Amir Pnueli and the Dawn of Hybrid Systems

Oded Maler

CNRS - VERIMAG
Grenoble, France

2010

Preface

>

Amir Pnueli (1941-2009) was one of the key figures in the
verification of discrete reactive systems

He received the Turing Award in 1996 for proposing
Temporal Logic as a language for specifying acceptable
behaviors of concurrent systems

He participated in pioneering efforts to extend verification
methodology to timed and hybrid systems

He wrote one of the first CS papers on hybrid automata
(phase-transition systems)

He was among the founders of HSCC and a member of the
steering committee (1998-2003)

He was my PhD advisor (1986-1989) and a close collaborator
and friend afterwards

The talk is intended to tell about himself, his work and his
contribution to hybrid systems research

Very Short Personal Notes

» Amir was a very nice person, universally appreciated,
admired and loved by members of the communities he
interacted with

» He earned his fame and status by the quality of his work and
his receptiveness to others not because of being an
unbounded operator (he was not)

» Unlike many of us he was not an ego-maniac (or managed to
mask it perfectly by timidity, modesty and politeness)

» He knew maths of many sorts and did not shy away from
applications and software development

» He had a broad culture, sense of humor and good appetite

» Much more on that will be said by many in the Amir Pnueli
Memorial Conference NYU, May 7-9, 2010 and other
occasions related to his core community

Talk Overview

» Part I: Verification for Dummies

» A comprehensible introduction to the context of Amir's work,
oriented toward outsiders (control persons, CS persons of
other genres):

» What is computer science?
» What is verification?
» What is temporal logic?

» Part Il: Historical Revisionism 101:

» Sketch of (a personal projection of) the evolution of hybrid
systems research in the CS side, roughly around (1988-1998):
» Pre-history
» Motivation
First models
» Verification and controller synthesis
Temporal logic for continuous signals

v

v

What Is Computer Science ?

» Among other things computer science is: the (pure and
applied) study of discrete-event dynamical systems
(automata, transition systems)

» A natural point of view for the reactive systems parts of CS
(hardware, protocols, real-time, stream processing)

» At least for people working on modeling and verification of
such systems

» Sometimes obscured (intentionally or not) by fancy
formalisms: Petri nets, process algebras, temporal logics..

» All honorable topics with intrinsic importance, beauty, etc.

» But sometimes should be distilled to their essence in order to
make sense for potential users from other disciplines, rather
than intimidate them

Digression: Greek vs. Egyptian/Babylonian Math

» Many computer scientists in the audience may not feel my
definition faithfully describes their domain
» In many engineering disciplines there is a division between the
amateurs of the concrete and the fans of the abstract
» In CS:
» Concrete: systems, C or VHDL code, Makefiles,...
» Abstract: automata, logic, semantics,...
» In control, EE, signal processing:
» Concrete: Simulink blocks, filters, transistors, motors,...
» Abstract: manifolds, differential equations, linear operators,...
» Abstract models are not necessary nor sufficient for building
systems: software can be written in a programming language
without thinking of the underlying abstract dynamical system

» But radically-new insights are easier to obtain in the abstract
world

Dynamical System Models in General

» The following abstract features of dynamical systems are
common to both continuous and discrete systems:

» State variables whose set of valuations determine the state
space

» A time domain along which these values evolve

» A dynamic law which says how state variables evolve over
time, possibly under the influence of external factors

» System behaviors are progressions of states in time

» Having such a model, knowing an initial state x(0) one can
predict, to some extent, the value of x(t)

Classical Dynamical Systems

» State variables: real numbers (location, velocity, energy,
voltage, concentration)

» Time domain: the real time axis R or a discretization of it

» Dynamic law: differential equations

x = f(x,u)

or their discrete-time approximations
x(t+1) = f(x(t), u(t))

» Behaviors: trajectories in the continuous state space

» Achievements: Apples, Stars, Missiles, Electricity, Heat,
Chemical processes

» Theorems, Papers, Simulation tools

Automata as Dynamical Systems

» An abstract discrete state space, state variables need not
have a numerical meaning

» A logical time domain defined by the events (order but not
metric)

» Dynamics defined by transition rules: input event a takes the
system from state s to state s’

» Behaviors are sequences of states and/or events

» Composition of large systems from small ones, hierarchical
structuring

» Different modes of interaction: synchronous/asynchronous,
state-based/event-based

» Sometimes additional syntax may be required

Automata can Model many Phenomena and Devices

vV v vV v v Yy

v

Software, hardware,

ATMs, user interfaces

Administrative procedures

Communication protocols

Cooking recipes, Manufacturing instructions

Any process that can be viewed as a sequence of steps

But what can we do with these models?

There are no easy-to-use analytical tools as in continuous
systems

We can simulate and sometimes do formal verification

What is Verification 7

» The generic question:

» Given a complex discrete dynamical system with some
uncontrolled inputs or unknown parameters

» Check whether all its behaviors satisfy some properties
» Properties:

» Never reach some part of the state space

Always come eventually to some (equilibrium) state
Never exhibit some pattern of behavior
Quantitative versions of such properties..

vV vy

» Existing verification tools can do this type of analysis for huge
systems by sophisticated graph algorithms

[llustration: The Coffee Machine

» Based on a first chapter of an unwritten book
» Consider a machine that takes money and distributes drinks

» The system is built from two subsystems, one that takes care
of financial matters, and one which handles choice and
preparation of drinks

» They communicate by sending messages

st-coffee

coin-out st-tea

9

drink-ready

req-coffee

req-tea

Automaton Models

» The two systems are modeled as automata

» transitions are triggered by external events and events coming
from the other subsystem

My M,
coin-in/ ok drink-ready/done |
-

0 | 1 c

done/ y
A ok/ o req-coffee/st-coffee

>
A | B

cancel/coin-out, reset B

reset/ req-tea/st-tea

drink-ready/done |

The Global Model

» The behavior of the whole system is captured by a
composition (product) M || M, of the components

» States are elements of the Cartesian product of the
respective sets of states, indicating the state of each
component

» Some transitions are independent and some are
synchronized, taken by the two components simultaneously

» Behaviors of the systems are paths in this transition graph

Normal Behaviors

drink-ready/

req-coffee/st-coffee

coin-in/ cancel/coin-out

- cancel/coin-out
cancel/coin-out

req-tea/st-tea

drink-ready/

» Customer puts coin, then sees the bus arriving, cancels and
gets the coin back

0A coin-in 1B cancel coin-out 0A

» Customer inserts coin, requests coffee, gets it and the systems
returns to initial state

0A coin-in 1B req-coffee st-coffee 1C drink-ready 0A

An Abnormal Behavior

drink-ready/

req-cotfee/st-coffee

coin-in/ cancel /coin-out

cancel/coin-out cancel/coin-out

req-tea/st-tea

drink-ready/

» Suppose the customer presses the cancel button after the
coffee starts being prepared..

0A coin-in 1B req-coffee st-coffee 1C cancel coin-out 0C
drink-ready 0A

» Not an attractive feature for the owner of the machine

Fixing the Bug

» When M, starts preparing coffee it emits a lock signal
» When M received this message it enters a new state where
cancel is refused

My M,

coin-in/ ok lock/ drink-ready/done
- .

? cancel/coin-out, reset

[A
done/

req-coffee/st-coffee lock

req-tea/st-tea,lock

drink-ready/done

drink-ready

coin-in/

drink-ready/

The Moral of the Story

» Many complex systems can be modeled as a composition of
interacting automata

» Behaviors of the system correspond to paths in the global
transition graph of the system

» The size of this graph is exponential in the number of
components (state explosion, curse of dimensionality)

» These paths are labeled by input events representing
influences of the outside environment

» Each input sequence may generate a different behavior

» We want to make sure that a system responds correctly to all
conceivable inputs, that it behaves properly in any
environment (robustness)

So What is Verification, Then?

» The question: how to ensure that a system behaves properly
in the presence of all conceivable external inputs and
parameters?

» For every individual input sequence or parameter value we
can simulate the reaction of the system. But we cannot do it
exhaustively

» Verification is a collection of automatic and semi-automatic
methods that allow us to say something about all the
behaviors (paths in the graph, trajectories, runs)

» Verification complements other, more traditional, validation
techniques based on testing/simulation

The Ingredients of a Verification Methodology

» A specification language: a formalism for describing the
desired properties of the system. In other words a criterion for
classifying event sequences as good or bad

» A computational model: a formalism for describing the
designed system (automata, transition systems, programs)

» A verification technique: a method to show that the system
satisfies the desired properties: all the behaviors generated by
the system are those accepted by the specification

» Verification techniques come in two major flavors:

» Deductive/Analytic
» Algorithmic (Model Checking)
» Plug and Pray

Deductive, Analytic Verification

» An intelligent user (an engineer) proves that all behaviors
never reach a bad state (safety) or eventually reach a good
state (progress) without actually computing all these
behaviors

» The proof is based on specific features of the dynamics (the
program, in the discrete case, the vector field in the
continuous case)

» For safety, you find an invariant, a subset of the state space,
closed under the dynamics (preserved by the transitions). In
the continuous domain it is called a barrier certificate

» For liveness you find some progress measure (ranking
function) which always decreases along the execution. In the
continuous domain it is called a Liapunov function

» The need for an intelligent user is a major drawback

Algorithmic Verification

>

Also known as Model Checking (Turing Award 2007,
Clarke, Emerson, Sifakis)

Best understood (at least by me) as a model-aware
exhaustive simulation

Rather than stimulating a black box with all input
sequences, use graph algorithms to explore all the paths in
the system

Symbolic version (to cope with state explosion): compute
sets of reachable states, represented by logical formulae, in a
breadth first manner

Compute all states reachable by all inputs of length k + 1
from states reachable by all inputs of length k

In other words, a qualitative version of dynamic programming

» Although algorithmic, it is not a push-button (nor

click-mouse) activity

Temporal Properties in a General Context

» Any system is evaluated according to the observable
behaviors (trajectories, signals, runs) it produces

» This is done according to performance measures defined on
these behaviors

» In Control such measures are typically quantitative: the
average cost/energy, the distance from a reference signal,
quadratic norms,...

> Properties are qualitative yes/no measures. They classify
behaviors as good or bad according to property satisfaction

» Temporal logic is good at specifying properties of sequences
based on the occurrence of certain events in certain orders

» Regular expressions constitute an alternative formalism of a
different flavor for specifying sets of sequences

Why Temporal Logic

» Consider the statement: one day the sun will shine again

vV v v Y

In first-order predicate logic: there is some t such that
t > now and the sun will shine at ¢t

Temporal logic, like human language, has special concise
constructs to talk about time

Sooner and later, before and after, until and since, next and
previous

A typical property: every customer will be (eventually) served
Always (request — eventually grant) O(r — 0g)
Compare to first-order: Vt(r[t] — (3t' > t g[t']))

“Manna and Pnueli try to do everything with one hand tied
behind their back” (J. McCarthy)

How to use Properties in Verification

» From a temporal logic formula one can build a property
tester (observer), an automaton or a program that accepts
exactly the sequences satisfying the property

» The property tester can be used to check behaviors produced
by simulators (monitoring, runtime verification)

» It can be composed with the system model and integrated
in the model-checking process to see whether states
representing property violations are reachable

» Verification aside, the very process of writing down and
debugging the specifications helps enormously in
understanding the system requirements in a non-ambiguous
manner

Part Two: Hybrid Systems, a Personal Perspective

Information and Control

» In 1957 the journal Information and Control has been
founded

» | am not that old to remember this event

» The editorial board included figures such as Noam Chomsky,
Peter Elias, Benoit Mandelbrot, Claude Shannon, and Norbert
Wiener and many others

» These were the days of Cybernetics where information,
communication, control, computation, linguistics and
psychology were all mixed

» Computer Science as a distinct discipline did not exist

A Sample of Articles from the First Volumes

L. Brillouin: Mathematics, Physics, and Information (An Editorial)
C.E. Shannon: Certain Results in Coding Theory for Noisy Channels
N. Chomsky, G.A. Miller: Finite State Languages

M.-P. Schutzenberger: On the Quantization of Finite Dimensional
Messages

R. Bellman: Dynamic Programming and Stochastic Control Processes
M. Eden: A Note on Error Detection in Noisy Logical Computers

J. Hartmanis: Symbolic Analysis of a Decomposition of Information
Processing Machines

R.M. Karp: A Note on the Application of Graph Theory to Digital
Computer Programming

I.J. Good, K.C. Doog: A Paradox Concerning Rate of Information
W.H. Burge: Sorting, Trees, and Measures of Order

L-H. Zetterberg: Detection of Moving Radar Targets in Clutter

C.A. Desoer: The Bang Bang Servo Problem Treated by Variational
Techniques

C.W. Merriam: An Optimization Theory for Feedback Control System
Design

H. Jacobson: The Informational Content of Mechanisms and Circuits

One Generation Later

» From the journal web site:

» “The journal was one of the earliest to publish extensively on
formal language and automata theory, computability, inductive
inference, and complexity theory, as well as on its titular
subjects

» The present editor-in-chief took over in 1982 and recruited to
the editorial board a distinguished international group of
scholars focusing primarily on theoretical Computer Science

» The journal was renamed Information and Computation in
1987, reflecting its new focus.”

» The divorce between computation and control was
formalized during the period of my thesis under Pnueli

» A similar episode happened with another journal from the
same period, Mathematical Systems Theory

A Sample of CS Articles from 1987

D. Peleg, B. Simons: On Fault Tolerant Routings in General Networks
A. Marron, K-I. Ko: Identification of Pattern Languages from Examples
and Queries

J. Sakarovitch: Easy Multiplications. |. The Realm of Kleene's Theorem
R.B. Boppana, J.C. Lagarias: One-Way Functions and Circuit
Complexity

A.Z. Broder, D. Dolev, M.J. Fischer, B. Simons: Efficient
Fault-Tolerant Routings in Networks

G. Bracha: Asynchronous Byzantine Agreement Protocols

Y. Mansour, S. Zaks: On the Bit Complexity of Distributed
Computations in a Ring with a Leader

A. Amir, D.M. Gabbay: Preservation of Expressive Completeness in
Temporal Models

G. Winskel: Petri Nets, Algebras, Morphisms, and Compositionality

D. Angluin: Learning Regular Sets from Queries and Counterexamples

Personal Motivation

>

Although my thesis was purely mathematical (automata
theory) | felt from time to time as an captive poet

Consequently | kept looking from time to time at softer
sciences such as Al

One day | found technical reports from MIT Al lab by
R. Brooks, advocating a behavior-based approach to
robotics and Al

» His proposed architecture was a sort of a block diagram

» Some blocks represented sensors, some were realized by

finite-state machines or programs, some were timers

| asked Amir: how can one specify and verify the correct
behavior of these creatures?

Amir was very responsive and called me immediately to his

office. He has been thinking about the physical environment
of the reactive system for a long time

A Research Proposal

» After discussing the issue we decided to write a research
proposal on the topic, intended to support my post-doc

» The title was Systematic Development of Robots

"l

/fﬂ 738 - nn nyxn

NWIN NN L1

NN INPDIN OWR L,NINY N1 ASYTING SY MIndw> PITIS XD YXINN IPNnN nhon
0’53100 0°°N13I0VIX 0’0111 NIN2AY L, NINIAM MDA NOTIA 0NN)Ny
TO ISR NI2ASITIND NIANMIN IPNAN NTA0NT LAYTON1II0 XS NY*1°201 TRond
APNAN PAXIN LN92XY N2IIXN D210 0¥ YA NN’ pon MIDIwna 5905 MYy

053 ,013117 SY NI XA MI2IATNINND 90N 112IRD 050N 0’50 155
ANINA 15X VITIINY RTINS NIIIY NI0 Y)Y L 15U MPan N2IOM 1IN NNeny
YT

N1VIY NIDIWYND TAYTA NPODNI NPTXN PIONY DY RS L,NO5R 0231252 MinTEnn
0YINN 02 NOX L, NN MINONINI MDD N2 21 IRIDS MDTRNN W, mn e p
.N>°0N SY 3NN 12181 NPNIORSH M)’21 TI0Y NYPya nand i

» In other words: we propose to export the practical failure
of program verification toward new domains -2

» The proposal did not pass and | moved to France

From Timed to Hybrid Systems |

» Amir was already involved in extending discrete system model
with timing information

» In this an extremely-important level of abstraction

» Can be used to specify (and verify) not only that every
customer is (eventually) served, but also that he is served at
most 5 minutes after the request

» Semantically speaking, in such systems the behaviors are
Boolean signals rather than just sequences

» He already worked on real-time extensions of temporal logic
and on timed transition systems, similar to timed automata

» In 1990 he proposed the model of phase-transition systems,
a kind of hybrid automaton

From Timed to Hybrid Systems ||

From Timed to Hybrid Systems *

Oded Maler
INRIA/IRISAS

Zohar Manna
Stanford University!and Weizmann Institute of Science?

Amir Pnueli
Weizmann Institute of Science?

Abstract. We propose a framework for the formal specification and verification of
timed and hybrid systems. For timed systems we propose a specification language
that refers to time only through age functions which measure the length of the most
recent time interval in which a given formula has been continuously true.

We then consider hybrid systems, which are systems consisting of a non-trivial mix-
ture of discrete and continuous components, such as a digital controller that controls
a continuous environment. The proposed framework extends the temporal logic ap-
proach which has proven useful for the formal analysis of discrete systems such as
reactive programs. The new framework consists of a semantic model for hybrid
time, the notion of phase transition systems, which extends the formalism of dis-
crete transition systems, an extended version of Statecharts for the specification of
hybrid behaviors, and an extended version of temporal logic that enables reasoning
about continuous change.

From Timed to Hybrid Systems Il

The discrete event approach is justified by an assumption that the environment, sim-
ilar to the system itself, can be faithfully modeled as a digital (discrete) process. This
assumption is very useful, since it allows a completely symmetrical treatment of the sys-
tem and its environment and encourages modular analysis of systems, where what is
considered an environment in one stage of the analysis may be considered a component
of the system in the next stage.

While this assumption is justified for systems such as communication networks, where
all members of the network are computers, there are certainly many important contexts
in which modeling the environment as a discrete process greatly distorts reality, and may
lead to unreliable conclusions. For example, a control program driving a robot within a
maze or controlling a fast train must take into account that the environment with which
it interacts follows continuous rules of change.

Phase Transition Systems

The generalization of a timed transition system to the hybrid domain is called a phase
transition system. Phase transition systems allow an effective description of systems that
can generate hybrid traces as previously described.

Before presenting the formal definition, we make the observation that changes in a
phase transition system are governed by the dual constructs of transitions and activities.
The table below compares some of the features of these two constructs.

| Transitions Activities
Govern Discrete Change Continuous Change
Take No Time Positive Time
Execute By Interleaving In parallel

Defined by | Transition Relations Differential Equations

Transitions and activities interact. Transitions start and stop activities and modify the
parameters on which the behavior of activities depends. Activities may generate events
and conditions that enable or trigger transitions. A typical scenario is that a transition
is triggered by the event becomes(z > 0), which occurs precisely at the moment in which
z switches from a negative value to a non-negative one. An immediate transition that
depends on this event for its activation will interrupt the continuous change and execute
at this precise time point.

From Timed to Hybrid Systems IV

Mouse

/zc = Xo, Tm = Xo

Cat

[A,4]

running

G = =V

Tunning

i, =~V

Tc=Tpm >0

Mouse-Wins

Cat-Wins

CS Research on Hybrid Systems

>

The paper was accepted with enthusiasm and various groups
started looking at the verification of hybrid systems
At that time the algorithmic (model-checking) approach
became more popular than the deductive
Encouraged by the verification of timed automata, people
started looking for similar algorithmic result on a class of
piecewise-trivial hybrid automata
Automata where in each state the derivative is constant and
complexity comes from switching

a [X] Vi o 1

A - pen

X =0 X =q

_____ * e-e [Close 1 L2
A

Open 2 Open 2

Y

)

|
o Mw
Close 2 Close 2
I

----- - i i

Open 1

C D

Y

X = —c X = — o

h - h
Xy = ¢ — c3|- Xp = ¢ — 3
3 || Close 1

Some of Amir's Contributionsd to Hybrid Systems

» Extending StateCharts to hybrid StateCharts [Kesten]
» Contribution to deductive verification [Manna, Henzinger]

» Decidability and undecidability results on classes of
stopwatch automata, timed automata with preemptible
clocks, [Kesten, Sifakis, Yovine]

» Decidability (in 2 dimensions) and undecidabilty (in 3
dimensions) of verification for a class of systems with
piecewise-constant derivatives [Asarin, M]

» Controller synthesis for timed automata [Asarin, M, Sifakis]

» Switching controller synthesis for piecewise-linear systems
[Asarin, Bournez, Dang, M]

» The topic has evolved since, abandoning exact computations,
replacing them with approximation of reachable states,
illustrated in the coming commerical

Commercial I: SpaceEx

» Coming soon: SpaceEx the state space explorer (G. Frehse)
» A tool platform for developing hybrid verification tools

» Two tools will be released: PHAVer 2.0 for linear hybrid
automata and a tool for piecewise-linear differential
equations based on LeGuernic/Girard support function
algorithms

» Web interface

SpaceEx Web Interface Vo

Back to Temporal Logic

» In the last years Amir’s focused more on new problems in
discrete verification and synthesis

» Meanwhile some variants of temporal logic have been
adopted as standards in the semi-conductor industry

» We participated together in the EU project property-based
systems design (PROSYD) with IBM, ST and Infineon

» My part in the project was to extend the specification
language to treat analog and mixed signals

» We called the logic STL (signal temporal logic), An
extension of the real-time logic MITL with numerical
predicates

Specifying Stabilization in Temporal Logic

» A water-level controller for a nuclear plant should maintain
a controlled variable y around a fixed level despite external
disturbances x

» We want y to stay always in the interval [—30, 30] except,
possibly, for an initialization period of duration 300

» If, due to disturbances, y goes outside the interval [—0.5,0.5],
it should return to it within 150 time units and stay there for
at least 20 time units

» The property is expressed as

Oi300,25001 ((1y] < 30)A((ly| > 0.5) = 00,150 [0,20)(|y| < 0.5)))

Monitoring Stabilization

Disturbance Signal

100 T T T T

50

Analog Response y(t)
50

N KA A S A
-100 L L 1 .
»sreioson ' . ' . 1
SP - L T]
3 ; . ; ; ;
grecmon . ' ' '

] i} T I {'
B ; i ‘

Dg,v,n],, i]
. (] LT L] 1
3 ‘ ; ‘ ; :

O?ilsn] Ojo.2007

g} E I q
5 Opoas0

5‘ [0,150] [u,zr:]? . - ; -

1

R [q
i ‘ : . : ;
*5"‘7[0,150]0[0‘20‘]”) ; , ;

1

B3l —— Al Bl L:‘l
3 . ‘ ;

Fjpo0.2500)(2 1 (70 = Ofo.150)Of0.20)7))
T T T T T
0
il]

L L L L L
0 500 1000 1500 2000 2500 3000

Commercial II: AMT

» The Analog Monitoring Tool (D. Nickovic) is available for
download

[y =R
Property Edit Signal List
vprop erasing_mode { B Name 8]
define brerasing_cond i~ -
il <= 6.0 and apw > 5.0;
erasing assert
always (brerasing_cond ->
((@bs(ais - aipw) <= 0.1) and
(@] (8] [= [@][®][e
Froperty Lt Signa Plots
Name ool +]l-]l=][=
o =
(G (= =] {
3
Property Structure View 3
! 7 T T T T |
f‘ 0 5000 10000 15000 20000 25000 30000
10 e—
erasing_co... (2] 035
= Mo) 03
~Monitoring mode e
® offine O Incremental %53 3 Threshold = 014
® of e
005
e 174
Evaluation status T T 7 T 7 7]
0 5000 10000 15000 20000 25000 30000
(aba((s- poy) <= 01)
]j B
e LT B|
> | - r B % T T T =

Concluding Remarks

>

Hybrid extensions of Amir's temporal logic has a lot of
potential applications:

Analog circuits: it was used to check properties of DDR and
Flash memories and is considered by some as an interface
language for combining digital and analog design flows

In Biology it can be used, non traditionally, to give a short
descriptive model of experimental data

In Control it can be used to define a new class of
performance measures based on events

In Robotics it has been used to specify goals for planners

» New studies on quantitative semantics: how robustly is a

property satisfied

Even in these domains, which were not his core domains, the
contributions and insights of Amir Pnueli will occupy us for
some time

Last Photos: CAV, June 2009, Grenoble

Last Photos: CAV, ane 2009, Grenoble

é

