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1. Context: system design and mathematical models

2. Example: how to have a free coffee

3. Major issues in discrete verification

4. New challenges: Timed and Hybrid systems
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Context

We want to build something (a “system”) that works.

The system should achieve some of our goals, it should make parts of our
world behave in certain way.

We want to build a “good” system that works, not a bad one that fails.

Examples:

• a house • a car, an airplane, a ship
• a micro-processor • a mobile phone
• a web server • a football team
• a political system • a chemical plant
• a railway network • . . .

2



Control from Computer Science Oded Maler

Major Issues

1) What we want the system to do? How do we specify it?

2) How to design it correctly?

3) How to build it physically?

4) How to check whether it works?

5) How to operate and maintain it?

Some of these points are very important also as part of the legal contracts
between the provider of the system, sub-contractors and customers: how
can we claim in “objective” and observable terms that a product that we have
bought does not work properly? Of course, there is a limit to formalisation
and human judges are unavoidable.
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Example: Building a House
Trial and Error

What do we want from a house? Many things (aesthetics, isolation,
functioning of sub-systems, ...)

In particular: we want it not to crash under certain loads.

An old-fashioned way to achieve it: build and see (trial and error).
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Building a house - using a Model

Based on physical laws and experiments we can build a model and use it to
predict the behavior (Gedanken experiments).

b
h

P

l

Maximal bending moment on a beam of length l under a load P is p · l/4
Module of resistance of a beam with b × h section is b · h2/6
. . .
Finally we can predict whether or not the beam will support the load.

5



Control from Computer Science Oded Maler

Example: Air-Conditioning

Inside Temperature Electricity ConsumptionOutside Temperature

heat off cool

???

T < T4

T > T3

T < T2

T > T1

Can we show that the temperature is always maintained in a desired range
with some bounded cost? For all external disturbances?
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Model-based System Design

World

Formal Model

Analysis Design

Abstract Controller

Experiments

Thinking

Implementation

OI

Controller
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Example: The Coffee Machine

We want to build a machine that gets coins and delivers coffee or tea

Physics-Information

Information
Processing

ButtonsCoins

Coins Drinks
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The Coffee Machine: Signals

M1
5

4

6

M2
drink-ready

st-tea
st-coffee

3

2

1

coin-in

cancel

coin-out

7

8

9

req-coffee
req-tea

reset

ok

done

Port From→To Event types Meaning
1 E → M1 coin-in a coin was inserted
2 E → M1 cancel cancel button pressed
3 M1 → E coin-out release the coin
4 M1 → M2 ok sufficient money inserted
5 M1 → M2 reset money returned to user
6 M2 → M1 done drink distribution ended
7 E → M2 req-coffee coffee button pressed

req-tea tea button pressed
8 E → M2 drink-ready drink preparation ended
9 M2 → E st-coffee start preparing coffee

st-tea start preparing tea
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The Two Sub-Machines

done/
0 1

coin-in/ ok

cancel/coin-out, reset

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

req-coffee/st-coffee

req-tea/st-tea

M2M1
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The Global Model

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

Normal behaviors:

0A coin-in 1B cancel coin-out 0A

0A coin-in 1B req-coffee st-coffee 1C drink-ready 0A
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It can be much more Complex

Various means of payment: combinations of coins, notes, credit cards (which
require a module for communication with banks).

A wider variety of drinks with choices of milk, sugar, grinding, etc.

Consider now a big factory with thousands of components and
communication channels.

When you build a large and complex system with many interacting
components the number of global states is roughly the product of the number
of states of the components (exponential growth).

It is practically impossible to predict all the possible behaviors (scenarios) of
the system.
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An Unexpected Behavior

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

0A coin-in 1B req-coffee st-coffee 1C cancel coin-out 0C drink-ready 0A
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Fixing the Bug

M1

0 1

coin-in/ ok

2

lock/

cancel/coin-out, reset

done/

drink-ready/done

drink-ready/done

A

C

B

D

reset/

req-coffee/st-coffee,lock

req-tea/st-tea,lock

M2

ok/
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Fixing the Bug – the Global Model

0A 1B

drink-ready/

2C

2D

coin-in/

cancel/coin-out req-tea/st-tea

req-coffee/st-coffee

drink-ready/
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The Moral of the Story I

1) Many systems can be modeled as a composition of interacting
automata (transition systems, discrete event systems).

2) Potential behaviors of the system correspond to paths in the global
transition graph of the system.

3) These paths are labeled by input events . Each input sequence might
generate a different behavior .

4) We want to make sure that a system responds correctly to all conceivable
inputs.
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The Moral of the Story II

5) For every individual input sequence we can simulate the reaction of the
system. But we cannot do it exhaustively due to the huge number of input
sequences.

6) Verification is a collection of automatic and semi-automatic methods to
analyze all the paths in the graph.

7) This is hard for humans to do and even for computers.
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The Ingredients of a Verification Methodology

A Specification Language:
A formalism for describing the desired properties of the system. In other
words a criterion for classifying event sequences as good and bad (e.g.
Temporal Logic).

A Computational Model:
A formalism for describing the designed system (automata, transition
systems).

A Verification Technique:
A method to show that the system satisfies the desired properties, i.e. all the
behaviors generated by the system are those accepted by the specification
(deductive and algorithmic approaches).
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Specification Languages

How to specify in a rigorous and precise manner what are the desired
properties of the system.

Temporal Logic is a formalism in which you can express properties of
sequence of events, especially about the order of their occurrences.

If a customer puts the right amount of money and chooses a drink then he
will later get the chosen drink.

If a customer selects a drink and the process has started the cancelbutton
is ignored.

If the customer has put money and 30 seconds have passed before a drink is
selected, the money is given back.
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The Deductive Approach to Verification

Formalization of Human Reasoning:

IF req-coffeecauses a lockmessage from M1 to M2 before st-coffee
AND a lockmessage makes M1 move to state 2
AND in state 2, M2 ignores cancelmessages

THEN it is impossible to get a free coffee.

In order to show correctness of the system we have to prove many many
small and boring theorems.

Here the computer and the human cooperate in the verification process. The
human (who has intuition about the system) suggests proof directions and
the computer checks, does the book-keeping, etc.
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The Algorithmic Approach to Verification

Brute-force Search

Graph algorithms are applied to the global transition graph of the system in
order to detect bad behaviors (or to prove their absence).

Advantages: you don’t need an intelligent user (an endangered species) – in
principle you just push a button and the computer answers.

Problem: state-explosion – the number of states can be 2100 beyond the
capabilities of the fastest (present and future) computers.

Most of the work: inventing tricks to treat larger problems, e.g. Symbolic
representation of large graphs, compositional reasoning, approximation and
abstraction, combination with deductive methods.
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Model I: Closed Systems

A transition system is S = (X, δ) where X is finite and δ : X → X is the
transition function.

The state-space X has no numerical meaning and no interesting structure.

Xk is the set of all sequences of length k; X∗ the set of all sequences.

Behavior: The behavior of S starting from an initial state x0 ∈ X, is

ξ = ξ[0], ξ[1], . . . ∈ X∗

s.t. ξ[0] = x0 and for every i, ξ[i + 1] = δ(ξ[i])

Basic Reachability Problem: Given x0 and a set P ⊆ X, does the behavior of
S starting at x0 reach P?
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Solution by Forward Simulation

ξ[0]:=x0

F 0 := {x0}
repeat
ξ[k + 1]:=δ(ξ[k])
F k+1 := F k ∪ {ξ[i + 1]}

until F k+1 = F k

F∗:=F k

x1

x2

x3

x4

x5

{x1}, {x1, x2}, {x1, x2, x3}, {x1, x2, x3, x5}

How to do it for continuous system defined by ẋ = f(x) ?
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Model II: Systems with One Input
A one-input transition system is S = (X,V, δ) where X and V are finite and
δ : X × V → X is the transition function.

Behavior Induced by Input: Given an input sequence ψ ∈ V ∗, the behavior of
S starting from x0 ∈ X in the presence of ψ is a sequence

ξ(ψ) = ξ[0], ξ[1], . . . ∈ X∗ such that ξ[i + 1] = δ(ξ[i], ψ[i]).
v1

v2

v2
v1

v1

v1

v2
v2

x1

x2

x3

x4

x5

v1, v2

x1
v1−→ x2

v2−→ x3
v2−→ x5

v1−→ x2
v1−→ x4
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Reachability for Open Systems

The reachability problem: Is there some input sequence ψ ∈ V ∗ such that
ξ(ψ) reaches P?

For every given ψ we can use the previous algorithm, simulate and obtain
F∗(ψ).

For an automaton with n states all states are reachable by sequences of
length < n.

F∗ =
⋃

ξ∈V n

F∗(ψ)
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Reachability for Open Systems

v1 v2

x4

x5 x5

v2v1

x3

x4 x5

v1 v2

v1 v2

v1 v2 v1 v2

v1 v2

x3

x1

x2 x3 x5x2

x1

x2

x5

There are 2n input sequences to simulate with (and n itself is, typically
exponential in the number of system components).
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A More Efficient Way

Many different input sequences lead to the same state and if δ(x, u) = δ(x, v)
then for every w, δ(x, uw) = δ(x, vw).

We do not need to “simulate” with both uw and vw.

Since we have access to the transition graph (unlike black box) we can apply
graph algorithms.

Immediate successors of a state x: δ(x) = {x′ : ∃u δ(x, u) = x′}

Successors of a set F : δ(F ) = {δ(x) : x ∈ F}
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Forward Reachability (breadth-first)

F 0 := {x0}
repeat
F k+1 := F k ∪ δ(F k)

until F k+1 = F k

F∗:=F k

v1 v2

v1 v2

v1 v2

x3

x5x2

x1

x2

x5

v1 v2

x4

x5 x5

x3 x1

v1 v2

Complexity: only O(n · log n · |V |) {x1}, {x1, x2, x3}, {x1, x2, x3, x4, x5}
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Variation: Depth-First

v1

v1

x3x2

v1 v2

x4

x5 x5

v2v1

x3

x4 x5

v1 v2

x5x2

x5

x1

v2
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Variation: Backwards

Backwards: find all states from which there is an input leading to P .

Immediate predecessorsof a state x:
δ−1(x) = {x′ : ∃u δ(x′, u) = x}

F 0 := P
repeat
F k+1 := F k ∪ δ−1(F k)

until F k+1 = F k

F∗:=F k
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Admissible Inputs

So far we have assumed that the external environment can generate all
sequences in V ∗.

This is as if we modeled the environment as a one-state automaton (the
universal generator).

We can have a more restricted environment, e.g. it will never produce v1v1.

We can build an automaton which models the environment and compose it
with the model of the system.

v1

v2

v2
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Admissible Inputs - the Composition

v1

v2

v2

v1

v2

v2
v1

v1

v1

v2
v2

x1

x2

x3

x4

x5

v1, v2

v1

v2

v2
v1

v1

v2
v2

x1

x2

x3 x5
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Verification: The State-of-the-Art

There are algorithms that take a description of any open system and verify
whether any of the admissible inputs drives the system into a set P . Such
algorithms always terminate after a finite number of steps.

This is essentially what algorithmic verification (“model checking”) is all about.

The result is general: it is valid for every discrete finite-state system. Of
course, finite systems can be very large and special tricks are needed to
verify them.

The analogue for continuous systems: do the same for a system defined by
ẋ = f(x, u).
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Systems with two Inputs

A two-input transition system is S = (X, U, V, δ) where X, U and V are finite
sets and δ : X × U × V → X is the transition function.

Interpretation of inputs:

U : we, the good guys, the controller.

V : they, the bad guys, disturbances.

An antagonist game situation. Our goal is to choose each time an element of
U such that the behaviors induces by all possible disturbances are good.
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Systems with two Inputs

u1 u1 u1

u2

u2

u2

v1

v2

v2

v1 v2

v2

v1

v2

v1 v2

v2

v1

u2

v1

u1

v1, v2

v1

x2

x3 x5

x4x1

δ(x1, u1, v1) = x1 δ(x1, u1, v2) = x2

δ(x1, u2, v1) = x2 δ(x1, u2, v2) = x4
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Strategies

Strategy: a function c : X∗ → U

State strategy: a function c : X → U .

Each strategy c converts a type III system into a type II system Sc = (X, V, δc)
s.t. δc(x, v) = δ(x, c(x), v).

Let S = (X, U, V, δ) let P ⊆ X be a set of “bad” states. The controller
synthesis problem is: find a strategy c such that all the behaviors of the
derived system Sc = (X, V, δc) never reach P .
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Controllable Predecessors

For S = (X, U, V, δ) and F ⊆ X, the set of controllable predecessors of F is

π(F ) = {x : ∃u ∈ U ∀v ∈ V δ(x, u, v) ∈ F}

The states from which the controller, by properly selecting u, can force the
system into P in the next step.
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Finding Winning States and Strategies

The following backward algorithm finds the set F∗ of “winning states” from
which P can be avoided forever.

F 0 := X − P
repeat
F k+1 := F k ∩ π(F k)

until F k+1 = F k

F∗:=F k

Remark: this is similar to the Ramadge-Wonham theory of discrete event
control, dynamic programming, min-max, game algorithms, etc.
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Synthesis Example

u1 u1 u1

u2

u2

v1

v2

v2

v1 v2

v2

v1

v2

v1 v2

v2

v1

u2

v1

u1

v1, v2

v1

x2

x3 x5

x4x1

u2

u1

v1

v2

v1 v2
u1

v1, v2

x2

x3

x1

u2

We want to avoid x5. F 0 = {x1, x2, x3, x4} F 1 = {x1, x2, x3} = F∗

The resulting “closed-loop” system always remains in {x1, x2, x3}.
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Remark: Quality vs. Quantity

Correctness is a special case of the more general notion of a performance
measure: an assignment of a value to each behavior as indication of its
goodness.

One can assign to system behaviors numbers the indicate their “cost” or utility
and then try to synthesize optimal controllers/schedulers.

Traditionally verification is concerned with estimating the worst-case (over all
inputs) for a {0, 1} measures.
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Discrete Infinite-State Systems

So far we have dealt with finite-state systems (“control” but no “data”).

Computer programs can be viewed as syntactic representations of discrete
dynamical systems with an infinite state-space.

repeat
y:=y + 1

until y = 4

State space is the product of the set of program locations and the domains of
the variables: {x1, x2} × Z
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Verification of Infinite-State Systems

x1

x2
4

6 . . .5432. . .y 6= 4/y:=y + 1x1

y = 4

x2

Forward reachability algorithm will terminate if started from (x1, 2) but not
from (x1, 5).

The reachability problem is unsolvable: there is no general algorithm that
solves every instance of it.

“Deductive” approach: prove properties “analytically”. “Symbolic” approach:
reachability using formulae to represent sets of states, e.g. x = x1 ∧ y ≥ 5.
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Hybrid Systems: Modeling the Physical Environment

Most systems are embedded in the physical environemnt via sensors and
actuators.

Sometimes it is sufficient to abstract the dynamics of the environment
using discrete events (the physical part of the coffee machine emits
drink-readysometime after receiving st-coffee).

Sometime we want to estimate the time between the two events. Sometime
we want to look even closer and model how the water temperature changes
over time.

The common models for describing the dynamics of such phenomena are,
alas, continuous and based on formalisms such as differential equations.

A new model is needed for combining discrete and continuous dynamics.
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Hybrid Automata

Automata augmented with continuous variables and differential equations.

ẋ = f1(x) ẋ = f2(x)

Q(x)?

P (x)?

T

x
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Exporting Verification to Continuous (and Hybrid) Systems

Why? ...

Problems: state space R
n, infinite even when bounded, time domain R.

Mathematical R vs. numerical R in the computer.

Reachability for ẋ = f(x): When we have a closed-form solution, e.g. for
ẋ = Ax, the reachable set can be written as F∗ = {x0e

At : t ≥ 0} but how to
test whether F∗ ∩ P = ∅?
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Forward Simulation for Closed Continuous Systems

Forward simulation: discretize time and replace the system with ξ′[(n+1)∆] =
ξ′[n∆] + h(ξ′[n∆], ∆).

P

x0

ξ
ξ′

This is not the “real” thing and it is not guaranteed to converge but that’s life.
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Continuous Systems with Input

Systems of the form ẋ = f(x, v). Admissible inputs are signals of the form
ψ : T → V .

Problem: show that no admissible input drives the system into a set P .

For every ψ we can simulate and “compute” F∗(ψ), but there is no finite subset
of inputs that covers all reachable states.
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The Input Space and its Induced Behaviors

The set of all inputs is a doubly-dense tree , both vertically (time) and
horizontally (V ).

x0 x0
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Incremental Reachability Computation

x
t

−→ x′ denotes the existence of an input signal ψ : [0, t] → V that drives the
system from x to x′ in t time.

Let F be a subset of X and let I be a time interval. The I-successors of F
are all the states that can be reached from F within that time interval, i.e.

δI(F ) = {x′ : ∃x ∈ F ∃t ∈ I x
t

−→ x′}.

Semigroup property:δ[0,r2](δ[0,r1](F )) = δ[0,r1+r2](F ).
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Breadt-first Reachability Computation

F 0 := {x0}
repeat
F k+1 := F k ∪ δ[0,r](F

k)
until F k+1 = F k

F∗:=F k

Two problems:

1) The algorithm is not guaranteed to converge (like for most classes of
infinite-state systems).

2) The operator δ[0,r] is not more computable than δ[0,∞] for most non-trivial
systems.
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Approximate Reachability Computation

Although δ[0,r](F ) cannot be computed exactly, we can over-approximate it by
δ′ such that for every F

δ[0,r](F ) ⊆ δ′[0,r](F )

and δ′[0,r](F ) belongs to some effective sub-class of R
n, e.g. polyhedra.

The result of the algorithm is a set F ′
∗ s.t. F∗ ⊆ F ′

∗ and hence F ′
∗ ∩ P = ∅

implies the correctness of the system.
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Approximate Reachability Computation - Illustration
x0 x0

We have developed a system called d/dt which accepts as input a description
of a continuous or a hybrid system and computes automatically an over-
approximation of the reachable states.
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Conclusions

The “right” model to see what’s going on in a system is a model of a dynamical
system with state-variables, with a dynamics that describes the possible
future evolutions from each state.

Such models generate behaviors, trajectories in the state-space, that can be
evaluated according to correctness or other performance measures.

Within these models we can formulate all sorts of system design problems.

Syntax (logic assertions, programming languages) might be important for
computational considerations, but it should not obscure the underlying
dynamic semantics (as is often the case in AI).
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