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Introduction

SMT

◮ SMT solvers determine the satisfiability of a Boolean
combination of predicates.

◮ The predicates fall in some background theory, such as
linear real arithmetic.

◮ Very simple theories can be useful.

Lazy SMT

◮ Works within the DP framework.
◮ DP interprets predicates as propositional variables.
◮ Integrates an interpreter I for a theory for consistency

checking of truth assignments and constraint propagation.



Introduction – Lazy SMT and Theory Propagation
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Introduction – Contributions

1. A framework for flexibility of constraint propagation, in any
theory.

2. Optimization of constraint propagation for difference logic.



Flexible Propagation
Motivation

Motivating different propagation priorities.

◮ Constraint propagation is interleaved with unit propagation.
◮ Constraint propagation may be more or less expensive

than unit propagation.
◮ Both methods of propagation can deduce the same

predicates.
◮ If a dead end can be found by one propagation method

alone, the other need not be called.



Flexible Propagation
Constraint Labels and Propagation Roles

Constraint Labels can be used to maintain state with respect to
theory propagation.

Constraint Labels for Propagation Roles

Π A set of assigned constraints whose
consequences have been found.

Σ All assigned constraints whose consequences
have not been found.

∆ A set of assigned or unassigned constraints which
are consequences of the constraints labelled Π.

Λ All other constraints (unassigned).



Flexible Propagation
Theory Interface

A Theory Software Interface.

◮ SetTrue: Add a predicate p to the current truth assignment.

◮ If p ∈ ∆, ignore it.
◮ If p ∈ Λ, label it Σ and check whether Π ∪ Σ is T -consistent.

◮ TheoryProp: Find and justify some consequences of the
current truth assignment:

◮ Pick a constraint p ∈ Σ, label it Π.
◮ Find (and justify) consequences c of Π such that c 6∈ ∆.
◮ For every consequence c, if c ∈ Λ, inform DP c is a new

consequence. Label every c as ∆.

◮ Backtrack: Remove some predicates from the current truth
assignment:

◮ Label all newly unassigned constraint Λ.
◮ Label any unassigned constraints in ∆ as Λ.



Flexible Propagation
Implementing Strategies

Implementing Interleaving Strategies

◮ The labels allow propagation to compute consequences of
all assigned constraints by finding consequences of only
Π-labelled constraints.

◮ Theory interface decouples propagation from DP
assignments, allowing TheoryProp to be called at various
times in DP procedure.

Two interleaving strategies

◮ Lazy propagation. Only call TheoryProp when DP has no
unit implications.

◮ Eager propagation. Call TheoryProp with every call to
SetTrue.



Optimizing Difference Constraint Propagation

About Difference Constraints

◮ Difference constraints are constraints in the form x − y ≤ c.
◮ They are applicable to many scheduling and timing

analysis problems.
◮ Conjunctions of difference constraints have a convenient

graphical representation.



Difference Constraints and Constraint Graphs
Constraint Graph

Definition (Constraint graph)
Let S be a set of difference constraints and let G be the graph
comprised of one weighted edge x c

→ y for every constraint
x − y ≤ c in S. We call G the constraint graph of S.

Theorem
Let Γ be a conjunction of difference constraints, and let G be
the constraint graph of Γ. Then Γ is satisfiable if and only if
there is no negative cycle in G. Moreover, if Γ is satisfiable,
then Γ |= x − y ≤ c if and only if y is reachable from x in G and
c ≥ dxy where dxy is the length of a shortest path from x to y in
G.



Constraint Graphs
Example

Example Constraint Graph
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Incremental Consistency Checking
Potential Functions

Definition (Potential Function)
Given a weighted directed graph G = (V , E , W ), a potential
function π is a function π : V → R such that
π(x) + W (x , y) − π(y) ≥ 0 for every edge (x , y) ∈ E .

Some Potential function properties

◮ A potential function exists iff G contains no negative cycle.
◮ Given a potential function π for a constraint graph G, a

satisfying assignment σ for the set of difference constraints
in G is given by σ(x) 7→ −π(x).



Incremental Consistency Checking
An algorithm

SetTrue(u − v ≤ d):
Let G = Π ∪ Σ. Given a potential function π for G, find a

potential function π′ for the graph G ∪ {u d
→ v} if one exists.

An O(m + n log n) algorithm:

γ(v)← π(u) + d − π(v)
γ(w)← 0 for all w 6= v
while min(γ) < 0 ∧ γ(u) = 0

s ← argmin(γ)
π′(s)← π(s) + γ(s)
γ(s)← 0
for s c

→ t ∈ G do
if π′(t) = π(t) then

γ(t)← min{γ(t), π′(s) + c − π(t)}



Incremental Propagation
Methodology

TheoryProp Outer loop

Repeat until no constraints are labelled Σ or until DP is notified
of a new consequence:

1. Pick a constraint c labelled Σ and find the consequences S
of Π ∪ {c} which are not consequences of Π.

2. Notify DP of any consequences in S which are labelled Λ.

3. Relabel c with Π and every constraint in S with ∆.
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Incremental Propagation
Methodology

TheoryProp Inner loop

Find consequences of Π ∪ {(x − y ≤ c)} which are not
consequences of Π.

1. Compute single source shortest paths (SSSP) δ→ in
constraint graph of Π starting from y .

2. Compute SSSP δ← in reversed constraint graph Π starting
from x .

3. For every constraint u − v ≤ d labelled Λ or Σ, if
δ←(u) + c + δ→(v) ≤ c then u − v ≤ d is a consequence.

(due to Nieuwenhaus et al CAV’04)



Incremental Propagation
Optimizations – Using Potential Functions

An Observation

1. The best SSSP computations on arbitrarily weighted
graphs are O(mn).

2. The potential function computed during consistency
checking is a potential function for the constraint graph of
Π.

3. A potential function can be used to translate a shortest
path problem for arbitrarily weighted graphs into a shortest
path problem on non-negatively weighted graphs.

4. The best SSSP computations on non-negatively weighted
graphs are atleast as good as O(m + n log n).



Incremental Propagation
Optimizations – Relevancy Based Early Termination

Do we need the entire SSSP results δ→ and δ←?
When finding consequences of Π ∪ {x − y ≤ c}, if the shortest
path from y to some vertex z is atleast as short as the shortest
path from x to z, then any constraint u − z ≤ d is not a new
consequence:

YX Z



Experimental Results

Experiments

◮ All experiments performed on job shop scheduling
problems.

◮ These problems are strongly constrained by difference
constraints and weakly propositionally constrained.

◮ These problems stress test difference constraint
propagation in a lazy SMT framework.



Eager v Lazy Propagation
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Reachable v Relevancy
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Jat v Barcelogic Tools
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Conclusion

◮ Lazy propagation is easy to implement with constraint
labels, and experiments show it is a good propagation
strategy.

◮ Complete difference constraint propagation can be
achieved in O(m + n log n + |U|) time.

◮ Relevancy based early termination is helpful.
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