Fast and Flexible Difference Constraint Propagation for DPLL(T)

Scott Cotton Oded Maler

Verimag Centre Equation Grenoble, France

SAT, 2006

Outline

Introduction

Flexible Propagation

Motivation Constraint Labels and Theory Interface Implementing Flexible Propagation

Optimizing Difference Constraint Propagation

Difference Constraints and Constraint Graphs Incremental Consistency Checking Incremental Complete Propagation Optimizations for Incremental Propagation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Experiments

Conclusion

Introduction

SMT

- SMT solvers determine the satisfiability of a Boolean combination of *predicates*.
- The predicates fall in some background theory, such as linear real arithmetic.
- Very simple theories can be useful.

Lazy SMT

- Works within the DP framework.
- DP interprets predicates as propositional variables.
- Integrates an interpreter I for a theory for consistency checking of truth assignments and constraint propagation.

Introduction – Lazy SMT and Theory Propagation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction – Contributions

- 1. A framework for *flexibility* of constraint propagation, in any theory.
- 2. Optimization of constraint propagation for difference logic.

Flexible Propagation

Motivating different propagation priorities.

- Constraint propagation is *interleaved* with unit propagation.
- Constraint propagation may be more or less expensive than unit propagation.
- Both methods of propagation can deduce the same predicates.
- If a dead end can be found by one propagation method alone, the other need not be called.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constraint Labels can be used to maintain state with respect to theory propagation.

Constraint Labels for Propagation Roles

- □ A set of assigned constraints whose consequences have been found.
- Σ All assigned constraints whose consequences have not been found.
- Δ A set of assigned or unassigned constraints which are consequences of the constraints labelled Π .
- ∧ All other constraints (unassigned).

Flexible Propagation

Theory Interface

A Theory Software Interface.

SetTrue: Add a predicate p to the current truth assignment.

- If $p \in \Delta$, ignore it.
- ▶ If $p \in \Lambda$, label it Σ and check whether $\Pi \cup \Sigma$ is *T*-consistent.
- TheoryProp: Find and justify some consequences of the current truth assignment:
 - Pick a constraint $p \in \Sigma$, label it Π .
 - Find (and justify) consequences c of Π such that $c \notin \Delta$.
 - For every consequence c, if c ∈ Λ, inform DP c is a new consequence. Label every c as Δ.
- Backtrack: Remove some predicates from the current truth assignment:

- Label all newly unassigned constraint Λ.
- Label any unassigned constraints in Δ as Λ .

Flexible Propagation Implementing Strategies

Implementing Interleaving Strategies

- The labels allow propagation to compute consequences of all assigned constraints by finding consequences of only Π-labelled constraints.
- Theory interface decouples propagation from DP assignments, allowing <u>TheoryProp</u> to be called at various times in DP procedure.

Two interleaving strategies

- Lazy propagation. Only call <u>TheoryProp</u> when DP has no unit implications.
- Eager propagation. Call <u>TheoryProp</u> with every call to <u>SetTrue</u>.

Optimizing Difference Constraint Propagation

About Difference Constraints

- Difference constraints are constraints in the form $x y \le c$.
- They are applicable to many scheduling and timing analysis problems.
- Conjunctions of difference constraints have a convenient graphical representation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Difference Constraints and Constraint Graphs Constraint Graph

Definition (Constraint graph)

Let *S* be a set of difference constraints and let *G* be the graph comprised of one weighted edge $x \xrightarrow{c} y$ for every constraint $x - y \le c$ in *S*. We call *G* the constraint graph of *S*.

Theorem

Let Γ be a conjunction of difference constraints, and let G be the constraint graph of Γ . Then Γ is satisfiable if and only if there is no negative cycle in G. Moreover, if Γ is satisfiable, then $\Gamma \models x - y \le c$ if and only if y is reachable from x in G and $c \ge d_{xy}$ where d_{xy} is the length of a shortest path from x to y in G.

Constraint Graphs

Example Constraint Graph

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ 少々⊙

Incremental Consistency Checking Potential Functions

Definition (Potential Function)

Given a weighted directed graph G = (V, E, W), a *potential* function π is a function $\pi : V \to \mathbb{R}$ such that $\pi(x) + W(x, y) - \pi(y) \ge 0$ for every edge $(x, y) \in E$.

Some Potential function properties

- ► A potential function exists iff *G* contains no negative cycle.
- Given a potential function π for a constraint graph G, a satisfying assignment σ for the set of difference constraints in G is given by σ(x) → −π(x).

Incremental Consistency Checking An algorithm

<u>SetTrue</u> $(u - v \le d)$:

Let $G = \Pi \cup \Sigma$. Given a potential function π for G, find a potential function π' for the graph $G \cup \{u \xrightarrow{d} v\}$ if one exists. An $\mathcal{O}(m + n \log n)$ algorithm:

$$\begin{array}{l} \gamma(v) \leftarrow \pi(u) + d - \pi(v) \\ \gamma(w) \leftarrow 0 \text{ for all } w \neq v \\ \textbf{while } \min(\gamma) < 0 \land \gamma(u) = 0 \\ s \leftarrow \operatorname{argmin}(\gamma) \\ \pi'(s) \leftarrow \pi(s) + \gamma(s) \\ \gamma(s) \leftarrow 0 \\ \textbf{for } s \xrightarrow{c} t \in G \textbf{ do} \\ \textbf{if } \pi'(t) = \pi(t) \textbf{ then} \\ \gamma(t) \leftarrow \min\{\gamma(t), \pi'(s) + c - \pi(t)\} \end{array}$$

Incremental Propagation Methodology

TheoryProp Outer loop

Repeat until no constraints are labelled Σ or until DP is notified of a new consequence:

- Pick a constraint *c* labelled Σ and find the consequences S of Π ∪ {*c*} which are not consequences of Π.
- 2. Notify DP of any consequences in S which are labelled Λ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3. Relabel *c* with Π and every constraint in *S* with Δ .

Incremental Propagation Methodology

TheoryProp Outer loop

Repeat until no constraints are labelled Σ or until DP is notified of a new consequence:

 Pick a constraint *c* labelled Σ and find the consequences S of Π ∪ {*c*} which are not consequences of Π.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. Notify DP of any consequences in S which are labelled Λ .
- 3. Relabel *c* with Π and every constraint in *S* with Δ .

Incremental Propagation Methodology

TheoryProp Inner loop

Find consequences of $\Pi \cup \{(x - y \le c)\}$ which are not consequences of Π .

- 1. Compute single source shortest paths (SSSP) δ^{\rightarrow} in constraint graph of Π starting from *y*.
- Compute SSSP δ[←] in *reversed* constraint graph Π starting from *x*.
- 3. For every constraint $u v \le d$ labelled Λ or Σ , if $\delta^{\leftarrow}(u) + c + \delta^{\rightarrow}(v) \le c$ then $u v \le d$ is a consequence.

(due to Nieuwenhaus et al CAV'04)

Incremental Propagation Optimizations – Using Potential Functions

An Observation

- 1. The best SSSP computations on arbitrarily weighted graphs are $\mathcal{O}(mn)$.
- 2. The potential function computed during consistency checking is a potential function for the constraint graph of Π.
- 3. A potential function can be used to translate a shortest path problem for *arbitrarily* weighted graphs into a shortest path problem on *non-negatively* weighted graphs.
- 4. The best SSSP computations on non-negatively weighted graphs are atleast as good as $\mathcal{O}(m + n \log n)$.

Incremental Propagation Optimizations – Relevancy Based Early Termination

Do we need the entire SSSP results δ^{\rightarrow} and δ^{\leftarrow} ? When finding consequences of $\Pi \cup \{x - y \le c\}$, if the shortest path from *y* to some vertex *z* is atleast as short as the shortest path from *x* to *z*, then any constraint $u - z \le d$ is not a new consequence:

Experiments

- All experiments performed on job shop scheduling problems.
- These problems are strongly constrained by difference constraints and weakly propositionally constrained.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

These problems stress test difference constraint propagation in a lazy SMT framework.

Eager v Lazy Propagation

◆ロ → ◆母 → ◆臣 → ◆臣 → ○風 ◇ ◇

Reachable v Relevancy

◆ロ → ◆母 → ◆臣 → ◆臣 → ○風 ◇ ◇

Jat v Barcelogic Tools

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Conclusion

 Lazy propagation is easy to implement with constraint labels, and experiments show it is a good propagation strategy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Complete difference constraint propagation can be achieved in O(m + n log n + |U|) time.
- Relevancy based early termination is helpful.

Thankyou! (and Questions?)

Introduction

Flexible Propagation

Motivation Constraint Labels and Theory Interface Implementing Flexible Propagation

Optimizing Difference Constraint Propagation

Difference Constraints and Constraint Graphs Incremental Consistency Checking Incremental Complete Propagation Optimizations for Incremental Propagation

Experiments

Conclusion