Trace Diagnostics using Temporal Implicants
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Motivation

» Practical question: understand why a simulation / formal
verification violates MTL / LTL property.

» Problem: long simulation / counter-example trace with large
(product) alphabet.

» Solution: isolate segments of the trace sufficient to cause
violation.

Diagnostics of Cl(p — Q1,91 ¢) violation on sample trace

Implicant: p[1] A /\te[2’3] —q(t].
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Diagnostics

Problem (Diagnostics)

Given specification @ and behavior w with w |= ¢, find small
implicant 6 of ¢ with w = 0.

Applications
» Monitoring: find small subset of a finite variability, bounded
counter-example of some MTL property.
» Model-checking: find small subset of an ultimately-periodic
counter-example of some LTL property.



Implicants

» Propositional case

e=@ANq)V(pA-q)V -, w={p—1,¢— 1,r— 0}

Formula 6 = p is a minimal diagnostic of ¢ relative to w.
Semantically: any valuation that contains p — 1 satisfies .

Proposition

For every ¢, w such that w |= ¢ there exists a minimal diagnostic:
a prime implicant 6 such that w = 0.

» Temporal case

» syntactic representation of implicants?
» infinite valuation domain: are there prime temporal implicants?



Temporal Logic
Signals
» A function w : (T x P) — {0,1} with T = [0, d] time domain
and P finite set of propositions.

» Projection wy, : T — {0, 1} of signal w onto variable p, and
also satisfaction signal w,, : T — {0, 1} for any formula ¢.

Metric Temporal Logic
> syntax:
pi=p| ooV [ O] o1l ¢
> semantics:
(w,t) EOrp  iff I etal, (wt')Ep
(w,t) E Uy iff I >t (w,t')Eand vVt <t <t (w,t") ¢

» derived operators: ;¢ = =0, @R = —=(—pU —))
» models: w = ¢ iff (w,0) = ¢



Partial signals and refinements

» sub-signal: partial function from T x P to {0,1}

» refinement relation: sub-signals v C v iff u=! C v~! and
up[t] = vp[t] where u is defined.

Relation C defines a semi-lattice. Meet operation Il such that
(unv)™t Cu~tno™l, and minimal element 1 : ) — {0,1}.




Diagnostics (semantic reformulation)

Sub-signal u is sub-model of ¢ iff w = ¢ for all signals w J v.

Reformulation

» prime implicants of ¢ ~ minimal sub-models of ¢

» diagnostics of ¢ resp. w ~ sub-model v of p s.t. v C w
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Unbounded variability sub-models

¢ :=0(pV q) has minimal sub-models I x {p} — 1, J x {q} — 1
for arbitrary I, J partition of T.

(U p V9. p




No minimal sub-model

@ =pUT has sub-models (0,¢) x {p} — 1 for arbitrary ¢t > 0.

w: p
V1 D
V2. _p

(R P



Temporal terms

» Syntax:
0:=plt] | -plt] | 01702 | )\ O]

teT

T subset of time domain, © function from time to terms.

» Semantics:

wk N\ O « Vel w Ol
teT

Temporal term A,y 1) ~p[t] represents sub-signal [0, 1] x {p} — 0.




Solving dense-time issues

Bounded variability

Definition
normal form terms: A\*; A\;cp. £i[t] with T; intervals and ¢;
literals.

Bounded variability terms can be put in normal form.

Minimality
» introduce non-standard reals ¢, ¢~ for all ¢ in the time
domain with t~ <t < tT

> terms over the extended time domain.



Existence of prime implicants

Any satisfiable property @ admits prime implicants.

» Zorn's Lemma: show that any chain of implicants
0p = 01 = 05 = ... of  has a maximum.

> Take 0, = /\Z.20 0; and show that 0, = ¢.

» Given w [= 6, there exists n such that w = 0,.
» if not there exists ¢ and (¢;) such that 6; = £[t;] and wy[t;] = 0
» Bolzano Weierstrass: we may assume (t;) monotonic and
converging to t,
» for arbitrary § > 0 there exists ¢ such that t; is d-close to ¢,
» welt,] = 1 and by finite variability 3j, we[t;] = 1.
Contradiction
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MTL semantics (non-standard extension)

(w,tT) E ¢ iff limy 4+ wy[t'] =1

Arithmetic on non-standard reals
i<t iff t<tort=1t¢R.

» t+1 = closure t ® I in the non-standard reals.

» (w,t) EQre iff It et+1, (w,t') E o
> (w,t) EoUy iff ' >t (w,t)Eand V<t <,
(w,t") e




Selection functions

» Used to select a witnesses of a formula.

» A function £ labeled by a formula, such that vy [t] € {¢, 1},
€OI¢[t] et+1, and élpuw[t] > t.

» A correct selection function £ when (w,t) = ¢ verifies
» disjunction: (w,t) = &[t]
» eventually: (w,£&[t]) =
» until: (w,&[t]) E ¥ and VE < ¢/ < £[t], (w,t) = ¢

» Bounded variability: £ piecewise constant / linear with slope 1.



Generating implicants

The diagnostics of a formula ¢:

_J E@IO] if (w,0) =
Dly) = { F(z)[o] otherwise ’

Dual explanation and falsification operators:

E(p)[t] = p[t] F(p)[t] =
E(-p)[t] = F(p)[t] F(=p)[t] =
E(pV)[t] = E(§pvylt])[t] F(oV)[t] = F(o)[t] A F()[t]
E(Oro)[t] = E(9)[€0,4[t]] F(Ore)lt] = F(p)[t']



Selection of eventually witnesses

,,,,,,,, thl
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Algorithm
» pick the latest witness s of ¢ in t + I with ¢ start of domain
to cover

> witness accounts for {p throughout s — I

» remove s — I from the domain to cover



Selection of until witnesses

Algorithm

» pick the latest witness s of ¢ such that ¢ holds throughout
[t,s) with t start of domain to cover

> witness accounts for ¢ ¢ throughout [t, s)
» remove [t, s) from the domain to cover



“Between 1 to 2 time units from now,

always if p holds then ¢ does not hold until r

Example solution
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Results

Correctness

» term D(y) is solution to the diagnostics of ¢ and w;

» small implicant, not necessarily a prime implicant.

Complexity

Proposition

The computation of D(y) takes time in O(|¢|? - |w]).

Minimal diagnostics: EXPSPACE-hard in |p| + |w].



Perspectives

» Advantages of minimal versus inductive diagnostic:

» minimal diagnostic ~- localize fault “in the execution”
» inductive diagnostic ~~ localize fault “in the specification”

» Same technique applies to analysis of LTL model-checking
counter-examples for ultimately-periodic signals

» Theory of implicants: possible extension from trace
diagnostics to system diagnostics



Thank you.



Normalization of terms

» Inductive procedure yields normal form terms.
» Reductions:
» elimination of symbolic terms

Example (explanation of disjunction)

n

A BEE < A A @A A A 2w

teT 1=1teT; 1=1teT’

i

» elimination of nesting

Example (falsification of eventually)

A N F@Ele A\ Fl

teT t'et+1 t'eT+I



MTL semantics

For signal w : (T x P) — {0,1} and time ¢t € T:

(wvt) ):p A wp[t] =1

(w,t) =~ o (wi) e

(w, ) Ep VY < (wit) Eeror(w,t) =@
(w,t) = Ore > Hetal, (w,t)Egp
(w,t) = U YRS It >t, (w,t') = and

vi" e (t,t), (w,t") =

Model of a formula

wEe ifandonlyif (w,0) ¢
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