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Executive Summary: Job Shop Scheduling under
Uncertainty

Several jobs, each being a sequence of steps that execute one
after the other
Each step duration is distributed uniformly over a bounded
interval
Some steps are conflicting (use the same resource) and cannot
execute simultaneously
When a step becomes enabled, a scheduler decides whether to
start it or wait and let another job use the resource first
A scheduler is evaluated according to the expected termination
time of the last job (makespan)
We synthesize optimal schedulers automatically using backward
value/policy iteration (dynamic programming)
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Computing Shortest Paths Backwards
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We want to compute the shortest path from A to I
We will do it backwards using a value function V on the nodes
indicating the shortest path from the node to I
Initially V (I) = 0
Then V (G) = 5 + V (I) = 5 and V (H) = 3 + V (I) = 3
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Computing Shortest Paths Backwards
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Then V (D) = 6 + V (G) = 11 and V (F ) = 2 + V (H) = 5
To compute the value for E we need to make a local optimal
choice:
V (E) = min{1 + V (G),4 + V (H)} = min{6,7} = 6

O. Maler, J.-F. Kempf, M. Bozga (VERIMAG Grenoble, France)As Soon As Probable March 15, 2013 5 / 42



Computing Shortest Paths Backwards
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V (B) = min{2 + V (D),6 + V (E)} = min{13,12} = 12
V (C) = min{4 + V (E),4 + V (F )} = min{10,9} = 9
V (A) = min{2 + V (B),3 + V (C)} = min{14,12} = 12
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Computing Shortest Paths Backwards
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At the end we obtain the shortest path from A to I
And in fact the shortest path from any state to I
A “strategy”: which edge to choose in any state
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From Deterministic to Stochastic Adversary

We do something similar but more complex in two aspects
In the graph example there was no adversary (or a trivial
deterministic adversary):
The length of an edge is fixed and known in advance
Imagine that the length of an edge is drawn from a known
bounded distribution
We do not know the actual value when taking the decision
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From Discrete to Continuous State-Space

In the example there were only discrete decision points:
For each node/state we have to choose an edge
We work in dense time, several processes working concurrently
We model scheduling problems in which whenever a task
terminates, a scheduler should decide whether to start its
successor or let it wait
Such decision points, due to uncertainty, are spread all over a
continuous state-space (with clock values)
The value function and the strategy should be defined over all this
uncountable state-space
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A Single Process

A job has k steps each with a duration ψj distributed uniformly
over Ij = [aj ,bj ]

A state-based representation by simple DPA:

x1 := 0
s1

q1 q1

e1 · · · xk := 0
sk

qk qk qk+1

ek

x1 = y1 xk = yk
y1 := ψ1()
· · ·

yk := ψk ()

Waiting states qj and active states qj and two types of transitions:
start: in idle state qj , a scheduler command sj activates clock x
and sets it to zero and moves to qj

end: in active state qj , transition ej , conditioned by the clock value
x = yj moves to next waiting state
We need some probabilistic preliminaries before we proceed
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Time Densities

A time density: a function ψ : R+ → R+ satisfying∫ ∞
0

ψ[t ]dt = 1

Partial time density:
∫
ψ[t ]dt < 1

Bounded support: ψ[t ] 6= 0 iff t ∈ I = [a,b]

Uniform: ψ[t ] = 1/(b − a) inside its support [a,b]

Distributions: ψ[≤ t ] =

∫ t

0
ψ[t ′]dt ′ ψ[> t ] = 1− ψ[≤ t ]

Time densities specify durations of steps as well as
The remaining time to termination from a given state, an
intermediate step for computing the value function
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Operations on Time Densities: Convolution

Convolution of two densities corresponds to the density of the
duration of executing two steps one after the other
For two densities ψ1 and ψ2 supported by I1 = [a1,b1] and
I2 = [a2,b2]:
The convolution ψ1 ∗ ψ2 is a density ψ′ supported by
I′ = I1 ⊕ I2 = [a1 + a2,b1 + b2]

ψ′[t ] =

∫ t

0
ψ1[t ′]ψ2[t − t ′]dt ′

Intuition: rolling two dice

=⊕ =∗
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Operations on Time Densities: Shift

For density ψ supported by [a,b] the residual (conditional) density
ψ/x is the time density given that x < b time has already elapsed

ψ/x [t ] =

{
ψ[x + t ] if 0 < x ≤ a
ψ[x + t ] · b−a

b−x if a < x < b

When x < a it is simply a shift
When x > a we know that the duration is restricted to [x ,b] and
have to normalize
Remark: for exponential distribution: ψ/x = ψ
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The Problem

x1 := 0
s1

q1 q1

e1 · · · xk := 0
sk

qk qk qk+1

ek

x1 = y1 xk = yk
y1 := ψ1()
· · ·

yk := ψk ()

We want to compute/optimize the (expected) arrival to the final
state from any extended state
An extended state is either a waiting state (qj ,⊥) or an active
state (qj , x) with x a clock value in [0,bj ]

Without resource conflicts there is no use in waiting: start
transitions are issued immediately by an optimal scheduler
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Local Stochastic Time-to-Go

The local stochastic time-to-go assigns to every state (q, x) a time
density µ(q, x)

µ(q, x)[t ] is the probability to terminate within t time given that we
start from (q, x) and apply the optimal strategy

µ(qk+1,⊥) = 0 (1)

µ(qj ,⊥) = µ(qj ,0) (2)

µ(qj , x)[t ] =

∫ t

0
ψj/x [t ′] · µ(qj+1,0)[t − t ′]dt ′ (3)

Line (1) refers to the final state
Line (2) says that in a waiting state you start immediately and
inherit the time-to-go from the next state
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Local Stochastic Time-to-Go

µ(q, x)[t ] is the probability to terminate within t time given that we
start from (q, x) and apply the optimal strategy

µ(qj , x)[t ] =

∫ t

0
ψj/x [t ′] · µ(qj+1,0)[t − t ′]dt ′

The probability for termination at t is based on:
I The probability of terminating the current step in some t ′
I The probability of the remaining time-to-go being t − t ′

Functionally speaking:

µ(qj , x) = ψj/x ∗ µ(qj+1,0)

For the initial state this gives µ(q1,0) = ψ1 ∗ · · · ∗ ψk
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Expected Time-to-Go

The local expected time-to-go function is V : Q × X → R+ defined
as

V (q, x) =

∫
µ(q, x)[t ] · tdt = E(µ(q, x))

For the initial state this yields

V (q1,0) = E(ψ1 ∗ · · · ∗ ψk ) = E(ψ1) + · · ·+ E(ψk ) =
k∑

j=1

(aj + bj)/2

The same result we would obtain by forward computation (and
common sense)
But it is important that we can compute it backwards and for any
clock value
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Multiple Processes

Consider now a system consisting of n jobs P1|| · · · ||Pn and a
conflict relation between steps that use the same resource
Two conflicting steps P i

j and P i′
j ′ cannot execute simultaneously

The whole system is modeled as a product of the automata for the
individual jobs
Forbidden (conflicting) states are removed
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The Global Automaton
Two jobs, and a conflict between their respective second steps
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Probabilistically Incorrect
There is set-theoretical non-determinism in states where we can
either start or wait
This non-determinism is resolved by a scheduling strategy
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Schedulers
A scheduler Ω : S → Σs ∪ {w} says whether to start or wait
Composing with a scheduler we have a stochastic process
Every value of random variable y induces a single behavior
Example: a FIFO scheduler (never wait):
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Preview of Major Contribution

Compute the optimal scheduler and its value backwards
Any extended state (q, x) defines value functions: the distribution
and expected value of termination times starting from (q, x)
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Local Stochastic Time-to-Go

Consider a state q such that the optimal strategy has been
computed for all its successors
With every s ∈ Σs ∪ {w} enabled in q, we associate a time density

µi(q, x , s) : R+ → [0,1]

It is the stochastic time-to-go for process P i if the controller issues
action s at state (q, x)

and continues from there according to the optimal strategy
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Global and Expected Time-to-Go

For a state (q, x) and action s enabled in it:
The stochastic time-to-go for total termination (makespan,
termination of last step) :

µ(q, x , s) = max{µ1(q, x , s), . . . , µn(q, x , s)}

The expected total termination time:

V (q, x , s) =

∫
t · µ(q, x , s)[t ]dt

We want to choose in each (q, x) the action s which minimizes
V (q, x , s)
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Abstract Algorithm
Input: A global state q such that Ω(q′, x) and µi(q′, x) have been

computed for each of its successors q′ and every i

Output: Ω(q, x), µi(q, x), V (q, x) (strategy and value)

% COMPUTE:
forall s ∈ Σs ∪ {w} enabled in q

compute V (q, x , s) (expected makespan)
end

% OPTIMIZE:
forall x ∈ Zq

V (q, x) = mins(V (q, x , s))
s∗ = arg mins V (q, x , s)
Ω(q, x) = s∗

end
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Computation and Optimization

There are two main parts in the procedure:
To compute the value of each action

I This is immediate for start transitions
I More complicated for wait when there are several active steps that

may terminate in different orders
I This require race analysis

After that we need to compare the values of the actions and
choose the optimal one
The optimal action in a state may vary according to clock values
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Race Winner
Let q be a state where n processes are active, each in a step
admitting a time density ψi

With every clock valuation x = (x1, . . . , xn) ≤ (b1, . . . ,bn) and
every i define the partial density:

ρi(q, x)[t ] = ψi
/x i [t ] ·

∏
i ′ 6=i

ψi′
/x i′ [> t ]

(q1, q2, x1, x2)

e1

(q1,−, x1 + t,⊥)

(−, q2,⊥, x2 + t)

ρ2(q, x)[t]

ρ1(q, x)[t]

e2

This is the probability that P i terminates in t time and every other
process P i′ terminates within some t ′ > t
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Computing Stochastic Time-to-go
For every i , the function µi is defined as

µi(q, x ,w)[t ] =
n∑

i ′=1

∫ t

0
ρi′(q, x)[t ′] · µi(σi′(t ′,q, x))[t − t ′]dt ′

σi′(t ′,q, x) is the extended state reached after waiting t ′ time and
taking an ei′ transition

(q1, q2, x1, x2)

e1

µ(q1,−, x1 + t′,⊥)

µ(−, q2,⊥, x2 + t′)

ρ2(q, x)[t′ ]

ρ1(q, x)[t′ ]

e2

This is not a convolution: the other clocks are not reset
This operation is computable resulting in piecewise-continuous
densities of a particular form
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Zone-Polynomial Time Densities
A function µ : Z → (R+ → [0,1]) over a rectangular clock space Z
is zone-polynomial if it can be written as

µ(x1, . . . , xn)[t ] = f1(x1, . . . , xn)[t ]) if Z1(x1, . . . , xn) and l1 ≤ t ≤ u1
. . .
fL(x1, . . . , xn)[t ]) if ZL(x1, . . . , xn) and lL ≤ t ≤ uL

Every Zr (x1, ..., xn) is a zone included in the rectangle Z ,
satisfying either Zr ⊆ [x i ≤ ai] or Zr ⊆ [ai ≤ x i]

The bounds lr , ur of the t interval are either nonnegative integers
c or terms of the form c − x i

For every r , fr (x1, ..., xn)[t ] =
∑
k

Pk (x1,...,xn)
Qr (x1,...,xn)

tk

Pk are arbitrary polynomials and Qr is a characteristic polynomial
associated with zone Zr defined as

∏
i

(bi −max{x i,ai}).

Theorem: these are closed under the defined operations
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Optimization

In a state when we have to choose between si and w we need to
compare V (q, x , si) and V (q, x ,w)

We need to partition the clock space of the active processes into
Ω−1(si) and Ω−1(w)

The boundary is defined by a polynomial equality that we have not
yet characterized
We define an approximate strategy, whose error is bounded by the
following lemma:
Let V be the value function, then for every (q, x) and i
∂V
∂x i (q, x) ≥ −1

You cannot progress to termination faster than the speed of time
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Approximation

Choosing between s1 and w based on x2 and x3

x3

s

x2

x3

x2

w

Grid points with the dark circles are in Ω−1(w)

The dark cubes indicate Ω′−1(w)

The relation between the value of the optimal strategy and the
approximate satisfies V ′(q, x ′)− V (q, x ′) ≤ ε
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Summary of Results

Theorem:
Let Ω be the expected-time optimal scheduler whose value at the
initial state is V
For any ε, one can compute a scheduler Ω′ whose value V ′

satisfies V ′ − V ≤ ε
Theorem:
The optimum is attainable by non-lazy (active) schedulers
If a step is kept waiting at some point there is no use in executing
it later if the resource has not been used meanwhile (extended
from the deterministic to the stochastic case)
Implementation: almost complete with a dedicated symbolic
integration package
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Example I
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When to do s2 and when to wait
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Example II
Values of waiting and starting
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Example III

The optimal scheduler
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Future Work

Complete the implementation
Empirical comparison with techniques based on Monte-Carlo
simulation that evaluate schedules based on sampling the
duration space
Extending to cyclic non-terminating jobs (which requires new
definitions of performance measures)

O. Maler, J.-F. Kempf, M. Bozga (VERIMAG Grenoble, France)As Soon As Probable March 15, 2013 41 / 42



Thank You
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