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What Not

• New ”results” and theorems

• Description of application or quasi-applications with tables of performance
results

Results and applications are not necessarily pejorative (when done with
moderation) but this is not all you need all the time
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So What Then?

• A unified framework for defining system design problems using dynamic
games. It covers things done under different titles by numerous
communities and disciplines

• An examination of three general classes of methods for finding optimal
strategies

• A sketch of my work on one instance of this scheme, the modeling and
solution of some dynamic scheduling problems
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The Special Theory of Everything

We want to build something (controller) that interacts with some part of the
”real” world (environment) such that the outcome of this interaction will be as
good as possible

Our starting point (which is not self-evident) is that we have a mathematical
model of the dynamics of the environment, including the influence of the
controller’s actions

We want to use this model to choose/compute a good/optimal/satisfactory
controller out of a given class of controllers
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Games

The mathematical model: a two-player dynamic antagonistic game with:

• X - the (neutral) state space of the environment

• U - the set of possible actions of the controller

• V - the set of uncontrolled actions of the environment (uncertainty,
disturbance, imprecise modeling, user requests..)

We want the controller to choose the best u ∈ U in each situation, and to
steer the game in the optimal direction

But what does optimal mean when the outcome is dependent also on the
actions of the other player?
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How to Evalute/Optimize Open Systems

Consider a one-shot game a-la von Neumann and Morgenstern

The outcome be defined as c : U × V → R

c v1 v2

u1 c11 c12

u2 c21 c22

Worst-case: u = argmin max{c(u, v1), c(u, v2)}
Average case: u = argmin p(v1) · c(u, v1) + p(v2) · c(u, v2)
Typical case: u = argmin c(u, v1)

Remark: worst-case criterion ignores performance on other cases, while
average-case takes them into account
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Dynamic Games

Reactive systems, ongoing interaction between controller and environment

State space X and a dynamic rule of the form x′ = f(x, u, v), which
determines the next state as a function of the actions of the two players

In discrete time: xi = f(xi−1, ui, vi)

Differential games: ẋ = f(x, u, v)

There are other more “asynchronous” games

Initial state x0.
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Runs of a Game

A sequence ū = u[1], . . . , u[k] of controller actions and
A sequence v̄ = v[1], . . . , v[k] of environment actions
(no matter how generated) determine a unique trajectory (run, sequence,
behavior)

x̄ = x[0], x[1], . . . , x[k] s.t

x[0] = x0 and
x[t] = f(x[t− 1], u[t], v[t]) ∀t

We say that x̄ is the run of the game induced by ū and v̄ and write it as the
predicate/constraint B(x̄, ū, v̄) or:

x[0]
u[1],v[1]−→ x[1] · · · u[k],v[k]−→ x[k]
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Graphically Speaking

For discrete systems we can draw the game as a graph where every run
corresponds to a (labeled) path
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Treely Speaking

By unfolding the graph into a tree we get an enumeration of all paths
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Defining Optimal Controllers

We want to choose/compute a controller/strategy/policy for choosing u which
is optimal in some sense. The define the sense we need to specify:

• How to assign costs to individual runs

• What class of controllers (with/out feedback, with/out memory)

• How to evaluate over choices of the adversary (worst-case, etc.)
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Assigning Costs to Trajectories

We can associate costs c(x, u, v) with transitions, which reflects the
”goodness” of x′ = f(x, u, v), the cost of the control action u and the
uncontrolled cost of v

We can then “lift” this cost to trajectories either by summation (with/out
discounting):

c(x̄, ū, v̄) =
k∑

t=1

c(x[t], u[t], v[t])

(special case: minimal time/cost to reach a target set F )

or by max:
c(x̄, ū, v̄) = max{c(x[t], u[t], v[t]) : t ∈ 1..k}

(special case: verification of safety properties, avoiding a bad set B)
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Remark: Sub Models

Sub models of the general model are obtained by suppressing one of the
players and considering it deterministic

(X, V )(X, U)

Planning, open-loop Verification of a given controller

(X, U, V )

Game, strategy, synthesis

Single trajectory, simulation

(X)
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Three Generic Solution Methods

• Bounded horizon and finite-dimensional constrained optimization (model-
predictive control, bounded model-checking, SAT-based planning)

• Dynamic Programming (value function, Bellman-Ford, HJBI, MDPs)

• Heuristic Search (best-first, evaluation function, game-playing programs)
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Bounded Horizon Problems

Comparing strategies based on behaviors of fixed length

Justifications:

1) In many problems of “control to target” and “shortest path” all desirable
behaviors reach a goal state after finitely many steps

2) Looking too far in the future is anyway unreliable (model-predictive control)

3) The problem can be reduced to standard finite dimensional optimization
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Bounded Horizon Problems without Adversary

For x′ = f(x, u) we look for a sequence ū = u[1], . . . , u[k] which is the solution
of the constrained optimization problem

min
ū

c(x̄, ū) subject toB(x̄, ū)

Here c(x̄, ū) is the function defining the cost of the run x̄ and the control
actions ū while B(x̄, ū) is the constraint that x̄ is indeed induced by ū (a
conjunction obtained by k-unfolding of the transition function)

For linear dynamics, x′ = Ax + Bu, and linear cost this reduces to linear
programming

In discrete planning this reduces to Boolean satisfiability. The same goes for
verification (bounded model checking)
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Strategy without Adversary = Plan

Without external disturbances, the choice of ū completely determines x̄

The controller “knows” what will be x[t] at every t and the strategy can be
viewed as a plan, a sequence of actions

u[1], . . . , u[k]

to be taken at certain time instants without any feedback from the dynamics
of the environment
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Reintroducing the Adversary

The same problem with adversary, applying the worst-case criterion, is:

minū maxv̄ c(x̄, ū, v̄) subject toB(x̄, ū, v̄)

We can enumerate all the possible control sequences and compute their cost:

u1u1 : max{x5, x6, x9, x10}
u1u2 : max{x7, x8, x11, x12}
· · ·

x5 x6 x7 x8 x9 x10x11 x12 x16x17x18x19x15x14x13

x0

x1 x2 x3 x4

x20

u2u2 u2 u2

v2

u2u1

v1

u1 u1 u1 u1

v1 v2 v1 v2
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Strategies based on Feedback

The resulting sequence is the optimal “open-loop” control achievable. It
ignores information obtained during execution

If max{x5, x6} < max{x7, x8}
but max{x9, x10} > max{x11, x12}

we should apply u1 when x[1] = x1 and u2 when x[1] = x2

x5 x6 x7 x8 x9 x10x11 x12

x0

x1 x2
u2 u2

v2

u1

v1

u1 u1

v1 v2
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Control Strategies

A (state-based) control strategy is a function s : X → U telling the controller
what to do at any reachable state of the game

The following predicate indicates the fact that x̄ is the run of the system
induces by disturbance v̄ and control ū where ū is computed according to
strategy s:

Bs(x̄, ū, v̄) iff B(x̄, ū, v̄) and u[t] = s(x[t− 1]) ∀t

Finding the best strategy s is the following 2nd-order optimization problem:

mins maxv̄ c(x̄, ū, v̄) subject toBs(x̄, ū, v̄)
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Computing Strategies as Restricting the Controller

A strategy removes all but on u transition in the game graph and its tree
unfolding. Computing the optimal strategy is choosing the best V -induced
tree

x0

x1 x2
u2 u2

v2

u2u1

v1

u1 u1

v1 v2

Finding an optimal strategy is typically harder than finding an optimal
sequence. In discrete finite-state systems there are |U ||X| potential strategies
and each of them induces |V |k behaviors of length k.
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Worst Case is not always the Best

One weakness of the worst-case criterion is that two strategies that achieve
the same performance in the worst-case but differ significantly in other cases
are considered as equal

We want something stronger but which is cumbersome to express as a finite
horizon optimization problem due to alternation of ∀ and ∃ (max and min)
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Dynamic Programming

Compute iteratively a strategy which is better than worst-case optimal

It is (worst-case) optimal from any state x ∈ X, not only from x0

The controller does its best wherever it may find itself, not only along the
worst branch
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Value Function

Assume (wlog) that we evaluate trajectories according to the time/cost it takes
to reach a target (and absorbing) set F

∑
t

c(x[t], u[t], v[t]) c(x, u, v) = 0 if x ∈ F

A value function (cost-to-go)
→V: X → R such that

→V (x) is the best (worst-
case) cost achievable by the controller from x. It is defined recursively as

→V (x) = 0 whenx ∈ F
→V (x) = min

u
max

v
(c(x, u, v)+

→V (f(x, u, v)))
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Value Iteration

Compute a monotone sequence
→V0,

→V1, . . . of upper-bounds for
→V until a fixed-

point is reached

→V0 (x) =
{

0 whenx ∈ F
∞ whenx 6∈ F

∀x →Vi+1 (x) = min

{ →Vi (x),
minu maxv(c(x, u, v)+

→Vi (f(x, u, v)))

}

Propagation backwards from F
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Special Cases

Worst-case cheapest path:
→V (x) = minu maxv(c(x, u, v)+

→V (f(x, u, v)))

Average-case cheapest path (MDP):
→V (x) = minu(

∑
v p(x, v) · (c(x, u, v)+

→V (f(x, u, v)))

Synthesis for safety (DEDS):
→V (x) = minu maxv(max{c(x),

→V (f(x, u, v))})
→Vi characterizes the states from which the controller cannot postpone
reaching a forbidden state for more than i steps. Without u it is the standard
backward reachability algorithm
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Properties of Dynamic Programming

Guaranteed to terminate in many cases (finite graphs with non-negative
costs, for example)

In continuous domains
→V is the solution of the HJBI PDE

Derivation of strategies from value functions is straightforward (but
representation in memory is less so)

Polynomial in the size of the transition graph (does NOT help us much due to
curse of compositionality and dimensionality)

Major weakness: it computes
→V over the whole state space, including states

that the strategy avoids
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Forward Search

The equation

→V (x) = min
u

max
v

(c(x, u, v)+
→V (f(x, u, v)))

Can be interpreted as a recursive algorithm for computing
→V (x0), which goes

down recursively and eventually explores all the game graph and computes
→V as does dynamic programming

A straightforward implementation is exponential in the size of the graph (due
to tree unfolding) but it can be made polynomial with memorization of values
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An Exhaustive Search Algorithm
real proc V alue(x)

if x ∈ F then V al := 0
elsif x is an OR state
V al := ∞
forall u ∈ U do
V al′ := c(x, u) + V alue(f(x, u))
V al := min{V al, V al′}

elsif x is an AND state
V al := 0
forall v ∈ V do
V al′ := c(x, v) + V alue(f(x, v))
V al := max{V al, V al′}

return (V al)

28



Optimal Control with Adversaries Oded Maler

The Advantage of Forward Search

Under certain conditions, the forward search algorithm can be transformed
into an adaptive “intelligent” algorithm that attempts to focus on the interesting
parts of the search space

It can find reasonable strategies while exploring only a small fraction of the
game graph

This seems to be the dominant approach in AI and game playing

This is the only hope for fighting the state explosion problem
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Principles of Best-first Search

To implement such a directed search you need:

Compute the cost-to-come
←V (x) as you go down a branch

Have an easy to compute estimation function E(x) which gives an
approximation of

→V (x). This is domain specific

When a state x′ = f(x, u, v) is a candidate for exploration, evaluate it
according to

←V (x) + c(x, u, v) + E(x′)

Explore the most promising branches first (plus sophisticated backtracking
tricks, some randomization, anytime...)

With a proper choice of E you can sometimes find the optimal strategy
without exploring the whole state space, but typically a large part needs to
be explored
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Giving up Exhaustiveness and Optimality

To solve really large problems we need to sacrifice optimality and avoid large
parts (most) of the search space.

The effect of not exploring U branches and V branches are different

Avoiding U branches we may miss the optimal strategy and compromise on
the real value of the game

Avoiding V branches we risk being too optimistic about the value of the
strategy (unacceptable for safety criterion)

Avoiding V branches we may also miss some reachable states and the
strategy remains incomplete - we need to augment it with some default
actions in states in which it is not defined
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Interim Summary

No punch line...

Variants of the same problem are attempted to be solved everywhere

The distribution of solution methods over communities is often a matter of
tradition rather than adequacy

Since the algorithmic scheme is common to a variety of specific instances,
maybe the principles laid down here can serve as a basis for a semi-universal
synthesizer and a systematic study of the structure of game graphs for
different problems
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Application to Continuous and Hybrid Control

What do do when X, U and V are continuous?

One solution is to discretize U and V

Some toy examples:

Search-based verification (with J. Kapinski, B. Krogh and O. Stursberg)

Guiding a vehicle among obstacles (O. Ben Sik Ali)

Finding recovery sequences for power networks (A. Donze and S. Shapero)
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Part II: Application to Scheduling

Principles:

State-space based approach

State: which tasks are waiting, enabled, executing (for how long), terminated

Controller actions: to choose which enabled tasks to start (or to wait)

Adversary actions: arrival of tasks, termination of tasks, evaluation of
conditions, breaking of machines, change in criteria

Conceptual difficulty: not modeled naturally as synchronous games; more
event-triggered than time triggered

Solution: modeling as timed automata = dense time + discrete transitions
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Timed Systems

The model described so far assumes implicitly a “synchronous” time scale,
where something happens every time instant

Some application domains such as scheduling, digital circuit timing analysis,
real-time systems, have a more “asynchronous” nature

Typical behaviors consist of sparse events (starting, ending, rising, falling)
separated by long periods where the only thing that happens is the passage
of time

Timed automata are the natural dynamic model for such systems, on which
controller synthesis can be done
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Synchronous Modeling Style

p1

p2

p3

We can discretize time and have a similar type of a dynamical system where
actions of the controller are ⊥ (do nothing) and sti (start executing pi). The
actions of the environment are ⊥ and eni (terminate pi)

st1−→ p1
⊥−→ p1

⊥−→ p1
⊥,en1−→ ∅ ⊥,−→ ∅ ⊥,st2−→ p2

⊥,st3−→ {p2, p3}

⊥−→ {p2, p3} ⊥−→ {p2, p3} ⊥−→ {p2, p3} ⊥,en3−→ p2
⊥,en2−→ ∅

36



Optimal Control with Adversaries Oded Maler

Asynchronous, Event-Triggered, Timed Style

The time index is not time but the events
p1

p2

p3

st1−→ (p1, 0)
3−→ (p1, 3)

en1−→ ∅ 1−→ (p2, 0)
1−→ (p2, 1)

st3−→ {(p2, 1), (p3, 0)}
4−→ {(p2, 5), (p3, 4)} en2−→ (p2, 5)

1−→ (p2, 6)
en2−→ ∅

Timed automata express processes that alternate between time passage
(without a-priori commitment to a time step) and discrete transitions. Clocks
measure elapsed time since transitions and are part of the state-space
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Example: Deterministic Job-Shop Scheduling

J1 : (m1, 4), (m2, 5) J2 : (m1, 3)

Determine the execution times of the steps/tasks such that:

The termination time of the last step is minimal

Precedence and resource constraints are satisfied

0 4 7 0 3 7 12
J2

J1

J2

m1 m2

m1 m1

m1 m2

9

J1

Sometimes it is better not to start a step although the machine is idle
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Constrained Optimization (Bounded Horizon)

minimize x4 (makespan) minimize x4

subject to subject to
x2 ≥ x1 + 4 x2 − x1 ≥ 4
x4 ≥ x2 + 5 (precedence) x4 − x2 ≥ 5
x4 ≥ x3 + 3 x4 − x3 ≥ 3
[x1, x1 + 4]∩ (mutual x3 − x1 ≥ 4 ∨
[x3, x3 + 3] exclusion) x1 − x3 ≥ 3

0

x2

x3

x4 x4

x3

x1 x2 x1
J1m2

m1

m1 m2

J2

m1

J2m1

J1
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Modeling with Timed Automata

Start

Waiting

Active

End

Finished

c1 := 0 c1 = 4 c1 := 0 c1 = 5

c2 := 0

c2 = 3

?

m1

m1

m1 m1 m2 m2 ?

Each automaton represents the set of all possible behaviors of each task/job
in isolation (respecting the precedence constraints)

The Start transitions are issued by the controller/scheduler and the End
transitions by the environment
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The Global Automaton
Resource constraints expressed via forbidden states in the product
automaton

c1 = 4 c1 := 0c1 := 0 c1 = 5

c2 := 0 c2 := 0 c2 := 0 c2 := 0

c1 := 0 c1 = 5

c2 = 3 c2 = 3

c1 := 0 c1 = 4 c1 := 0 c1 = 5

?m1 ?m1 ?m2

c2 = 3 c2 = 3

???m2

m1m2 m1?m1m2

m1?m1m2m1m2m1m1m1m1

m1m1

Optimal scheduling = shortest path problem timed automata
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State-of-this-Art

Deterministic Job-Shop: search algorithms on automata (with heuristics) are not worse than
other methods (with Y. Abdeddaı̈m, 2001)

Extension to deterministic task-graph problem. More general precedence constraints than in
job-shop, uniform machines (Y. Abdeddaı̈m and A. Kerbaa 2003)

Extension to preemptive job-shop using stopwatch automata (Y. Abdeddaı̈m, 2002)

Strategy synthesis for job-shop with uncertainty in task durations. Steps of the form
(m1, [2, 5]). Strategy better than static worst-case (E. Asarin and Y. Abdeddaı̈m 2003)

Strategy synthesis for conditional precedence graph. Whether or not some tasks need to be
executed will be known only after termination of other tasks (M. Bozga and A. Kerbaa)
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Summary

Dynamic games are a natural model for many many problems in system
design. The interesting questions about games are not necessarily those
asked by “game theorists”

Clean semantic modeling precedes (but of course, does not replace)
optimization algorithms

Scheduling could benefit from a general theory based on these principles
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