AMT2.0 - Qualitative and Quantitative Trace Analysis with Extended Signal Temporal Logic
TACAS 2018

Dejan Ničković
AIT Austrian Institute of Technology
Olivier Lebeltel, Oded Maler, Dogan Ulus
VERIMAG
Thomas Ferrère,
IST Austria
Introduction

- Mixed-signal increasingly important in safety-critical applications
 - Automotive, avionics, medical...
 - Sensors ↔ Controllers ↔ Actuators

- V&V is a challenge
 - Simulation-based testing a common approach
 - Property-based analysis of simulation traces
Property-based Monitoring Technology

- Rigourous
- Not ambiguous
- Automatic
- Scalable
- Reusable

AMT2.0
AMT2.0 Highlights

- Extended Signal Temporal Logic
 - Signal Temporal Logic
 - Timed Regular Expressions
 - Measurement specifications
- Offline qualitative monitors
- Trace diagnostics
 - Fault explanations
- Property-driven measurements

- Tool functionality via two examples
 - Bounded stabilization property
 - Clock jitter property
Bounded Stabilization Property
Informal Requirement

This requirement specifies conditions that need to hold for a bounded stabilization requirement. At every rising edge of the boolean trigger, the analog signal var is allowed to oscillate under the following conditions:

- var must always remain below 5V; and
- var must within 600s go below 0.2V, and continuously remain under that threshold for at least 300s.
Simulation Traces

- No stabilization
- Stabilization
- Signal too high
- Stabilization too slow
- Glitches
Formalization of the Requirement in xSTL

```c
bool trigger;
real var0;
...
real var5;
const real vh = 5;
const real vl = 0.2;

template bool stabilization ( bool tg, real x, real vhigh, real vlow ) {
    bool result = ((x <= vhigh) and (rise(tg) ->
                    (eventually[0:600] always[0:300] x <= vlow)));
    return result;
}

assertion one:
    always ( stabilization ( trigger, var0, vh, vl));
...

assertion five:
    always ( stabilization ( trigger, var5, vh, vl));
```
Property Evaluation – Offline Marking

always eventually\(_{(1,3)}(x \geq 5)\)

eventually\(_{(1,3)}(x \geq 5)\)

always eventually\(_{(1,3)}(x \geq 5)\)
Property Evaluation
Trace Diagnostics

- We focus on signals trigger and var4

- Assertion violated because top formula violated at time 100s
Top formula violated at time 100s because *trigger* is at its rising edge at time 100s, but the future obligation `eventually[0:600]always[0:300] (var4 <= 0.2)` is not met because there is not time in [100s,700s] from which *var4* stays continuously below 0.2 for at least 300s.
Trace Diagnostics

- there is not time in [100s,700s] from which \texttt{var4} stays continuously below 0.2 for at least 300s because \texttt{var4} goes above 0.2 at regular intervals smaller than 300s because of glitched – for instance at times 350s, 600s and 750s

![Graph showing \texttt{var4} and \texttt{true} and \texttt{false} values over time.](image-url)
Clock Jitter Property
Informal Requirement and Input Signal

This requirement species a digital clock jitter pattern to measure. Given a continuous-time Boolean-valued signal *clock*, a clock period is defined as a segment that starts with the rising edge of the clock and ends with its consecutive rising edge. The measurement specification requires measuring the duration of all the clock periods matched within the clock signal.
Formalization of the Requirement in xSTL

bool clock;
bool nclock = not clock;

measurement jitter_clock_period {
 pattern clock_period = start(clock):clock:nclock:start(clock);
 measure duration(clock_period);
}
Summary and Additional Insights
AMT2.0 Algorithms

- Offline monitoring algorithm with full STL semantics (including events)

- Timed regular expressions matching
 - Dogan Ulus, Thomas Ferrère, Eugene Asarin, Oded Maler: Timed Pattern Matching. FORMATS 2014: 222-236

- Timed regular expressions measurements
 - Thomas Ferrère, Oded Maler, Dejan Nickovic, Dogan Ulus: Measuring with Timed Patterns. CAV (2) 2015: 322-337

- Trace diagnostics for STL
 - Thomas Ferrère, Oded Maler, Dejan Nickovic: Trace Diagnostics Using Temporal Implicants. ATVA 2015: 241-258
xSTL – Combining STL and TRE

- STL formula within TRE pattern
 - Implicit
 - Example: (not clock and reg):clock

- TRE pattern within STL formula
 - Explicit projection operators match_begin and match_end
 - Example: match_end(not clock:clock) -> eventually reg
AMT2.0 Features - Summary

- New specification language
 - STL + TRE
 - Easier specifications
 - Declaration of typed variables and constants
 - Reusable property templates
 - Measurement specifications
- Trace diagnostics with temporal implicants
 - Small and hierarchical explanations of violations
- Continuous signal interpolation and interpretation
 - Linear and step interpolation
 - Reals as floats or rationals
- Tool portability
 - Java implementation
- Delay with the release
Thank you!