1 q2 q3

2 ≤ y ≤ 6/y := 01 ≤ x ≤ 3/x := 0

q1
x = y = 0

q1
x = y
0 ≤ x ≤ 3

q1
x = y
1 ≤ x ≤ 3 1 ≤ y ≤ 3

q2
x = 0

q2
1 ≤ y ≤ 6
1 ≤ y − x ≤ 3 1 ≤ y − x ≤ 3

q2
2 ≤ y ≤ 6

q3
y = 0
0 ≤ x ≤ 5

init guard reset guard resettime time

0

3

6

y

x
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Timed Automata are n-Tuples...

A timed automaton is A = (Q,C, I,∆) Q: a set of states, C: a set of clocks,

I: staying condition (invariant), assigning to every q a conjunction Iq of
inequalities of the form c ≤ u, for some clock c and integer u

∆: a transition relation consisting of tuples (q, φ, ρ, q′) where q and q′ are
states,

ρ ⊆ C is the set of clocks reset by the transition, and

φ (the transition guard) is a conjunction of formulae of the form c ≥ l for some
clock c and integer l.

A clock valuation is a function v : C → R+ ∪ {0} and a configuration is a pair
(q, v) consisting of a discrete state (location) and a clock valuation.
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Runs of Timed Automata

A step of the automaton is one of the following:

• A discrete step: (q, v)
δ

−→ (q′, v′), for some transition δ = (q, φ, ρ, q′) ∈ ∆,
such that v satisfies φ and v′ = Rρ(v).

• A time step: (q, v)
t

−→ (q, v + t1), t ∈ R+ such that v + t1 satisfies Iq.

A run of the automaton starting from a configuration (q0, v0) is a finite
sequence of steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · ·
tn−→ (qn, vn).
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Symbolic Reachability Computation

A symbolic state is (q, Z) where q is a discrete state and Z is a zone, a set of clock valuations
satisfying a conjunction of inequalities ci − cj ≥ d or ci ≥ d.
Symbolic states are closed under the following operations:

• The time successor of (q, Z), the configurations reachable from (q, Z) by letting time
progress without violating the staying condition of q:

Postt(q, Z) = {(q, z + r1) : z ∈ Z, r ≥ 0, z + r1 ∈ Iq}

• The δ-transition successor of (q, Z) is the configurations reachable from (q, Z) by taking
the transition δ = (q, φ, ρ, q′) ∈ ∆:

Postδ(q, Z) = {(q′, Rρ(z)) : z ∈ Z ∩ φ}

• The δ-successor of a time-closed symbolic state (q, Z) is the set of configurations
reachable by a δ-transition followed by passage of time:

Succ
δ
(q, Z) = Post

t
(Post

δ
(q, Z))

26



Fighting the clock explosion Oded Maler

The Reachability Graph

The basic verification algorithm for TA consists of on-the-fly generation of the
reachability (simulation) graph, S = (N,→)

The nodes are symbolic states computed starting from Postt(s, {0}) and
applying Succδ until termination (guaranteed due to finitely-many zones)

There is a path from (q, Z) to (q′, Z ′) in S iff for every v′ ∈ Z ′ there exists
v ∈ Z and a run of A from (q, v) to (q′, v′).

Hence the union of all symbolic states in S is exactly the set of reachable
configurations.

This is the computation we want to do more efficiently
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The Sources of Difficulty

Assume we have n interacting timed automata, each with m states and one
clock ranging over [0, d]

The number of states can be up to mn and the number of zones can be up to
dnn!, summing up to mndnn! symbolic states. Each zone takes O(n2) space

The representation of (convex) zones is fine but there is no nice
representation for a union of zones and, even worse, the representation is
not symbolic for the discrete states: symbolic states are of the form (q, Z)
with q being an explicit n-vector.

Since our our initial motivation came from circuits where the number of
discrete states explodes very quickly, we tried BDD-based methods first
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BDD: The Principles

Sets of states can be expressed as formulae over the state variables; The
transition relation can be expressed this way as well

Based on that you can do breadth-first exploration of the reachable sets,
computing a sequence of sets P0, P1, . . . such that Pi consists of sets
reachable from P0 by at most i steps

You don’t care about disjunctions/non-convexity, everything is a formula

OBDDs provide for a canonical representation of these sets/formulae; If you
are lucky they are more succinct than the sets they represent

This is the naive story, there are many details but it seems to work to a certain
extent in hardware.
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Attack 1: Numerical Decision Diagrams (A. Pnueli, M. Bozga 95-97)

The idea: to have a BDD-like formalism for representing sets of
configurations, as formulae of the form x1 ∧ c1 > 3 ∧ (¬x2 ∨ c2 < 7). The
Succ operator will be applied to this representation.

First direction: use inequalities of the form ci < d as nodes in the BDD. The
problem is that unlike Boolean variables xi and xj which are independent,
conditions ci < d and ci < d′ are not

After some playing we came to the conclusion that if we want canonicity we
need to use variables for all the bits in the binary representation of the clock
value
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Attack 1: Numerical Decision Diagrams (A. Pnueli, M. Bozga 95-97)

A discrete clock range [0, . . . , d − 1] can be encoded using log d Boolean variables

Any subset of these values can be expressed as a Boolean formula over these variables.
Adding the state variables we have a canonical representation of sets of configurations

Passage of time is computed as binary addition (or transitive closure of incrementation)

0 7

x0

x1

x2

0 1

0,1

0 1

0 1

0 7

x0

x1 x1

x2

1 0

1

1 00 1

10

0

0 7

x0

x1 x1

1 0

1

1

0

x2

0 1

0
0,1

0 7

x2

x1

x0

0

1 0

01

1

10

0 7

x0

x1 x1

0

10

1

1

x2 x2

0 0

0 0 1

1 1

x < 5x > 5 x < 3 (x > 5) ∨ (x < 5) (x > 5) ∨ (x < 3)
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Attack 1: Numerical Decision Diagrams (A. Pnueli, M. Bozga 95-97)

More technical details about variable ordering (bits of clock near the bits of
the corresponding state variables, etc.)

Results: managed to verify the STARI circuit 55 clocks and about 218 states

Did not work so good for other cases, sensitivity to the range of the clocks
(the number of zones is also sensitive but less)

General problem: binary positional encoding of numbers breaks the
topological structure (the Hamming distance between 01111 and 10000 is
large while the numbers are close)

Lessons: BDDs are no magic, discrete time is good for many purposes
[Asarin Pnueli 98], life is hard

Farn Wang and Dirk Beyer continued to work in this direction
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Attack 2: Timed Polyhedra (O. Bournez, M. Mahfoudh 98-00)

Background: still obsessed with the idea of canonical representation of non-convex subsets
of R

n (also for the context of hybrid systems verification)

For griddy (orthogonal, isothetic) polyhedra we found a canonical representation as a XOR
of rectangular cones based on some vertices of the polyhedron

Wanted to extend them to timed polyhedra, constructed from the following building blocks

132 213123 231 312 321

x1

x3

x2

x1 < x2 < x3
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Attack 2: Timed Polyhedra (O. Bournez, M. Mahfoudh 98-00)

The good news: there is a similar canonical representation based on XOR of
timed cones (ICALP’00)

The bad news: the representation is enumerative in the cone types; To
represent a set satisfying x1 < x2 you need to specify it as x3 < x1 <
x2 ∨ x1 < x3 < x2 ∨ x1 < x2 < x3. Also the number of vertices grows
badly with dimension

We tried some symbolic representation with BDD-like structures, but nothing
to write home about in performance

Lessons: not all that glitters is gold, maybe the idea of canonical
representation and BFS is not always good
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Attack 3: No Zones (Y. Abdeddaim, 98-00)

As mentioned earlier, timed automata exhibit dense non-determinism: a
transition can be taken at any point in an interval [l, u]

In verification, where the non-determinism is associated with the external
uncontrolled world, we need to take all these choices into consideration

In synthesis/optimization where the choice of when to take a transition
depends on us, sometimes we need not consider the whole interval but only
some points in it that “dominate” the others

This turned out to be the case in optimal scheduling problems where it is
sufficient to consider only a small subset of the runs
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Deterministic Job-Shop Scheduling: the Problem

J1 : (m1, 4), (m2, 5) J2 : (m1, 3)

Determine the execution times of the tasks such that:

The termination time of the last task is minimal

Precedence and resource constraints are satisfied

0 4 7 0 3 7 12
J2

J1

J2

m1 m2

m1 m1

m1 m2

9

J1

Sometimes it is better not to start a task although the machine is idle
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Modeling with Timed Automata

Start

Waiting

Active

End

Finished

c1 := 0 c1 = 4 c1 := 0 c1 = 5

c2 := 0

c2 = 3

?

m1

m1

m1 m1 m2 m2 ?

Each automaton represents the set of all possible behaviors of each task/job
in isolation (respecting the precedence constraints)

The Start transitions are issued by the controller/scheduler and the End
transitions by the environment
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The Global Automaton
Resource constraints expressed via forbidden states in the product
automaton

c1 = 4 c1 := 0c1 := 0 c1 = 5

c2 := 0 c2 := 0 c2 := 0 c2 := 0

c1 := 0 c1 = 5

c2 = 3 c2 = 3

c1 := 0 c1 = 4 c1 := 0 c1 = 5

?m1 ?m1 ?m2

c2 = 3 c2 = 3

???m2

m1m2 m1?m1m2

m1?m1m2m1m2m1m1m1m1

m1m1

Optimal scheduling = shortest path problem for timed automata
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Finding the Shortest Path

Add an additional clock T which is never reset to zero, hence it measures the
absolute time since the beginning

Naive approach: perform zone-based reachability computation on the
extended clock space (the graph is acyclic and all paths lead to the final
state); Find the minimal value of T over all symbolic states associated with
the final state

However, it can be shown that postponing a start transition from t to t′ is
useless if the machine is used by anyone else during [t, t′]

Hence the optimum can be found among a finite number of schedules/runs
where a transition not taken in a state at the first moment it was enabled will
not be taken at that state at all
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Attack 3: No Zones (Y. Abdeddaim, 98-00)

(⊥,⊥, 0)

(⊥,⊥, 4)

? m1(⊥,⊥, 9)

? m1

? ? ? ? ? ?

m1 ?

m1 ?

m1 m1

m1 m1

m2 m1

m2 m1(0,⊥, 4)

(⊥, 0, 9)

(0,⊥, 0)

(⊥,⊥, 12)

(0, 0, 4)

(3,⊥, 7)

(⊥,⊥, 9)

m2 ?

m1 m1 (⊥, 0, 0)

(⊥,⊥, 3)

(⊥,⊥, 7)

(0,⊥, 7)

(⊥,⊥, 12)

m2 ?

m2 ?

(⊥, 0, 4) (0,⊥, 3)m2 m1

m2 m1

start2 end1

Lessons: there is life after operations research
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Attack 4: SAT and Bounded Verification
(P. Niebert, E. Asarin, M. Mahfoudh S. Cotton, 00-06)

Verification for bounded horizon (BMC) is based on a very simple idea. The
existence of a run of length k from initial set P to a bad set B can be
formulated using a k-unfolding of the transition relation R:

∃x0, . . . , xkP (x0) ∧ R(x0, x1) ∧ R(x1, x2) · · · ∧ R(xk−1, xk) ∧ B(xk)

The existence of such an assignment can be checked by a constraint solver
for the domain. For finite-state systems this reduces to Boolean SAT.

We have shown that for timed automata, path existence can be formulated in
difference logic , propositional logic plus constraints of the form x−y < c the
basic logic for timing issues (distance between events)
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Attack 4: SAT and Bounded Verification
(P. Niebert, E. Asarin, M. Mahfoudh S. Cotton, 00-06)

We (and others) have developed several SAT solvers for this logic using a
variety of methods (reduction to SAT, lazy, eager, mixed, preprocessing)

This domain is called today satisfiability modulo theories (SMT)

Our solvers have improved with the years and can solve some really hard
problems

We have learned a new fascinating domain

But we never managed to solve even a modest bounded model checking
problems for timed automata. A fundamental folk wisdom says that this holds
for all asynchronous system
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Attack 5: Abstraction (R. Ben Salah, M. Bozga, 02-06)

Principle is simple: the system S = S1||S2|| · · · ||Sn is made of components
whose product explodes

Replace each (or some) Si by and S′
i such that S′

i < Si in syntax and S′
i > Si

in semantics

Correctness of S′ = S′
1||S

′
2|| · · · ||S

′
n implies correctness of S and may be

computationally easier

We developed an automatic methodology to create such abstractions,
specialized (bot not restricted to) Boolean circuits with delays
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Circuits with Bi-bounded Inertial Delays
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Modeling Circuits with Timed Automata

Our modeling approach, based on [Maler and Pnueli 95]: Decompose any gate into an
instantaneous Boolean function and a bi-bounded (non-deterministic) inertial delay element

Model every delay element as a timed automaton with 4 states and 1 clock

x = 0/C := 0

0

1

x = 1

x = 0

x = 1∧
l ≤ C∧
C ≤ u

x = 0 ∧ C < u

x = 1 ∧ C < u

x = 1/C := 0

x = 0∧
l ≤ C∧
C ≤ u

1′

0′

x = 1∧
C < u

x = 0∧
C < u

Composing all these automata we obtain a timed automaton with O(2n) states and n clocks
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Abstraction of Acyclic Circuits

Start with a stable states, primary inputs change only once at start. This induces a non-
countable number of possible behaviors

Each behavior admits a finite number of changes and stabilizes in a bounded amount of time.
We want to compute the maximal stabilization time, that of the worst behavior

The basic idea: take a sub-circuit on the left, use TA technology to generate an approximate
timed model of its output. It is then plugged as an input model to the rest of the circuit.

...

...

...

...

Abstract Model
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The Reachability Graph

The reachability graph of a timed automaton can be viewed as an
“interpretation” of the automaton:

On on one hand we split some discrete states according to clock values

On the other, we remove transitions that are infeasible due to timing
constraints.

By associating with each symoblic state (q, Z) the staying condition Z and
with each outgoing transition the intersection of Z with the guard we obtain
a TA equivalent to the original one where all states are reachable from the
initial state.

The abstraction is done by applying certain transformation to this timed
automaton
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The Nature of the Abstraction

First, the obvious thing: hiding internal actions such as excitation and “regrets” of the outputs
and all transitions of internal wires.

Relaxation of timing constraints by allowing things to happen at impossible times (but not in
impossible orders!)

We project the TA obtained from the reachability graph on a subset of the clocks. The
constraints related to the other clocks are removed.

For acyclic circuits it is natural to project only on the auxiliary clock T that measures absolute
time. This way we keep the information about the time each transition can be taken (but lose
some inter-dependence information).

T ∈ [l1 + l2, u1 + u2]T ∈ [l1, u1]

/C2 := 0

C1 ∈ [l1, u1] C2 ∈ [l2, u2]
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Minimization

After minimization we obtain the following small-description abstraction for
the observed behavior of the circuit:
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Attack 5: Abstraction (R. Ben Salah, M. Bozga, 02-06)

Current status: for acyclic circuits we could treat (under certain choice of
parameters that keep the ratio u/(u − l) low) a cascade of up to 22 4-gate
circuits.

Still a far cry from static methods used in industry

We have developed a very interesting novel method for abstracting open
timed components (the inputs may arrive anytime, not only in time zero)

Unfortunately, the size of the basic component that could be analyzed and
abstracted was too small to be useful

Looking for the reasons for that has led us to the last discovery conerning
interleaving and convexity
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Attack 6: Interleaving (R. Ben Salah, M. Bozga, 06)

There is an additional explosion in TA reachability due to interleaving. At the end of a
“diamond” you have two zones: one with x ≤ y and one with y ≤ x
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Attack 6: Interleaving (R. Ben Salah, M. Bozga, 06)

Given a run ξ of a timed automaton, we denote by 〈ξ〉 all runs that make the
same transitions (but possibly in another order). In other words, all runs that
their local projections do the same transitions as those of ξ

The following result (CONCUR’06) helps to avoid this explosion:

Let Z be a convex timed polyhedron and let q and q′ be two global states of
A. Let ξ be a run starting at q and ending in q′. Then the set

RZ,〈ξ〉 ≡
⋃

ξ′∈〈ξ〉

{v′ : ∃v ∈ Z (q,v)
ξ′

−→ (q′,v′)} is convex.

Remark: this result turned out to be implicit in [Rockiki, Myers 94], [Zhao 02]
and [Lugiez, Niebert, Zenou 05]
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Example
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Example
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A New Reachability algorithm

Anotate symbolic states with (partially-ordered) path information

Do BFS exploration; Whenever two symblic states have the same set of
labels, merge them by taking their convex hull

This way explosion is killed when still small

The results are guaranteed to be exact

60



Fighting the clock explosion Oded Maler

A New Reachability algorithm
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A New Reachability algorithm

y 1

0

2

1

True

x:=0
a

a’
x 2

(A) (B)

x

y:=0

0

1

2

True

b

b’

3y5

x:=0
a

y:=0
b

|| 3a 3||b

W
ai

ti
ng

0

3

50
x

y y

x1,0 0,1

0,0

62



Fighting the clock explosion Oded Maler

A New Reachability algorithm
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A New Reachability algorithm
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A New Reachability algorithm
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A New Reachability algorithm

y 1

0

2

1

True

x:=0
a

a’
x 2

(A) (B)

x

y:=0

0

1

2

True

b

b’

3y5 y 1

y 1

x:=0
a

y:=0
b

x:=0
a

x:=0
a

y:=0
b

x 2
a’

x 2
a’

b’

b’

W
ai

ti
ng

||baa’ ||a bb’

0

3

50

20 oo
1

oo

0
y:=0

b

x

y

3

0 2 0 5
1

3

oo

oo

y

y y

y

y

x

x x

x

x

3

0 5

y

x

1,2 2,1

0,0

1,0

2,0 1,1 0,2

0,1

66



Fighting the clock explosion Oded Maler

A New Reachability algorithm
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A New Reachability algorithm
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Comparison
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Interim Summary

The road is long

Next hope, to combine the the interleaving reduction with the abstraction,
hopefully this year

Thank you
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