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Summary

» We propose a computer-aided methodology to help analyzing
certain biological models

» Domain of applicability: biochemical reactions modeled as
differential equations. State variables denote
concentrations

» We propose reachability computation, a kind of set-based
simulation, that may replace uncountably-many simulations

» The continuous analogue of algorithmic verification
(model-checking), emerged from more than a decade of
research on hybrid systems

» Since this is not part of the local culture, we first introduce the
domain and only later move to the contribution of this paper



Outline

» Under-determined dynamical models and their biological
relevance

» Continuous dynamical systems and abstract reahcability

» Effective representation of sets and concrete algorithms for
linear systems

» Treating nonlinear systems via hybridization
» Dynamic hybridization: idea and preliminary results

» Conclusions



Dynamical Models with Nondeterminism

» Dynamical system: state space X and a rule x' = f(x, v)

v
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The next state as a function of the current state and some
external influence (or unknown parameters) v € V

In discrete domains: a transition system with input (alphabet)
System becomes nondeterministic if input is projected away
Given initial state, many possible evolutions (“runs”)
Simulation: picking one input and generating one behavior

Symbolic verification: magically computing all runs in
parallel

Reachability computation: adapting these ideas to systems
defined by differential equations or hybrid automata
(differential equations with mode switching)



Why Bother?

» Differential models of biochemical reactions are very imprecise
for many reasons:

» They are obtained by measuring populations, not individuals

» Kinetic parameters are based on isolated experiments not
always under same conditions

» Etc.

» It is nice to match an experimentally-observed behavior by a
deterministic model, but can we do better?

» After all, biological systems are supposed to be robust under
variations in environmental conditions and parameters

» Showing that all trajectories corresponding to a range of
parameters exhibit the same qualitative behavior is much
stronger



Preliminary Definitions and Notations

» A time domain T = R, state space X C R”, input space
vV CR™

» Trajectory: partial function £ : T — X, Input signal:
¢ : T — V both defined over an interval [0,t] C T

» A continuous dynamical system S = (X, V,f)

» Trajectory £ with endpoints x and x’ is the response of S to
input signal C if

> ¢ is the solution of x = f(x, v) for initial condition x and
v(:) = ¢, denoted by x S
> R(x,(,t) = {x'} denote the fact that x’ is reachable from x

by ¢ within t time, that is, x & 0 and Il =1¢l=t



Reachability

> R(x,(,t) = {x'} speaks of one initial state, one input signal
and one time instant

» Generalizing to a set Xp of initial states, to all time instants
in an interval / = [0, t] and all admissible input signals:

rioo = U UURe

x€Xo tel ¢

» Depth-first vs. breadth-first

UUR(X’Q’ t) = UUR(X7§> t)

¢ tel tel ¢



Abstract Reachability Algorithm

» The reachability operator satisfies the semigroup property:

R[O,t1+t2] (XO) = R[O,t2](R[0,t1] (XO))

» We can choose a time step r and apply the following iterative
algorithm:

Input: A set Xp C X
Output: Q = R[O,L](XO)

P=Q:=Xp
repeat i =1,2...
P := Rjo,n(P)
Q=QUP
until i = L/r

» Remark: we look at bounded time horizon and do not mind
about reaching a fixpoint



From Abstract to Concrete Algorithms

» The algorithm performs operations on subsets of R" which,
mathematically speaking, can be weird objects

» Like any computational geometry we restrict ourselves to
classes of subsets (boxes, polytopes, ellipsoids, zonotopes)
having nice properties:

» Finite syntactic representation
» Effective decision procedure for membership

» Closure (or approximate closure) under the reachability
operator

» In this talk we use convex polytopes and their finite unions



Convex Polytopes

» Halfspace: all points x satisfying a linear inequality a- x < b

» Convex polyhedron: intersection of finitely many halfspaces;
Polytope: bounded convex polyhedron

» Convex combination of a set of points {xi,...,x;} is any
X = A1x1 + -+ Axg such that S/ N =1
> The convex hull conv(P) of a set P of points is the set of all
convex combinations of elements in P
» Polytope representations:
» Vertices: a polytope P admits a finite minimal set P

(vertices) such that P = conv(P).
» Inequalities: a polytope P admits a canonical set of

halfspaces/inequalities such that P = A\, a' - x < b/



Autonomous (Closed, Deterministic) Linear Systems

» Systems defined by linear differential equations of the form
x = Ax where A is a matrix are the most well-studied
» There is a standard technique to fix a time step r and work in
discrete time, a recurrence equation of the form x;;1 = Ax;
» The image of a set P by the linear transformation A is
AP = {Ax :x € P} (one-step successors)
» It is easy to compute, for example, for polytopes represented
by vertices:
P = conv({xi,...,x;}) = AP = conv({Axi,...,Ax})




Algorithm 1: Discrete-Time Linear Reachability

> Input: A set Xo C X represented as conv(Pp)

> Output: Q = R 1j(Xo) represented as a list
{conv(Py),...,conv(P)}

P=Q:=Fh
repeat i =1,2...
P:= AP

QR =QUP

until i = L

» Complexity assuming |Po| = mg is O(moLM(n)) where M(n)
is the complexity of matrix-vector multiplication in n
dimensions: ~ O(n%)

» Can be applied to other representations of objects closed
under linear transformations



Linear Systems with Input

» Systems define by x;+1 = Ax; + v; where the v;’s range over a
bounded convex set V

» The one-step successor of P is defined as
PP={Ax+v:xePveV}=APaV

» Minkowski sum A@ B={a+b:ac AANb€ b}

» Same algorithm can be applied but the Minkowski sum
increases the number of vertices in every step



Alternative: Pushing Facets

» Over-approximating the reachable set while keeping its
complexity more or less fixed

» Assume P represented as intersection of halfspaces
» For each halfspace H' : a’x < b, let v/ € V be the input
vector which pushes it in the “outermost” way

> Apply Ax + Bv' to H' and the intersection of the pushed
halfspaces over-approximates AP @& V

» The problem: over-approximation errors accumulate (the
“wrapping effect”)



Linear Reachability: State of the Art

» New algorithmics by C. Le Guernic and A. Girard

» Efficient computations: linear transformation applied to fixed
number of points in each iteration

» No accumulation of over-approximation errors

» Initially used zonotopes, a class of sets closed under both
linear operations and Minkowski sum; Can be applied to any
“lazy” representation of the sequence of the computed sets

» Based on the observation that two consecutive sets
P = APb@pAIV@ ARV pV
Pioi = AP g ARV @ ARV g a Vv
share a lot of terms

» Can compute within few minutes the reachable set after 1000
steps for linear systems with 200 (!) state variables



Linear Reachability: Some Credits

» Algorithmic analysis of hybrid systems started with tools like
Kronos and HyTech for timed automata and “linear” hybrid
automata: HenzingerSifakisYovine and
HenzingerHoWongtoi - very simple continuous dynamics,
summarized in ACH*95

» Verifying differential equations: Greenstreet96

» Reachability for linear differential equations and hybrid
systems: ChutinanKrogh99, AsarinBournezDangMaler(00
(polytopes) KurzhanskiVaraiya00, BotchkarevTripakis00
(ellipsoids), MitchellTomlin00 (level sets)

» Pushing faces and treating inputs: DangMaler98, Varaiya98
» Using zonotopes: Girard05
» New algorithmic scheme Girard LeGuernic06-09



The Nonlinear Challenge

» Ok, bravo, but linear systems were studied to death by
everybody. Real interesting models, biological included, are
nonlinear

» What about systems of the form x;11 = f(x;, u;) or even
Xj+1 = f(x;) where f is an arbitrary continuous function, say a
polynomial 7

» Convexity-preservation property of linear maps doesn't hold

» You can make small time steps, use a local linear
approximation and bloat the obtained set to be safe

» This approach will either accumulate large errors or require
expensive computation in every step



Hybridization: Asarin, Dang and Girard 2003

» Take a nonlinear system x;11 = f(x;) and partition the state
space into boxes (linearization domains)

> In each box Xj find a matrix Ag and a convex polytope V,
s.t. f(x) € Agx @ Vg for every x € Xq

> Ag is a local linearization of f with error bounded by V,
» The new dynamicsis  xjy1 € Agx ® Vg, iff x € Xq

» A piecewise-(linear-with-input) systems, a restricted type of a
hybrid automaton, which over-approximate f in terms of
inclusion of trajectories




Hybridization (cont.)

X € Au - x® Vo €A -xs Vi

[ N .

X € A x5 Voo X €A xS Vig

» In the hybrid automaton, x evolves according to the linear
dynamics Agx @ V4 as long as it remains in X,

» Reaching the boundary between X, and X/, it takes a
transition to ¢’ and evolves according to Ay x @ Vi

» Linearization and error are computed only in the passage
between blocks, not in every step

» Quality can be improved by making boxes smaller



Hybrid Reachability

X € Ag - x @ Voo X €A x® Vi

» Compute in one domain a sequences of sets using linear
techniques until a set intersects with a boundary

» Take the intersection as initial set in next domain with the
next linearization

A Az

(a) (b)



Between Theory and Practice

» First problem: intersection may be spread over many steps:

)

(@) ®) ©

» Either explosion or union of intersections, error accumulation

» Major problem: a set may leave a box via many facets:
&

(@) ()

» Splitting is an artifact of the fixed grid imposed on the
system

» Consequently, static hybridization is practically impossible
beyond 3 dimensions



Our Contribution (at Last!)

» A dynamic hybridization scheme not based on a fixed grid

» In this scheme we do not need intersection at all and we allow
the linearization domains to overlap

» When we leave a domain, we backtrack one step and define a
new linearization domain around the previous set and continue
with the new linearized dynamics from there

2

(a) (b)

» And it works!



Example: E. Coli Lac Operon

—2k3R,1? + 2k_3F1 + ks, M — k_sl;M — kol;E
= —2kgR;G? 4 2k_gR, + kol;E

R, = 7—pu*Rs—koR.Of + k_o(x — Of) — ksR,I? + kg R; G2
Of = —kor,Of + kfz(X — Of)

E = vkaOr — ksE

M = vkOf — keM

Ii

G

» We can also do a 9-dimensional highly-nonlinear aging model



Conclusions

» Disclaimer: we do not bring any new biological insight on any
concrete system at this point

» Qur goal is to develop tools, as general-purpose as possible,
that can aid in the analysis of many non-trivial systems

» Problem specificity cannot be avoided of course: it will
come up at the particular modeling and exploration phases
» Current version is a prototype:
» Fixed-size boxes as linearizarization domains and other
heuristics. Can be improved in efficiency and accuracy;
> It is based on the old algorithmics for linear systems;
» Improving all these aspects is on our immediate agenda
» We also explore alternative approaches for parameter synthesis
based on simulation and sensitivity analysis Donze et al09

» Methodological aspects of the use of such tools in the
biological context should be worked out



Thank You



