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Setting

I Let X be a bounded and partially ordered set, say [0, 1]n

I A subset X of X is upward closed if

∀x , x ′ ∈ X (x ∈ X ∧ x ′ ≥ x)→ x ′ ∈ X

I The complement X = X − X is downward-closed

I Together they form a monotone partition M = (X ,X ) of X
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Learning the Partition from Queries

I We do not have an explicit representation of the boundary

I We can pose queries to a membership oracle that can answer
whether x ∈ X for any x

I Based on this sampling we build an approximation
M ′ = (Y ,Y ) of the partition with Y ⊆ X ,Y ⊆ X

I There is a remaining gap for which we do not know, it is an
over-approximation of the partition boundary
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Motivation I: Multi-Criteria Optimization

I X is the cost space and X are feasible costs (in minimization)

I The boundary is the Pareto front of the problem

I We ask a solver whether some costs are feasible or not and
use the information to construct a approximation of the front
(thesis of Julien Legriel)
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Motivation II: Parametric Identification

I A parameterized family of predicates/constraints {ϕp} where
p is a vector of parameters

I Example: u(t) is real-valued signal that should stabilize below
p2 within p1 time: ∃t < p1 u(t) < p2 or in STL F[0,p1]u < p2

I Find the range of parameters that make ϕp satisfied by a
given u

I Under certain assumptions (no parameter appear in opposite
sides of inequalities) the set can be made upward closed and
the boundary gives the set of tightest parameters
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Binary Search in One Dimension
I In one dimension M = ([0, z), [z , 1]), for some 0 < z < 1
I The boundary can be found/approximated by binary search
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In Higher Dimension

I The intersection of the diagonal of the rectangle with the
boundary can be found by one-dimensional binary search

I Due to monotonicity, the rectangle above y is in X and the
one below it is in X

I The boundary approximation is refined into the union of
incomparable rectangles
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The whole Algorithm

I Maintain a list of rectangles whose union contains the
boundary

I Each time pick one rectangle (the fattest), run binary search
on its diagonal and refine it

I Problem: number of incomparable rectangles is 2n − 2

I Theoretical and empirical complexity under investigation




