On Zone-Based Reachability Computation for
Duration-Probabilistic Automata

How the Timed Automaton Lost its Tail

Oded Maler

CNRS - VERIMAG
Grenoble, France

2010

Joint work with Kim Larsen (Aalborg) and Bruce Krogh (CMU)

Summary

Processes that take time

Worst-case versus average case reasoning about time
Duration probabilistic automata

Forward reachability and density transformers
Concluding remarks

vV v . v. v Y

Processes that Take Time

» We are interested in processes that take some time to
conclude after having started

» Can model almost anything:

Transmission delays in a network
Propagation delays in digital gates
Execution time of programs

Duration of a production step in a factory
Time to produce proteins in a cell
Cooking recipes

Project planning

» Mathematically they are simple timed automata:

vV VY VY VY VY VY

start &(x)
x:=0 p end

ol
(ko]

Processes that Take Time

start &(x)
x:=0 p end

ol
[ke]

v

A waiting state p;

A start transition which resets a clock x to measure time
elapsed in active state p

An end transition guarded by a temporal condition ¢(x)
Condition ¢ can be

» true (no constraint)

» x = d (deterministic)

» X € [a, b] (non-deterministic)
» Probabilistically distributed

v

vy

Composition

» Such processes can be combined:
» Sequentially, to represent precedence relations between

tasks, for example p precedes q:

start d(x)
P X = o end o
P
start d(x)
g X = q end q
start P(x) start P(x)
P x:=0 o end x:=0 q end q

Composition

» Such processes can be combined:
» In parallel, to express partially-independent processes,

sometimes competing with each other
<]

[cs, ds]

o

L 11 [

Levels of Abstraction: Untimed

» Consider two parallel processes, one doing a - b and the
other doing ¢

» Untimed (asynchronous) modeling assumes nothing
concerning duration

» Each process may take between zero and infinity time
» Consequently any interleaving in (a- b)||c is possible

e

b

L
[]
. T

Levels of Abstraction: Timed

» Timed automata and similar formalisms add more detail

» Assume a (positive) lower bound and (finite) upper bound
for the duration of each processing step

Xs € [2,4]/a Xy € [6,20]/b
L

Xa € [2,4]/a Xy € [6,20]/b

x; € [6,9)/c X €[6,9]/c x: €[6,9]/c x; €[6,9]/c

Xz € [2,4]/a Xp € [6,20]/b

> L

Levels of Abstraction: Timed

Xs € [2,4]/a Xy € [6,20]/b

Xa € [2,4]/a Xy € [6,20]/b

x: € [6,9)/c X €[6,9]/c x; €[6,9]/c xc € [6,9]/c

X € [2,4]/a Xo € [6,20]/b

> |
» The arithmetics of time eliminates some paths:

» Since 4 < 6, a must precede ¢ and the set of possible
paths is reduced to a- (b||c) = abc + acb

» But how likely is abc to occur?

Possible but Unlikely

» How likely is abc to occur?

Xa € [2,4]/a Xy € [6,20]/b

X € [2,4]/a X € [6,20]/b

x: €[6,9)/c x; €[6,9]/c x; €[6,9]/c x; €[6,9]/c

Xa € [2,4]/a Xp € [6,20]/b

L]
» Each run corresponds to a point in the duration space

(Ya, Yo, ¥e) € Y = [2,4] x [6,20] x [6, 9]

» Event b precedes ¢ only when y; + yp < Ye

» Since y,; + yp ranges in [8,24] and y. € [6, 9], this is less
likely than ¢ preceding b

Levels of Abstraction: Probabilistic Timed

» Interpreting temporal guards probabilistically

» This gives precise quantitative meaning to this intuition
» |t allows us to:

» Compute probabilities of different paths (equivalence
classes of qualitative behaviors)

» Compute and compare the expected performance of
schedulers, for example for job-shop problems with
probabilistic step durations

» Discard low-probability paths in verification and maybe
reduce some of the state and clock explosion

Levels of Abstraction: Probabilistic Timed

» Of course, continuous-time stochastic processes are
not our invention

» But, surprisingly(?), computing these probabilities for such
composed processes has rarely been attempted

» Some work in the probabilistic verification community deals
with the very special case of exponential (memoryless)
distribution

» With this distribution, the time that has already elapsed
since start does not influence the probability over the
remaining time to termination

» Notable exceptions:

» Alur and Bernadsky (GSMP)
» Vicario et al (stochastic PN)

Probabilistic Interpretation of Timing Uncertainty

» We interpret a duration interval [a, b] as a uniform
distribution: all values in the interval are equally likely

» This is expressed via density function

[1/(b—a) ifa<y<b
o) = { 0 otherwise

» Interval [a, b] is the support of ¢

» The probability that the actual duration is in some interval
[c,d]is

d
P(lc.d]) = / o(r)dr

Minkowski Sum vs. Convolution

» Consider two processes with durations in [a, b] and [&, b/]
that execute sequentially

» Their total duration is inside the Minkowski sum
[a, bl [d,b]=[a+ a,b+ b]
» This is what timed automata will compute for you

» With the intervals interpreted as uniform distributions ¢, ¢’
the total duration is distributed as their convolution

b d(y) = / oy — 1) (r)dr

L e L=

Duration Probabilistic Automata
» Duration probabilistic automata (DPA) consist of a
composition of simple DPA (SDPA) and a scheduler
A=A"oA20.-.0A" S

» SDPA: (acyclic) alternations of waiting and active states

,,,,,,,, :y"
x‘ =0 x" 0
>

» The y variables are “static” random variable drawn
uniformly from the duration space

» The x variables are clocks reset to zero upon start
transitions and compared to y upon end transitions

The scheduler issues the start transitions

v

Clocks in Timed Automata and DPA

v

A global state of a DPA is a tuple consisting of local states,
some active and some inactive (waiting)

v

For each active component, its corresponding clock
measures the time since its start transition

The clock values determine which end transition can be
taken from this state (and in which probability)

In other words, which active processes can “win the race”

v

v

st
¢ X11Z/: 0
i Stg/
n=an0) | =0 e =)o
e = d2() |

q
> $X1:}’1

Zones, Symbolic States and Forward Reachability

» In timed automata the possible paths are computed using
forward reachability over symbolic states

» A symbolic state is (g, Z) where g is a global state and Z is
a set of clock valuations with which it is possible to reach g

» The reachability tree/graph is constructed iteratively from
the initial state using a successor operator

» For every transition ¢ from q to g’ the successor operator
Post;s is defined as:

» (q',Z') = Posts(q,Z') if Z' is the set of clock valuations
possible at ¢’ given that Z is the set of possible clock
valuations at q

Forward Reachability for DPA

» We adapt this idea to DPA using extended symbolic states
of the form (q, Z, ¢) where ¢ is a (partial) density over the
clock values

» Symbolic state (q’,Z’,¢’) is a successor of (q, Z, ¢) if:

» Given density ¢ on the clock values upon entering g, the
density upon taking the transition to ¢’ is ¥’

» The successor operator is a density transformer which
for start transitions is rather straightforward

» The crucial point is how to compute it in a state admitting
several competing end transitions

Intuition

» Consider state g with two competing processes with
durations distributed uniformly ¢1 = [ay, b1], ¢2 = [az, b2]

» What is the probability p;(u|v) that transition / wins at some
clock valuation u = (uy, Up), i.e., uj = y;, given the state
was entered at some v?

» First, this probability is non-zero only if v is a
time-predecessor of u, v € 7(u)

by----|

b2

ap----

pi(ulv)

p2(ulv)

p2(U'|v)

Intuition

» For transition 1 to win, process 1 should choose duration
u1 while process 2 chooses some y»> > Us

» Thus p1(u|v) is obtained by summing up the duration
probabilities above u

» If the state was entered with density) over clocks, we can
sum up p;(u|v) over w(u) according to ¢ to obtain the
expected p;(u) as well as new densities ¢; on clock values
upon taking transition i

p1(ulv)

bZ””
p2(u|v)

2

p2(u'|v)

ap---|

Definition

» For every end transition e¢; outgoing from a state g with m
active processes we define a density transformer 7,

» The transformer 7, computes the clock density at the time
when process i/ wins the race, given the density was v
upon entering the state

» It is defined as v; = Tg,(¢) if
wi(xh--wxm;}/h---a}/m) -

if Xi = Yil

/T>01/;(x1 — Ty s Xm— Ty Y1y ooy Ym)dT i £ i xp < Y
0

otherwise

Concluding Remarks

» All those densities are piecewise polynomial and can be
computed. The degrees of the polynomials and their
piecewiseness grow with the number of steps

» So far we consider only acyclic DPA. For cyclic ones, we
need some progress in fixpoint techniques for linear
operators in the spirit of Asarin and Degorre (2009)

» A prototype implementation by M. Bozga, using a slightly
different technique for computing volumes, can handle, for
example a product of 2 SPDA with 10 steps each

» As in timed automata the larger is the ratio (b — a)/a the
more paths have to be considered

» There is still much to be done

Concluding Remarks

» All those densities are piecewise polynomial and can be
computed. The degrees of the polynomials and their
piecewiseness grow with the number of steps

» So far we consider only acyclic DPA. For cyclic ones, we
need some progress in fixpoint techniques for linear
operators in the spirit of Asarin and Degorre (2009)

» A prototype implementation by M. Bozga, using a slightly
different technique for computing volumes, can handle, for
example a product of 2 SPDA with 10 steps each

» As in timed automata the larger is the ratio (b — a)/a the
more paths have to be considered

» There is still much to be done

» Thank you

