Formal and Informal Methods for Multi-Core Design Space Exploration

Jean-Francois Kempf Olivier Lebeltel Oded Maler

QAPL, April 13, 2014
Introduction
 Context
 A motivating example

DeSpEx
 Overview
 DeSpEx: The Tool
 Case Study

Conclusion
Context

Minalogic project ATHOLE

- Low-power multi-processors platform for embedded systems.
- Partners: STMicroelectronics, CEA Leti, Thales, CWS, Verimag.
- Verimag: High level modeling and analysis.

Contribution

- Development of a framework for modeling and analysis of embedded systems.
Motivation

Embedded Systems Design

- Several design choices both in hardware and software
Motivation

Embedded Systems Design

- Several design choices both in hardware and software
- Each has advantages according to different criteria:
 - Timing performance
 - Power consumption
 - Platform cost
 - …
Motivation

Embedded Systems Design

- Several design choices both in hardware and software
- Each has advantages according to different criteria:
 - Timing performance
 - Power consumption
 - Platform cost
 - ...

Needs

- **Performance estimation as soon as possible**
 - evaluate quickly different trade-offs
- Exploration and Analysis on a high level of abstraction.
High-Level Performance Evaluation

Advantage

- Works at virtual level:
 - No need for a physical platform
 - No need for a complete implementation
- Models are simplified:
 - Performance analysis is tractable
 - Simulation and analysis are fast
- Evaluation of different alternatives can be done easily
High-Level Performance Evaluation

Advantage

- Works at virtual level:
 - No need for a physical platform
 - No need for a complete implementation
- Models are simplified:
 - Performance analysis is tractable
 - Simulation and analysis are fast
- Evaluation of different alternatives can be done easily

To compensate the lack of precision at this level of description:

- Increase the uncertainty margins
- Consider this uncertainty in the analysis
Uncertainty

Modeling uncertainty with timed automata

- Timing informations are modeled as intervals
- Exhaustive reachability analysis
- Analysis is **worst-case oriented** and sometimes intractable.
Uncertainty

Modeling uncertainty with timed automata

- Timing informations are modeled as intervals
- Exhaustive reachability analysis
- Analysis is **worst-case oriented** and sometimes intractable.

We may be more concerned about the **average performance**.
Uncertainty

Modeling uncertainty with timed automata

- Timing informations are modeled as intervals
- Exhaustive reachability analysis
- Analysis is worst-case oriented and sometimes intractable.

We may be more concerned about the average performance.

Modeling uncertainty probabilistically

- Duration Probabilistic Automata:
 - Timed automata with probabilistic durations
 - Discrete event simulation and statistical analysis
 - Exact computation of expected termination time
A motivating example

We show, with this example, the importance of considering the uncertainty in the analysis.

Outcome

- Timing analysis based exclusively on worst case execution times might not catch the worst behavior.
Abstract Model

Task Graph

Architecture

Introduction

DESPEx

Conclusion

Context

A motivating example

Abstract Model

FIFO scheduling (non preemptive)

Question:

What is the maximal response time of the job?
Abstract Model

- FIFO scheduling (non preemptive)
Abstract Model

- FIFO scheduling (non preemptive)
- Question:
 - What is the maximal response time of the job?
Corner-Case Analysis

- Naively, to get the maximal response time, one might do an analysis based on *worst-case execution time* for all tasks.
Corner-Case Analysis

- Naively, to get the maximal response time, one might do an analysis based on *worst-case execution time* for all tasks.

Analysis gives a response time of 19 timeunits
Reachability Analysis with Uncertainty

We use now timed automata reachability analysis:

- Explore all possible behaviors.
- Retrieve the execution trace leading to the worst response time.
Reachability Analysis with Uncertainty

We use now timed automata reachability analysis:

- Explore all possible behaviors.
- Retrieve the execution trace leading to the worst response time.

Analysis gives a response time of 23 timeunits
Explanations

B1 takes less time \Rightarrow A4 start before A3 (on critical path).
Quantitative Estimation

Uncertainty plays also an important role when we care more about the **average performance**
Quantitative Estimation

Uncertainty plays also an important role when we care more about the **average performance**

- Assumption: execution times are distributed uniformly.
Quantitative Estimation

Uncertainty plays also an important role when we care more about the **average performance**

- Assumption: execution times are distributed uniformly.

With simulation we get more quantitative information:

![Histogram of simulation results with mean 16.82](image-url)
Motivation for combining formal and informal methods

- Analysis based on deterministic values (lower and upper) might give incorrect bounds on the global response time.
Motivation for combining formal and informal methods

- Analysis based on deterministic values (lower and upper) might give incorrect bounds on the global response time.
- Timed automata reachability analysis gives us correct bounds but no quantitative information.
Motivation for combining formal and informal methods

- Analysis based on deterministic values (lower and upper) might give incorrect bounds on the global response time.
- Timed automata reachability analysis gives us correct bounds but no quantitative information.
- Stochastic simulation does not catch tight bounds but gives more quantitative information about average performance.
Motivation for combining formal and informal methods

- Analysis based on deterministic values (lower and upper) might give incorrect bounds on the global response time.
- Timed automata reachability analysis gives us correct bounds but no quantitative information.
- Stochastic simulation does not catch tight bounds but gives more quantitative information about average performance.

![Histogram showing values distribution]

- mean = 16.82
Introduction

Context

A motivating example

DeSpEx

Overview

DeSpEx: The Tool

Case Study

Conclusion
DeSpEx
A framework for high level modeling and analysis

- Provide HW/SW designers with a framework for rapid design space exploration
- High level language for model description
- Formal semantics provided by *timed automata*
- Performance evaluation using formal methods and stochastic simulation
Framework Overview

Translation to timed automata

Model Description

Mapping/Scheduling

Application Architecture

Analysis
Reachability Analysis Property Verification

Simulation
Statistical Analysis Trace Visualization Power consumption
Model overview

Application

Transfer Task

Task

Task

Task

Task

Data

Transfer Task

Data

Architecture

Processor

Processor

DMA

Bus

Memory

Memory

Bus

Job 1

Job ...

Job n
Model overview
Model overview
Model overview
Evaluation

- The aim of this modeling framework is to provide design space exploration for **performance evaluation**
Evaluation

- The aim of this modeling framework is to provide design space exploration for **performance evaluation**
- For each component we generate a corresponding timed automaton model
Evaluation

- The aim of this modeling framework is to provide design space exploration for performance evaluation.
- For each component we generate a corresponding timed automaton model.
- The composition of all automata yields a global timed automaton which captures the semantics of the system.
Evaluation

▶ The aim of this modeling framework is to provide design space exploration for **performance evaluation**

▶ For each component we generate a corresponding timed automaton model

▶ The composition of all automata yields a global timed automaton which captures the semantics of the system

▶ All our analysis methods are based on a **unified semantic model** provided by timed automata
Introduction

Context
A motivating example

DeSpEx
Overview
DeSpEx: The Tool
Case Study

Conclusion
Tool Overview
DeSpEx: Graphical Model Editor
DeSpEx: Graphical Model Editor
Architecture inspired by P2012 platform
DeSpEx: Graphical Model Editor
Architecture inspired by Cell platform
DeSpEx: Simulation and Trace Visualization
DeSpEx: Trace Visualization (Gantt Chart)
Performance Evaluation

Reachability Analysis

- Check whether some properties are satisfied or not
- In case of property violation generates an error trace, viewable with the GUI
Performance Evaluation

Reachability Analysis

- Check whether some properties are satisfied or not
- In case of property violation generates an error trace, viewable with the GUI

Stochastic Simulation

- Depending on the size of the model it may be difficult (sometimes impossible) to perform reachability analysis
- Timed automata are used to perform discrete event simulation:
 - Semantic model is the same as for reachability analysis
 - Randomized reachability exploration
 - We restrict ourself to bounded uncertainty
Performance Evaluation

Trace Analysis

- Stochastic simulation generates timed traces
- We can retrieve quantitative information with trace analysis:
 - Response time distribution of job
Performance Evaluation

Trace Analysis

- Stochastic simulation generates timed traces
- We can retrieve quantitative informations with trace analysis:
 - Response time distribution of job
 - Power consumption estimation

![Graph of Stochastic simulation traces]
Introduction

Context

A motivating example

DeSpEX

Overview

DeSpEx: The Tool

Case Study

Conclusion
Case Study

Video Processing on P2012

Goal

- Demonstrate how DeSpEx can be used to solve realistic problems in design space exploration
Case Study
Video Processing on P2012

Goal

- Demonstrate how DeSpEx can be used to solve realistic problems in design space exploration
- Quantify the performance differences between different design choices
Case Study
Video Processing on P2012

Goal

- Demonstrate how DeSpEx can be used to solve realistic problems in design space exploration
- Quantify the performance differences between different design choices
- Represent available cost/performance trade-offs.
Video Processing on P2012

Architecture Abstraction

- P2012 is a many-core computing fabric based on multiple clusters
- We restrict our models to one cluster
Video Processing on P2012

Application

- Augmented reality application called FAST (Features from Accelerated Segment Test)
- Corner detection method
- Algorithm consists in computing the detection on a chunk of an image

Algorithm

```plaintext
ForEach A[i][j]
  Do
    B[i][j]:= compute(A[i][j])
  EndDo
```
Video Processing on P2012

From an architectural point of view:

- The image resides initially in the off-chip memory
- Needs to be brought to local memory
- Then dispatched to processors for execution

Constraints:

- The whole image does not fit into the local memory
- Several alternatives for its splitting and transfer to local memories
Video Processing on P2012

At early design stage:

- no physical platform
- no complete implementation
Video Processing on P2012

At early design stage:
- no physical platform
- no complete implementation

Compare different design alternatives with DeSpEx
- How many processors should we use? 1, 2, 4, 8 or 16
- At which processor frequency? 200, 400 or 600 MHz
Video Processing on P2012

At early design stage:
- no physical platform
- no complete implementation

Compare different design alternatives with DeSpEx
- How many processors should we use? 1, 2, 4, 8 or 16
- At which processor frequency? 200, 400 or 600 MHz

Depends on different criteria for processing an image:
- Response time
Video Processing on P2012

At early design stage:

- no physical platform
- no complete implementation

Compare different design alternatives with DeSpEx

- How many processors should we use? 1, 2, 4, 8, or 16
- At which processor frequency? **200**, 400, or 600 MHz

Depends on different criteria for processing an image:

- Response time
- Power consumption of the platform
Video Processing on P2012: Evaluation
Worst-Case vs Statistics

- Compare results from simulation and reachability analysis:

Response time of processing one image.

- Bands treatment
- 4 processors (600 MHz)
Video Processing on P2012: Evaluation

Power Consumption

We compare different configuration of the platform to get the trade-offs between response time and power consumption.
Video Processing on P2012: Evaluation

Power Consumption

We compare different configuration of the platform to get the trade-offs between response time and power consumption.
Introduction
 Context
 A motivating example

DeSpEx
 Overview
 DeSpEx: The Tool
 Case Study

Conclusion
Conclusion and future work

- We provide a tool-supported framework for Design-Space Exploration based on abstract model
- The framework and analysis techniques have been implemented into an extensible toolset: DeSpEx

Future work:
- Enrich the component library
- Integration with other formalism such as Synchronous Data-Flow
- Integration of a module for piecewise analytic computation of expected performance
Conclusion and future work

- We provide a tool-supported framework for Design-Space Exploration based on abstract model
- The framework and analysis techniques have been implemented into an extensible toolset: DeSpEx

Future work:

- Enrich the component library
- Integration with other formalism such as Synchronous Data-Flow
- Integration of a module for piecewise analytic computation of expected performance
Conclusion and future work

- We provide a tool-supported framework for Design-Space Exploration based on abstract model
- The framework and analysis techniques have been implemented into an extensible toolset: DeSpEx

Future work:

- Enrich the component library
- Integration with other formalism such as Synchronous Data-Flow
- Integration of a module for piecewise analytic computation of expected performance

Thank you for your attention