
On Zone-Based Reachability Computation for
Duration-Probabilistic Automata

How the Timed Automaton Lost its Tail

Oded Maler

CNRS - VERIMAG
Grenoble, France

2010

Joint work with Kim Larsen (Aalborg) and Bruce Krogh (CMU)

Summary

I Processes that take time
I Worst-case versus average case reasoning about time
I Duration probabilistic automata
I Forward reachability and density transformers
I Concluding remarks

Processes that Take Time

I We are interested in processes that take some time to
conclude after having started

I Can model almost anything:
I Transmission delays in a network
I Propagation delays in digital gates
I Execution time of programs
I Duration of a production step in a factory
I Time to produce proteins in a cell
I Cooking recipes
I Project planning

I Mathematically they are simple timed automata:

I

x := 0
φ(x)
end

start
p p p

Processes that Take Time

I

x := 0
φ(x)
end

start
p p p

I A waiting state p;
I A start transition which resets a clock x to measure time

elapsed in active state p
I An end transition guarded by a temporal condition φ(x)
I Condition φ can be

I true (no constraint)
I x = d (deterministic)
I x ∈ [a,b] (non-deterministic)
I Probabilistically distributed

Composition

I Such processes can be combined:
I Sequentially, to represent precedence relations between

tasks, for example p precedes q:

q x := 0
φ(x)
end

start
qq

x := 0
φ(x)
end

start
p p x := 0

φ(x)
end

start
qq

x := 0
φ(x)
end

start
p p p

p

Composition

I Such processes can be combined:
I In parallel, to express partially-independent processes,

sometimes competing with each other

2̄ E1 2 3

1

2̄

[a1, b1]

[c1, d1] [c2, d2] [c3, d3]

Levels of Abstraction: Untimed

I Consider two parallel processes, one doing a · b and the
other doing c

I Untimed (asynchronous) modeling assumes nothing
concerning duration

I Each process may take between zero and infinity time
I Consequently any interleaving in (a · b)||c is possible

a b

a b

a b

c c cc

Levels of Abstraction: Timed
I Timed automata and similar formalisms add more detail
I Assume a (positive) lower bound and (finite) upper bound

for the duration of each processing step

I

xb ∈ [6, 20]/b

xb ∈ [6, 20]/b

xb ∈ [6, 20]/b

xa ∈ [2, 4]/a

xa ∈ [2, 4]/a

xa ∈ [2, 4]/a

xc ∈ [6, 9]/c xc ∈ [6, 9]/c xc ∈ [6, 9]/cxc ∈ [6, 9]/c

I The arithmetics of time eliminates some paths:
I Since 4 < 6, a must precede c and the set of possible

paths is reduced to a · (b||c) = abc + acb
I But how likely is abc to occur?

Levels of Abstraction: Timed

I

xb ∈ [6, 20]/b

xb ∈ [6, 20]/b

xb ∈ [6, 20]/b

xa ∈ [2, 4]/a

xa ∈ [2, 4]/a

xa ∈ [2, 4]/a

xc ∈ [6, 9]/c xc ∈ [6, 9]/c xc ∈ [6, 9]/cxc ∈ [6, 9]/c

I The arithmetics of time eliminates some paths:
I Since 4 < 6, a must precede c and the set of possible

paths is reduced to a · (b||c) = abc + acb
I But how likely is abc to occur?

Possible but Unlikely
I How likely is abc to occur?

I

xb ∈ [6, 20]/b

xb ∈ [6, 20]/b

xb ∈ [6, 20]/b

xa ∈ [2, 4]/a

xa ∈ [2, 4]/a

xa ∈ [2, 4]/a

xc ∈ [6, 9]/c xc ∈ [6, 9]/c xc ∈ [6, 9]/cxc ∈ [6, 9]/c

I Each run corresponds to a point in the duration space

(ya, yb, yc) ∈ Y = [2,4]× [6,20]× [6,9]

I Event b precedes c only when ya + yb < yc

I Since ya + yb ranges in [8,24] and yc ∈ [6,9], this is less
likely than c preceding b

Levels of Abstraction: Probabilistic Timed

I Interpreting temporal guards probabilistically
I This gives precise quantitative meaning to this intuition
I It allows us to:

I Compute probabilities of different paths (equivalence
classes of qualitative behaviors)

I Compute and compare the expected performance of
schedulers, for example for job-shop problems with
probabilistic step durations

I Discard low-probability paths in verification and maybe
reduce some of the state and clock explosion

Levels of Abstraction: Probabilistic Timed

I Of course, continuous-time stochastic processes are
not our invention

I But, surprisingly(?), computing these probabilities for such
composed processes has rarely been attempted

I Some work in the probabilistic verification community deals
with the very special case of exponential (memoryless)
distribution

I With this distribution, the time that has already elapsed
since start does not influence the probability over the
remaining time to termination

I Notable exceptions:
I Alur and Bernadsky (GSMP)
I Vicario et al (stochastic PN)

Probabilistic Interpretation of Timing Uncertainty

I We interpret a duration interval [a,b] as a uniform
distribution: all values in the interval are equally likely

I This is expressed via density function

φ(y) =

{
1/(b − a) if a ≤ y ≤ b
0 otherwise

I Interval [a,b] is the support of φ
I The probability that the actual duration is in some interval

[c,d] is

P([c,d]) =

∫ d

c
φ(τ)dτ

Minkowski Sum vs. Convolution

I Consider two processes with durations in [a,b] and [a′,b′]
that execute sequentially

I Their total duration is inside the Minkowski sum
[a,b]⊕ [a′,b′] = [a + a′,b + b′]

I This is what timed automata will compute for you
I With the intervals interpreted as uniform distributions φ, φ′

the total duration is distributed as their convolution

φ ∗ φ′(y) =

∫
φ(y − τ)φ′(τ)dτ

=

=⊕

∗

Duration Probabilistic Automata

I Duration probabilistic automata (DPA) consist of a
composition of simple DPA (SDPA) and a scheduler

A = A1 ◦ A2 ◦ · · · ◦ An ◦ S

I SDPA: (acyclic) alternations of waiting and active states

I

x1 := 0
s1

q1 q1
e1

· · · xk := 0
sk

qk qk qk+1
ek

x1 = y1 xk = yk

y1 := φ1()
· · ·

yk := φk ()

I The y variables are “static” random variable drawn
uniformly from the duration space

I The x variables are clocks reset to zero upon start
transitions and compared to y upon end transitions

I The scheduler issues the start transitions

Clocks in Timed Automata and DPA

I A global state of a DPA is a tuple consisting of local states,
some active and some inactive (waiting)

I For each active component, its corresponding clock
measures the time since its start transition

I The clock values determine which end transition can be
taken from this state (and in which probability)

I In other words, which active processes can “win the race”

I

q. . .

x1 = y1

x2 = y2

x1 := 0
st1/

x2 := 0
st2/

y2 := φ2()
y1 := φ1()

Zones, Symbolic States and Forward Reachability

I In timed automata the possible paths are computed using
forward reachability over symbolic states

I A symbolic state is (q,Z) where q is a global state and Z is
a set of clock valuations with which it is possible to reach q

I The reachability tree/graph is constructed iteratively from
the initial state using a successor operator

I For every transition δ from q to q′ the successor operator
Postδ is defined as:

I (q′,Z ′) = Postδ(q,Z ′) if Z ′ is the set of clock valuations
possible at q′ given that Z is the set of possible clock
valuations at q

Forward Reachability for DPA

I We adapt this idea to DPA using extended symbolic states
of the form (q,Z , ψ) where ψ is a (partial) density over the
clock values

I Symbolic state (q′,Z ′, ψ′) is a successor of (q,Z , ψ) if:
I Given density ψ on the clock values upon entering q, the

density upon taking the transition to q′ is ψ′

I The successor operator is a density transformer which
for start transitions is rather straightforward

I The crucial point is how to compute it in a state admitting
several competing end transitions

Intuition

I Consider state q with two competing processes with
durations distributed uniformly φ1 = [a1,b1], φ2 = [a2,b2]

I What is the probability ρi(u|v) that transition i wins at some
clock valuation u = (u1,u2), i.e., ui = yi , given the state
was entered at some v?

I First, this probability is non-zero only if v is a
time-predecessor of u, v ∈ π(u)

I

u′

φ1
b1a1

ρ2(u′|v)

ρ1(u|v)

ρ2(u|v)
u

v

φ2

b2

a2

Intuition
I For transition 1 to win, process 1 should choose duration

u1 while process 2 chooses some y2 > u2

I Thus ρ1(u|v) is obtained by summing up the duration
probabilities above u

I If the state was entered with density ψ over clocks, we can
sum up ρi(u|v) over π(u) according to ψ to obtain the
expected ρi(u) as well as new densities ψi on clock values
upon taking transition i

I

u′

φ1
b1a1

ρ2(u′|v)

ρ1(u|v)

ρ2(u|v)
u

v

φ2

b2

a2

Definition

I For every end transition ei outgoing from a state q with m
active processes we define a density transformer Tri

I The transformer Tei computes the clock density at the time
when process i wins the race, given the density was ψ
upon entering the state

I It is defined as ψi = Tei (ψ) if

ψi(x1, . . . , xm, y1, . . . , ym) =∫
τ>0

ψ(x1 − τ, . . . , xm − τ, y1, . . . , ym)dτ if
xi = yi∧
∀i ′ 6= i xi ′ < yi ′

0 otherwise

Concluding Remarks

I All those densities are piecewise polynomial and can be
computed. The degrees of the polynomials and their
piecewiseness grow with the number of steps

I So far we consider only acyclic DPA. For cyclic ones, we
need some progress in fixpoint techniques for linear
operators in the spirit of Asarin and Degorre (2009)

I A prototype implementation by M. Bozga, using a slightly
different technique for computing volumes, can handle, for
example a product of 2 SPDA with 10 steps each

I As in timed automata the larger is the ratio (b − a)/a the
more paths have to be considered

I There is still much to be done

I Thank you

Concluding Remarks

I All those densities are piecewise polynomial and can be
computed. The degrees of the polynomials and their
piecewiseness grow with the number of steps

I So far we consider only acyclic DPA. For cyclic ones, we
need some progress in fixpoint techniques for linear
operators in the spirit of Asarin and Degorre (2009)

I A prototype implementation by M. Bozga, using a slightly
different technique for computing volumes, can handle, for
example a product of 2 SPDA with 10 steps each

I As in timed automata the larger is the ratio (b − a)/a the
more paths have to be considered

I There is still much to be done
I Thank you

