Computing Reachable States for Nonlinear Biological Models

Thao Dang Colas Le Guernic Oded Maler
CNRS - VERIMAG
Grenoble, France

2009

Summary

- We propose a computer-aided methodology to help analyzing certain biological models
- Domain of applicability: biochemical reactions modeled as differential equations. State variables denote concentrations
- We propose reachability computation, a kind of set-based simulation, that may replace uncountably-many simulations
- The continuous analogue of algorithmic verification (model-checking), emerged from more than a decade of research on hybrid systems
- Since this is not part of the local culture, we first introduce the domain and only later move to the contribution of this paper

Outline

- Under-determined dynamical models and their biological relevance
- Continuous dynamical systems and abstract reahcability
- Effective representation of sets and concrete algorithms for linear systems
- Treating nonlinear systems via hybridization
- Dynamic hybridization: idea and preliminary results
- Conclusions

Dynamical Models with Nondeterminism

- Dynamical system: state space X and a rule $x^{\prime}=f(x, v)$
- The next state as a function of the current state and some external influence (or unknown parameters) $v \in V$
- In discrete domains: a transition system with input (alphabet)
- System becomes nondeterministic if input is projected away
- Given initial state, many possible evolutions ("runs")
- Simulation: picking one input and generating one behavior
- Symbolic verification: magically computing all runs in parallel
- Reachability computation: adapting these ideas to systems defined by differential equations or hybrid automata (differential equations with mode switching)

Why Bother?

- Differential models of biochemical reactions are very imprecise for many reasons:
- They are obtained by measuring populations, not individuals
- Kinetic parameters are based on isolated experiments not always under same conditions
- Etc.
- It is nice to match an experimentally-observed behavior by a deterministic model, but can we do better?
- After all, biological systems are supposed to be robust under variations in environmental conditions and parameters
- Showing that all trajectories corresponding to a range of parameters exhibit the same qualitative behavior is much stronger

Preliminary Definitions and Notations

- A time domain $T=\mathbb{R}_{+}$, state space $X \subseteq \mathbb{R}^{n}$, input space $V \subseteq \mathbb{R}^{m}$
- Trajectory: partial function $\xi: T \rightarrow X$, Input signal: $\zeta: T \rightarrow V$ both defined over an interval $[0, t] \subset T$
- A continuous dynamical system $S=(X, V, f)$
- Trajectory ξ with endpoints x and x^{\prime} is the response of S to input signal ζ if
- ξ is the solution of $\dot{x}=f(x, v)$ for initial condition x and $v(\cdot)=\zeta$, denoted by $x \xrightarrow{\zeta / \xi} x^{\prime}$
- $R(x, \zeta, t)=\left\{x^{\prime}\right\}$ denote the fact that x^{\prime} is reachable from x by ζ within t time, that is, $x \xrightarrow{\zeta / \xi} x^{\prime}$ and $|\zeta|=|\xi|=t$

Reachability

- $R(x, \zeta, t)=\left\{x^{\prime}\right\}$ speaks of one initial state, one input signal and one time instant
- Generalizing to a set X_{0} of initial states, to all time instants in an interval $I=[0, t]$ and all admissible input signals:

$$
R_{l}\left(X_{0}\right)=\bigcup_{x \in X_{0}} \bigcup_{t \in I} \bigcup_{\zeta} R(x, \zeta, t)
$$

- Depth-first vs. breadth-first

$$
\bigcup_{\zeta} \bigcup_{t \in I} R(x, \zeta, t)=\bigcup_{t \in I} \bigcup_{\zeta} R(x, \zeta, t)
$$

Abstract Reachability Algorithm

- The reachability operator satisfies the semigroup property:

$$
R_{\left[0, t_{1}+t_{2}\right]}\left(X_{0}\right)=R_{\left[0, t_{2}\right]}\left(R_{\left[0, t_{1}\right]}\left(X_{0}\right)\right)
$$

- We can choose a time step r and apply the following iterative algorithm:

Input: A set $X_{0} \subset X$
Output: $Q=R_{[0, L]}\left(X_{0}\right)$

$$
\begin{gathered}
P:=Q:=X_{0} \\
\text { repeat } i=1,2 \ldots \\
P:=R_{[0, r]}(P) \\
Q:=Q \cup P
\end{gathered}
$$

until $i=L / r$

- Remark: we look at bounded time horizon and do not mind about reaching a fixpoint

From Abstract to Concrete Algorithms

- The algorithm performs operations on subsets of \mathbb{R}^{n} which, mathematically speaking, can be weird objects
- Like any computational geometry we restrict ourselves to classes of subsets (boxes, polytopes, ellipsoids, zonotopes) having nice properties:
- Finite syntactic representation
- Effective decision procedure for membership
- Closure (or approximate closure) under the reachability operator
- In this talk we use convex polytopes and their finite unions

Convex Polytopes

- Halfspace: all points x satisfying a linear inequality $a \cdot x \leq b$
- Convex polyhedron: intersection of finitely many halfspaces; Polytope: bounded convex polyhedron
- Convex combination of a set of points $\left\{x_{1}, \ldots, x_{l}\right\}$ is any $x=\lambda_{1} x_{1}+\cdots+\lambda_{l} x_{l}$ such that $\sum_{i=1}^{l} \lambda_{i}=1$
- The convex hull $\operatorname{conv}(\tilde{P})$ of a set \tilde{P} of points is the set of all convex combinations of elements in \tilde{P}
- Polytope representations:
- Vertices: a polytope P admits a finite minimal set \tilde{P} (vertices) such that $P=\operatorname{conv}(\tilde{P})$.
- Inequalities: a polytope P admits a canonical set of halfspaces/inequalities such that $P=\bigwedge_{i=1}^{k} a^{i} \cdot x \leq b^{i}$

Autonomous (Closed, Deterministic) Linear Systems

- Systems defined by linear differential equations of the form $\dot{x}=A x$ where A is a matrix are the most well-studied
- There is a standard technique to fix a time step r and work in discrete time, a recurrence equation of the form $x_{i+1}=A x_{i}$
- The image of a set P by the linear transformation A is $A P=\{A x: x \in P\} \quad$ (one-step successors)
- It is easy to compute, for example, for polytopes represented by vertices:
$P=\operatorname{conv}\left(\left\{x_{1}, \ldots, x_{l}\right\}\right) \Rightarrow A P=\operatorname{conv}\left(\left\{A x_{1}, \ldots, A x_{l}\right\}\right)$

Algorithm 1: Discrete-Time Linear Reachability

- Input: A set $X_{0} \subset X$ represented as $\operatorname{conv}\left(\tilde{P}_{0}\right)$
- Output: $Q=R_{[0 . . L]}\left(X_{0}\right)$ represented as a list $\left\{\operatorname{conv}\left(\tilde{P}_{0}\right), \ldots, \operatorname{conv}\left(\tilde{P}_{L}\right)\right\}$

$$
\begin{aligned}
& P:=Q:=\tilde{P}_{0} \\
& \text { repeat } i=1,2 \ldots \\
& P:=A P \\
& Q:=Q \cup P \\
& \text { until } i=L
\end{aligned}
$$

- Complexity assuming $\left|\tilde{P}_{0}\right|=m_{0}$ is $O\left(m_{0} L M(n)\right)$ where $M(n)$ is the complexity of matrix-vector multiplication in n dimensions: $\sim O\left(n^{3}\right)$
- Can be applied to other representations of objects closed under linear transformations

Linear Systems with Input

- Systems define by $x_{i+1}=A x_{i}+v_{i}$ where the v_{i} 's range over a bounded convex set V
- The one-step successor of P is defined as

$$
P^{\prime}=\{A x+v: x \in P, v \in V\}=A P \oplus V
$$

- Minkowski sum $A \oplus B=\{a+b: a \in A \wedge b \in b\}$
- Same algorithm can be applied but the Minkowski sum increases the number of vertices in every step

Alternative: Pushing Facets

- Over-approximating the reachable set while keeping its complexity more or less fixed
- Assume P represented as intersection of halfspaces
- For each halfspace $H^{i}: a^{i} x \leq b^{i}$, let $v^{i} \in V$ be the input vector which pushes it in the "outermost" way
- Apply $A x+B v^{i}$ to H^{i} and the intersection of the pushed halfspaces over-approximates $A P \oplus V$

- The problem: over-approximation errors accumulate (the "wrapping effect")

Linear Reachability: State of the Art

- New algorithmics by C. Le Guernic and A. Girard
- Efficient computations: linear transformation applied to fixed number of points in each iteration
- No accumulation of over-approximation errors
- Initially used zonotopes, a class of sets closed under both linear operations and Minkowski sum; Can be applied to any "lazy" representation of the sequence of the computed sets
- Based on the observation that two consecutive sets

$$
\begin{aligned}
& P_{k}=A^{k} P_{0} \oplus A^{k-1} V \oplus A^{k-2} V \oplus \ldots \oplus V \\
& P_{k+1}=A^{k+1} P_{0} \oplus A^{k} V \oplus A^{k-1} V \oplus \ldots \oplus V
\end{aligned}
$$

share a lot of terms

- Can compute within few minutes the reachable set after 1000 steps for linear systems with 200 (!) state variables

Linear Reachability: Some Credits

- Algorithmic analysis of hybrid systems started with tools like Kronos and HyTech for timed automata and "linear" hybrid automata: HenzingerSifakisYovine and HenzingerHoWongtoi - very simple continuous dynamics, summarized in $\mathbf{A C H}{ }^{+} \mathbf{9 5}$
- Verifying differential equations: Greenstreet96
- Reachability for linear differential equations and hybrid systems: ChutinanKrogh99, AsarinBournezDangMaler00 (polytopes) KurzhanskiVaraiya00, BotchkarevTripakis00 (ellipsoids), MitchellTomlin00 (level sets)
- Pushing faces and treating inputs: DangMaler98, Varaiya98
- Using zonotopes: Girard05
- New algorithmic scheme Girard LeGuernic06-09

The Nonlinear Challenge

- Ok, bravo, but linear systems were studied to death by everybody. Real interesting models, biological included, are nonlinear
- What about systems of the form $x_{i+1}=f\left(x_{i}, u_{i}\right)$ or even $x_{i+1}=f\left(x_{i}\right)$ where f is an arbitrary continuous function, say a polynomial ?
- Convexity-preservation property of linear maps doesn't hold
- You can make small time steps, use a local linear approximation and bloat the obtained set to be safe
- This approach will either accumulate large errors or require expensive computation in every step

Hybridization: Asarin, Dang and Girard 2003

- Take a nonlinear system $x_{i+1}=f\left(x_{i}\right)$ and partition the state space into boxes (linearization domains)
- In each box X_{q} find a matrix A_{q} and a convex polytope V_{q} s.t. $f(x) \in A_{q} x \oplus V_{q}$ for every $x \in X_{q}$
- A_{q} is a local linearization of f with error bounded by V_{q}
- The new dynamics is $x_{i+1} \in A_{q} x \oplus V_{q}$ iff $x \in X_{q}$
- A piecewise-(linear-with-input) systems, a restricted type of a hybrid automaton, which over-approximate f in terms of inclusion of trajectories

Hybridization (cont.)

- In the hybrid automaton, x evolves according to the linear dynamics $A_{q} x \oplus V_{q}$ as long as it remains in X_{q}
- Reaching the boundary between X_{q} and $X_{q^{\prime}}$, it takes a transition to q^{\prime} and evolves according to $A_{q^{\prime}} x \oplus V_{q^{\prime}}$
- Linearization and error are computed only in the passage between blocks, not in every step
- Quality can be improved by making boxes smaller

Hybrid Reachability

- Compute in one domain a sequences of sets using linear techniques until a set intersects with a boundary
- Take the intersection as initial set in next domain with the next linearization

(a)

(b)

Between Theory and Practice

- First problem: intersection may be spread over many steps:

(a)

(b)

(c)
- Either explosion or union of intersections, error accumulation
- Major problem: a set may leave a box via many facets:

(a)

(b)
- Splitting is an artifact of the fixed grid imposed on the system
- Consequently, static hybridization is practically impossible beyond 3 dimensions

Our Contribution (at Last!)

- A dynamic hybridization scheme not based on a fixed grid
- In this scheme we do not need intersection at all and we allow the linearization domains to overlap
- When we leave a domain, we backtrack one step and define a new linearization domain around the previous set and continue with the new linearized dynamics from there

(a)

(b)
- And it works!

Example: E. Coli Lac Operon

$$
\begin{aligned}
\dot{R}_{a} & =\tau-\mu * R_{a}-k_{2} R_{a} O_{f}+k_{-2}\left(\chi-O_{f}\right)-k_{3} R_{a} I_{i}^{2}+k_{8} R_{i} G^{2} \\
\dot{O}_{f} & =-k_{2} r_{a} O_{f}+k_{-2}\left(\chi-O_{f}\right) \\
\dot{E} & =\nu k_{4} O_{f}-k_{7} E \\
\dot{M} & =\nu k_{4} O_{f}-k_{6} M \\
\dot{I}_{i} & =-2 k_{3} R_{a} l_{i}^{2}+2 k_{-3} F_{1}+k_{5} I_{r} M-k_{-5} l_{i} M-k_{9} l_{i} E \\
\dot{G} & =-2 k_{8} R_{i} G^{2}+2 k_{-8} R_{a}+k_{9} I_{i} E
\end{aligned}
$$

- We can also do a 9-dimensional highly-nonlinear aging model

Conclusions

- Disclaimer: we do not bring any new biological insight on any concrete system at this point
- Our goal is to develop tools, as general-purpose as possible, that can aid in the analysis of many non-trivial systems
- Problem specificity cannot be avoided of course: it will come up at the particular modeling and exploration phases
- Current version is a prototype:
- Fixed-size boxes as linearizarization domains and other heuristics. Can be improved in efficiency and accuracy;
- It is based on the old algorithmics for linear systems;
- Improving all these aspects is on our immediate agenda
- We also explore alternative approaches for parameter synthesis based on simulation and sensitivity analysis Donze et al09
- Methodological aspects of the use of such tools in the biological context should be worked out

Thank You

