On Zone-Based Reachability Computation for Duration-Probabilistic Automata

How the Timed Automaton Lost its Tail

Oded Maler
CNRS - VERIMAG
Grenoble, France

2010

Joint work with Kim Larsen (Aalborg) and Bruce Krogh (CMU)

Summary

- Processes that take time
- Worst-case versus average case reasoning about time
- Duration probabilistic automata
- Forward reachability and density transformers
- Concluding remarks

Processes that Take Time

- We are interested in processes that take some time to conclude after having started
- Can model almost anything:
- Transmission delays in a network
- Propagation delays in digital gates
- Execution time of programs
- Duration of a production step in a factory
- Time to produce proteins in a cell
- Cooking recipes
- Project planning
- Mathematically they are simple timed automata:

Processes that Take Time

- A waiting state \bar{p};
- A start transition which resets a clock x to measure time elapsed in active state p
- An end transition guarded by a temporal condition $\phi(x)$
- Condition ϕ can be
- true (no constraint)
- $x=d$ (deterministic)
- $x \in[a, b]$ (non-deterministic)
- Probabilistically distributed

Composition

- Such processes can be combined:
- Sequentially, to represent precedence relations between tasks, for example p precedes q :

Composition

- Such processes can be combined:
- In parallel, to express partially-independent processes, sometimes competing with each other

Levels of Abstraction: Untimed

- Consider two parallel processes, one doing $a \cdot b$ and the other doing c
- Untimed (asynchronous) modeling assumes nothing concerning duration
- Each process may take between zero and infinity time
- Consequently any interleaving in $(a \cdot b) \| c$ is possible

Levels of Abstraction: Timed

- Timed automata and similar formalisms add more detail
- Assume a (positive) lower bound and (finite) upper bound for the duration of each processing step

Levels of Abstraction: Timed

- The arithmetics of time eliminates some paths:
- Since $4<6$, a must precede c and the set of possible paths is reduced to $a \cdot(b \| c)=a b c+a c b$
- But how likely is abc to occur?

Possible but Unlikely

- How likely is abc to occur?

- Each run corresponds to a point in the duration space

$$
\left(y_{a}, y_{b}, y_{c}\right) \in Y=[2,4] \times[6,20] \times[6,9]
$$

- Event b precedes c only when $y_{a}+y_{b}<y_{c}$
- Since $y_{a}+y_{b}$ ranges in $[8,24]$ and $y_{c} \in[6,9]$, this is less likely than c preceding b

Levels of Abstraction: Probabilistic Timed

- Interpreting temporal guards probabilistically
- This gives precise quantitative meaning to this intuition
- It allows us to:
- Compute probabilities of different paths (equivalence classes of qualitative behaviors)
- Compute and compare the expected performance of schedulers, for example for job-shop problems with probabilistic step durations
- Discard low-probability paths in verification and maybe reduce some of the state and clock explosion

Levels of Abstraction: Probabilistic Timed

- Of course, continuous-time stochastic processes are not our invention
- But, surprisingly(?), computing these probabilities for such composed processes has rarely been attempted
- Some work in the probabilistic verification community deals with the very special case of exponential (memoryless) distribution
- With this distribution, the time that has already elapsed since start does not influence the probability over the remaining time to termination
- Notable exceptions:
- Alur and Bernadsky (GSMP)
- Vicario et al (stochastic PN)

Probabilistic Interpretation of Timing Uncertainty

- We interpret a duration interval $[a, b]$ as a uniform distribution: all values in the interval are equally likely
- This is expressed via density function

$$
\phi(y)= \begin{cases}1 /(b-a) & \text { if } a \leq y \leq b \\ 0 & \text { otherwise }\end{cases}
$$

- Interval $[a, b]$ is the support of ϕ
- The probability that the actual duration is in some interval $[c, d]$ is

$$
P([c, d])=\int_{c}^{d} \phi(\tau) d \tau
$$

Minkowski Sum vs. Convolution

- Consider two processes with durations in $[a, b]$ and $\left[a^{\prime}, b^{\prime}\right]$ that execute sequentially
- Their total duration is inside the Minkowski sum
$[a, b] \oplus\left[a^{\prime}, b^{\prime}\right]=\left[a+a^{\prime}, b+b^{\prime}\right]$
- This is what timed automata will compute for you
- With the intervals interpreted as uniform distributions ϕ, ϕ^{\prime} the total duration is distributed as their convolution

Duration Probabilistic Automata

- Duration probabilistic automata (DPA) consist of a composition of simple DPA (SDPA) and a scheduler

$$
\mathcal{A}=\mathcal{A}^{1} \circ \mathcal{A}^{2} \circ \cdots \circ \mathcal{A}^{n} \circ S
$$

- SDPA: (acyclic) alternations of waiting and active states

- The y variables are "static" random variable drawn uniformly from the duration space
- The x variables are clocks reset to zero upon start transitions and compared to y upon end transitions
- The scheduler issues the start transitions

Clocks in Timed Automata and DPA

- A global state of a DPA is a tuple consisting of local states, some active and some inactive (waiting)
- For each active component, its corresponding clock measures the time since its start transition
- The clock values determine which end transition can be taken from this state (and in which probability)
- In other words, which active processes can "win the race"

Zones, Symbolic States and Forward Reachability

- In timed automata the possible paths are computed using forward reachability over symbolic states
- A symbolic state is (q, Z) where q is a global state and Z is a set of clock valuations with which it is possible to reach q
- The reachability tree/graph is constructed iteratively from the initial state using a successor operator
- For every transition δ from q to q^{\prime} the successor operator Post $_{\delta}$ is defined as:
- $\left(q^{\prime}, Z^{\prime}\right)=\operatorname{Post}_{\delta}\left(q, Z^{\prime}\right)$ if Z^{\prime} is the set of clock valuations possible at q^{\prime} given that Z is the set of possible clock valuations at q

Forward Reachability for DPA

- We adapt this idea to DPA using extended symbolic states of the form (q, Z, ψ) where ψ is a (partial) density over the clock values
- Symbolic state $\left(q^{\prime}, Z^{\prime}, \psi^{\prime}\right)$ is a successor of (q, Z, ψ) if:
- Given density ψ on the clock values upon entering q, the density upon taking the transition to q^{\prime} is ψ^{\prime}
- The successor operator is a density transformer which for start transitions is rather straightforward
- The crucial point is how to compute it in a state admitting several competing end transitions

Intuition

- Consider state q with two competing processes with durations distributed uniformly $\phi_{1}=\left[a_{1}, b_{1}\right], \phi_{2}=\left[a_{2}, b_{2}\right]$
- What is the probability $\rho_{i}(u \mid v)$ that transition i wins at some clock valuation $u=\left(u_{1}, u_{2}\right)$, i.e., $u_{i}=y_{i}$, given the state was entered at some v ?
- First, this probability is non-zero only if v is a time-predecessor of $u, v \in \pi(u)$

Intuition

- For transition 1 to win, process 1 should choose duration u_{1} while process 2 chooses some $y_{2}>u_{2}$
- Thus $\rho_{1}(u \mid v)$ is obtained by summing up the duration probabilities above u
- If the state was entered with density ψ over clocks, we can sum up $\rho_{i}(u \mid v)$ over $\pi(u)$ according to ψ to obtain the expected $\rho_{i}(u)$ as well as new densities ψ_{i} on clock values upon taking transition i

Definition

- For every end transition e_{i} outgoing from a state q with m active processes we define a density transformer $\mathcal{T}_{r_{i}}$
- The transformer $\mathcal{T}_{e_{i}}$ computes the clock density at the time when process i wins the race, given the density was ψ upon entering the state
- It is defined as $\psi_{i}=\mathcal{T}_{e_{i}}(\psi)$ if

$$
\begin{aligned}
& \psi_{i}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)= \\
& \int_{\tau>0} \psi\left(x_{1}-\tau, \ldots, x_{m}-\tau, y_{1}, \ldots, y_{m}\right) d \tau \\
& \begin{array}{ll}
\text { if } \begin{array}{l}
x_{i}=y_{i} \wedge \\
\forall i^{\prime} \neq i x_{i^{\prime}}<y_{i^{\prime}}
\end{array} \\
0 & \text { otherwise }
\end{array}
\end{aligned}
$$

Concluding Remarks

- All those densities are piecewise polynomial and can be computed. The degrees of the polynomials and their piecewiseness grow with the number of steps
- So far we consider only acyclic DPA. For cyclic ones, we need some progress in fixpoint techniques for linear operators in the spirit of Asarin and Degorre (2009)
- A prototype implementation by M. Bozga, using a slightly different technique for computing volumes, can handle, for example a product of 2 SPDA with 10 steps each
- As in timed automata the larger is the ratio $(b-a) / a$ the more paths have to be considered
- There is still much to be done

Concluding Remarks

- All those densities are piecewise polynomial and can be computed. The degrees of the polynomials and their piecewiseness grow with the number of steps
- So far we consider only acyclic DPA. For cyclic ones, we need some progress in fixpoint techniques for linear operators in the spirit of Asarin and Degorre (2009)
- A prototype implementation by M. Bozga, using a slightly different technique for computing volumes, can handle, for example a product of 2 SPDA with 10 steps each
- As in timed automata the larger is the ratio $(b-a) / a$ the more paths have to be considered
- There is still much to be done
- Thank you

