Trace Diagnostics using Temporal Implicants ATVA'15

 $\underline{\mathsf{Thomas}\;\mathsf{Ferr}\check{\mathsf{e}}\mathsf{r}^{1}}\quad\mathsf{Dejan}\;\mathsf{Nickovic}^{2}\quad\mathsf{Oded}\;\mathsf{Maler}^{1}$

 1 VERIMAG, University of Grenoble / CNRS 2 Austrian Institute of Technology

October 14, 2015

Motivation

- Practical question: understand why a simulation / formal verification violates MTL / LTL property.
- Problem: long simulation / counter-example trace with large (product) alphabet.
- Solution: isolate segments of the trace sufficient to cause violation.

Example

Diagnostics of $\Box(p \to \Diamond_{[1,2]} \, q)$ violation on sample trace

Implicant: $p[1] \land \bigwedge_{t \in [2,3]} \neg q[t]$.

Problem Formulation

Dense-time Issues

MTL Diagnostics

Outline

Problem Formulation

Dense-time Issues

MTL Diagnostics

Diagnostics

Problem (Diagnostics)

Given specification φ and behavior w with $w \models \varphi$, find small implicant θ of φ with $w \models \theta$.

Applications

- Monitoring: find small subset of a finite variability, bounded counter-example of some MTL property.
- Model-checking: find small subset of an ultimately-periodic counter-example of some LTL property.

Implicants

Propositional case

Example

$$\varphi = (p \land q) \lor (p \land \neg q) \lor \neg r, \qquad w = \{p \mapsto 1, q \mapsto 1, r \mapsto 0\}$$

Formula $\theta = p$ is a minimal diagnostic of φ relative to w. Semantically: any valuation that contains $p \mapsto 1$ satisfies φ .

Proposition

For every φ , w such that $w \models \varphi$ there exists a minimal diagnostic: a prime implicant θ such that $w \models \theta$.

Temporal case

- syntactic representation of implicants?
- infinite valuation domain: are there prime temporal implicants?

Temporal Logic

Signals

- ▶ A function $w : (\mathbb{T} \times \mathbb{P}) \to \{0, 1\}$ with $\mathbb{T} = [0, d]$ time domain and \mathbb{P} finite set of propositions.
- Projection w_p : T → {0,1} of signal w onto variable p, and also satisfaction signal w_φ : T → {0,1} for any formula φ.

Metric Temporal Logic

syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \lor \varphi_1 \mid \Diamond_I \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

semantics:

 $\begin{array}{ll} (w,t) \models \Diamond_I \varphi & \text{ iff } \quad \exists t' \in t \oplus I, \ (w,t') \models \varphi \\ (w,t) \models \varphi \mathcal{U} \psi & \text{ iff } \quad \exists t' > t, \ (w,t') \models \psi \text{ and } \forall t < t'' < t', \ (w,t'') \models \varphi \end{array}$

- derived operators: $\Box_I \varphi \equiv \neg \Diamond_I \neg \varphi$, $\varphi \mathcal{R} \psi \equiv \neg (\neg \varphi \mathcal{U} \neg \psi)$
- models: $w \models \varphi$ iff $(w, 0) \models \varphi$

Partial signals and refinements

Definition

- sub-signal: partial function from $\mathbb{T} \times \mathbb{P}$ to $\{0, 1\}$
- ▶ refinement relation: sub-signals $u \sqsubseteq v$ iff $u^{-1} \subseteq v^{-1}$ and $u_p[t] = v_p[t]$ where u is defined.

Proposition

Relation \sqsubseteq defines a semi-lattice. Meet operation \sqcap such that $(u \sqcap v)^{-1} \subseteq u^{-1} \cap v^{-1}$, and minimal element $\bot : \emptyset \to \{0, 1\}$.

Diagnostics (semantic reformulation)

Definition

Sub-signal u is **sub-model** of φ iff $w \models \varphi$ for all signals $w \sqsupseteq v$.

Reformulation

- \blacktriangleright prime implicants of $\varphi~\sim~$ minimal sub-models of φ
- diagnostics of φ resp. $w \sim$ sub-model v of φ s.t. $v \sqsubseteq w$

Problem Formulation

Dense-time Issues

MTL Diagnostics

Unbounded variability sub-models

Example

 $\varphi := \Box(p \lor q) \text{ has minimal sub-models } I \times \{p\} \mapsto 1, \ J \times \{q\} \mapsto 1$ for arbitrary I, J partition of \mathbb{T} .

No minimal sub-model

Example

 $\varphi = p\mathcal{U} \top$ has sub-models $(0, t) \times \{p\} \mapsto 1$ for arbitrary t > 0.

Temporal terms

Syntax:

$$\theta := p[t] \mid \neg p[t] \mid \theta_1 \land \theta_2 \mid \bigwedge_{t \in T} \Theta[t]$$

T subset of time domain, Θ function from time to terms.

Semantics:

$$w \models \bigwedge_{t \in T} \Theta[t] \iff \forall t \in T, w \models \Theta[t]$$

Example

 $\text{Temporal term } \bigwedge_{t \in [0,1]} \neg p[t] \text{ represents sub-signal } [0,1] \times \{p\} \mapsto 0.$

Solving dense-time issues

Bounded variability

Definition

normal form terms: $\bigwedge_{i=1}^{m} \bigwedge_{t \in T_i} \ell_i[t]$ with T_i intervals and ℓ_i literals.

Bounded variability terms can be put in normal form.

Minimality

- ▶ introduce non-standard reals t⁺, t⁻ for all t in the time domain with t⁻ < t < t⁺
- terms over the extended time domain.

Existence of prime implicants

Theorem

Any satisfiable property φ admits prime implicants.

Proof.

- ► Zorn's Lemma: show that any chain of implicants $\theta_0 \Rightarrow \theta_1 \Rightarrow \theta_2 \Rightarrow \dots$ of φ has a maximum.
- Take $\theta_* \equiv \bigwedge_{i \ge 0} \theta_i$ and show that $\theta_* \Rightarrow \varphi$.
- Given $w \models \theta_*$ there exists n such that $w \models \theta_n$.
 - ▶ if not there exists ℓ and (t_i) such that $\theta_i \Rightarrow \ell[t_i]$ and $w_\ell[t_i] = 0$
 - Bolzano Weierstrass: we may assume (t_i) monotonic and converging to t_{*}
 - for arbitrary $\delta > 0$ there exists i such that t_i is δ -close to t_*
 - w_ℓ[t_{*}] = 1 and by finite variability ∃j, w_ℓ[t_j] = 1.
 Contradiction

Outline

Problem Formulation

Dense-time Issues

MTL Diagnostics

MTL semantics (non-standard extension)

Definition

$$(w,t^+)\models \varphi \text{ iff } \lim_{t'\to t^+} w_{\varphi}[t']=1$$

Arithmetic on non-standard reals

•
$$t \ll t'$$
 iff $t < t'$ or $t = t' \notin \mathbb{R}$.

•
$$t + I = \text{closure } t \oplus I \text{ in the non-standard reals.}$$

Proposition

- $(w,t) \models \Diamond_I \varphi$ iff $\exists t' \in t + I$, $(w,t') \models \varphi$
- $\begin{array}{l} \blacktriangleright \ (w,t) \models \varphi \, \mathcal{U} \, \psi \ \text{ iff } \exists t' \gg t, \, (w,t') \models \psi \text{ and } \forall t \ll t'' \ll t', \\ (w,t'') \models \varphi \end{array}$

Selection functions

Used to select a witnesses of a formula.

▶ A function ξ labeled by a formula, such that $\xi_{\varphi \lor \psi}[t] \in \{\varphi, \psi\}$, $\xi_{\Diamond_I \psi}[t] \in t + I$, and $\xi_{\varphi U \psi}[t] \gg t$.

• A correct selection function ξ when $(w,t) \models \varphi$ verifies

- disjunction: $(w, t) \models \xi[t]$
- eventually: $(w, \xi[t]) \models \psi$
- $\blacktriangleright \ \text{until:} \ (w,\xi[t])\models\psi \text{ and }\forall t\ll t'\ll\xi[t]\text{, } (w,t')\models\varphi$

• Bounded variability: ξ piecewise constant / linear with slope 1.

Generating implicants

The **diagnostics** of a formula φ :

$$D(\varphi) = \begin{cases} E(\varphi)[0] & \text{if } (w,0) \models \varphi \\ F(\varphi)[0] & \text{otherwise} \end{cases}$$

Dual explanation and falsification operators:

$$\begin{split} E(p)[t] &= p[t] & F(p)[t] = \dots \\ E(\neg \varphi)[t] &= F(\varphi)[t] & F(\neg \varphi)[t] = \dots \\ E(\varphi \lor \psi)[t] &= E(\xi_{\varphi \lor \psi}[t])[t] & F(\varphi \lor \psi)[t] = F(\varphi)[t] \land F(\psi)[t] \\ E(\Diamond_I \varphi)[t] &= E(\varphi)[\xi_{\Diamond_I \varphi}[t]] & F(\Diamond_I \varphi)[t] = \bigwedge_{t' \in t+I} F(\varphi)[t'] \\ E(\varphi \mathcal{U} \psi)[t] &= E(\psi)[\xi_{\varphi \mathcal{U} \psi}[t]] \land \dots & F(\varphi \mathcal{U} \psi)[t] = E(\varphi \mathcal{R} \psi)[t] \end{split}$$

Selection of eventually witnesses

Algorithm

- ▶ pick the latest witness s of φ in t + I with t start of domain to cover
- witness accounts for $\Diamond_I \varphi$ throughout s I
- ▶ remove s − I from the domain to cover

Selection of until witnesses

Algorithm

- ▶ pick the latest witness s of ψ such that φ holds throughout [t, s) with t start of domain to cover
- witness accounts for $\varphi \mathcal{U} \psi$ throughout [t, s)
- remove [t, s) from the domain to cover

Example solution

"Between $1 \mbox{ to } 2$ time units from now, always if p holds then q does not hold until r "

Results

Correctness

- term $D(\varphi)$ is solution to the diagnostics of φ and w;
- **small** implicant, not necessarily a **prime** implicant.

Complexity

Proposition

The computation of $D(\varphi)$ takes time in $\mathcal{O}(|\varphi|^2 \cdot |w|)$.

Minimal diagnostics: EXPSPACE-hard in $|\varphi| + |w|$.

Perspectives

- Advantages of minimal versus inductive diagnostic:
 - ▶ minimal diagnostic ~→ localize fault "in the execution"
 - \blacktriangleright inductive diagnostic $~\rightsquigarrow~$ localize fault "in the specification"
- Same technique applies to analysis of LTL model-checking counter-examples for ultimately-periodic signals
- Theory of implicants: possible extension from trace diagnostics to system diagnostics

Thank you.

Normalization of terms

- Inductive procedure yields normal form terms.
- Reductions:
 - elimination of symbolic terms

Example (explanation of disjunction)

$$\bigwedge_{t \in T} E(\xi[t])[t] \Leftrightarrow \bigwedge_{i=1}^{m} \bigwedge_{t \in T_{i}} E(\varphi)[t] \wedge \bigwedge_{i=1}^{n} \bigwedge_{t \in T_{i}'} E(\psi)[t]$$

elimination of nesting

Example (falsification of eventually)

$$\bigwedge_{t \in T} \bigwedge_{t' \in t+I} F(\varphi)[t'] \Leftrightarrow \bigwedge_{t' \in T+I} F(\varphi)[t']$$

MTL semantics

Definition

For signal $w : (\mathbb{T} \times \mathbb{P}) \to \{0, 1\}$ and time $t \in \mathbb{T}$:

Model of a formula

$$w \models \varphi$$
 if and only if $(w, 0) \models \varphi$