
Amir Pnueli and the Dawn of Hybrid Systems

Oded Maler

CNRS - VERIMAG
Grenoble, France

2010

Preface

I Amir Pnueli (1941-2009) was one of the key figures in the
verification of discrete reactive systems

I He received the Turing Award in 1996 for proposing
Temporal Logic as a language for specifying acceptable
behaviors of concurrent systems

I He participated in pioneering efforts to extend verification
methodology to timed and hybrid systems

I He wrote one of the first CS papers on hybrid automata
(phase-transition systems)

I He was among the founders of HSCC and a member of the
steering committee (1998-2003)

I He was my PhD advisor (1986-1989) and a close collaborator
and friend afterwards

I The talk is intended to tell about himself, his work and his
contribution to hybrid systems research

Very Short Personal Notes

I Amir was a very nice person, universally appreciated,
admired and loved by members of the communities he
interacted with

I He earned his fame and status by the quality of his work and
his receptiveness to others not because of being an
unbounded operator (he was not)

I Unlike many of us he was not an ego-maniac (or managed to
mask it perfectly by timidity, modesty and politeness)

I He knew maths of many sorts and did not shy away from
applications and software development

I He had a broad culture, sense of humor and good appetite

I Much more on that will be said by many in the Amir Pnueli
Memorial Conference NYU, May 7-9, 2010 and other
occasions related to his core community

Talk Overview

I Part I: Verification for Dummies
I A comprehensible introduction to the context of Amir’s work,

oriented toward outsiders (control persons, CS persons of
other genres):

I What is computer science?
I What is verification?
I What is temporal logic?

I Part II: Historical Revisionism 101:
I Sketch of (a personal projection of) the evolution of hybrid

systems research in the CS side, roughly around (1988-1998):
I Pre-history
I Motivation
I First models
I Verification and controller synthesis
I Temporal logic for continuous signals

What Is Computer Science ?

I Among other things computer science is: the (pure and
applied) study of discrete-event dynamical systems
(automata, transition systems)

I A natural point of view for the reactive systems parts of CS
(hardware, protocols, real-time, stream processing)

I At least for people working on modeling and verification of
such systems

I Sometimes obscured (intentionally or not) by fancy
formalisms: Petri nets, process algebras, temporal logics..

I All honorable topics with intrinsic importance, beauty, etc.

I But sometimes should be distilled to their essence in order to
make sense for potential users from other disciplines, rather
than intimidate them

Digression: Greek vs. Egyptian/Babylonian Math

I Many computer scientists in the audience may not feel my
definition faithfully describes their domain

I In many engineering disciplines there is a division between the
amateurs of the concrete and the fans of the abstract

I In CS:
I Concrete: systems, C or VHDL code, Makefiles,...
I Abstract: automata, logic, semantics,...

I In control, EE, signal processing:
I Concrete: Simulink blocks, filters, transistors, motors,...
I Abstract: manifolds, differential equations, linear operators,...

I Abstract models are not necessary nor sufficient for building
systems: software can be written in a programming language
without thinking of the underlying abstract dynamical system

I But radically-new insights are easier to obtain in the abstract
world

Dynamical System Models in General

I The following abstract features of dynamical systems are
common to both continuous and discrete systems:

I State variables whose set of valuations determine the state
space

I A time domain along which these values evolve

I A dynamic law which says how state variables evolve over
time, possibly under the influence of external factors

I System behaviors are progressions of states in time

I Having such a model, knowing an initial state x(0) one can
predict, to some extent, the value of x(t)

Classical Dynamical Systems

I State variables: real numbers (location, velocity, energy,
voltage, concentration)

I Time domain: the real time axis R or a discretization of it

I Dynamic law: differential equations

ẋ = f (x , u)

or their discrete-time approximations

x(t + 1) = f (x(t), u(t))

I Behaviors: trajectories in the continuous state space

I Achievements: Apples, Stars, Missiles, Electricity, Heat,
Chemical processes

I Theorems, Papers, Simulation tools

Automata as Dynamical Systems

I An abstract discrete state space, state variables need not
have a numerical meaning

I A logical time domain defined by the events (order but not
metric)

I Dynamics defined by transition rules: input event a takes the
system from state s to state s′

I Behaviors are sequences of states and/or events

I Composition of large systems from small ones, hierarchical
structuring

I Different modes of interaction: synchronous/asynchronous,
state-based/event-based

I Sometimes additional syntax may be required

Automata can Model many Phenomena and Devices

I Software, hardware,

I ATMs, user interfaces

I Administrative procedures

I Communication protocols

I Cooking recipes, Manufacturing instructions

I Any process that can be viewed as a sequence of steps

I But what can we do with these models?

I There are no easy-to-use analytical tools as in continuous
systems

I We can simulate and sometimes do formal verification

What is Verification ?

I The generic question:

I Given a complex discrete dynamical system with some
uncontrolled inputs or unknown parameters

I Check whether all its behaviors satisfy some properties
I Properties:

I Never reach some part of the state space
I Always come eventually to some (equilibrium) state
I Never exhibit some pattern of behavior
I Quantitative versions of such properties..

I Existing verification tools can do this type of analysis for huge
systems by sophisticated graph algorithms

Illustration: The Coffee Machine

I Based on a first chapter of an unwritten book

I Consider a machine that takes money and distributes drinks

I The system is built from two subsystems, one that takes care
of financial matters, and one which handles choice and
preparation of drinks

I They communicate by sending messages

M1

5

4

6

M2

drink-ready

st-tea

st-coffee

3

2

1

coin-in

cancel

coin-out

7

8

9

req-coffee

req-tea

reset

ok

done

Automaton Models

I The two systems are modeled as automata

I transitions are triggered by external events and events coming
from the other subsystem

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

done/

0 1

coin-in/ ok

cancel/coin-out, reset

M1

The Global Model

I The behavior of the whole system is captured by a
composition (product) M1 ‖ M2 of the components

I States are elements of the Cartesian product of the
respective sets of states, indicating the state of each
component

I Some transitions are independent and some are
synchronized, taken by the two components simultaneously

I Behaviors of the systems are paths in this transition graph

done/

0 1

coin-in/ ok

cancel/coin-out, reset

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

drink-ready/done

drink-ready/done

A

C

B

D

ok/

reset/

M2

req-coffee/st-coffee

req-tea/st-tea

M1

Normal Behaviors

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Customer puts coin, then sees the bus arriving, cancels and
gets the coin back

0A coin-in 1B cancel coin-out 0A

I Customer inserts coin, requests coffee, gets it and the systems
returns to initial state

0A coin-in 1B req-coffee st-coffee 1C drink-ready 0A

An Abnormal Behavior

0A 1B

drink-ready/

drink-ready/

1C

1D

0C

0D

cancel/coin-out

cancel/coin-out

req-tea/st-tea

req-coffee/st-coffee

cancel/coin-out

coin-in/

I Suppose the customer presses the cancel button after the
coffee starts being prepared..

0A coin-in 1B req-coffee st-coffee 1C cancel coin-out 0C

drink-ready 0A

I Not an attractive feature for the owner of the machine

Fixing the Bug

I When M2 starts preparing coffee it emits a lock signal

I When M1 received this message it enters a new state where
cancel is refused

M1

0 1

coin-in/ ok

2

lock/

cancel/coin-out, reset

done/

drink-ready/done

drink-ready/done

A

C

B

D

reset/

req-coffee/st-coffee,lock

req-tea/st-tea,lock

M2

ok/

0A 1B

drink-ready/

2C

2D

coin-in/

cancel/coin-out req-tea/st-tea

req-coffee/st-coffee

drink-ready/

The Moral of the Story

I Many complex systems can be modeled as a composition of
interacting automata

I Behaviors of the system correspond to paths in the global
transition graph of the system

I The size of this graph is exponential in the number of
components (state explosion, curse of dimensionality)

I These paths are labeled by input events representing
influences of the outside environment

I Each input sequence may generate a different behavior

I We want to make sure that a system responds correctly to all
conceivable inputs, that it behaves properly in any
environment (robustness)

So What is Verification, Then?

I The question: how to ensure that a system behaves properly
in the presence of all conceivable external inputs and
parameters?

I For every individual input sequence or parameter value we
can simulate the reaction of the system. But we cannot do it
exhaustively

I Verification is a collection of automatic and semi-automatic
methods that allow us to say something about all the
behaviors (paths in the graph, trajectories, runs)

I Verification complements other, more traditional, validation
techniques based on testing/simulation

The Ingredients of a Verification Methodology

I A specification language: a formalism for describing the
desired properties of the system. In other words a criterion for
classifying event sequences as good or bad

I A computational model: a formalism for describing the
designed system (automata, transition systems, programs)

I A verification technique: a method to show that the system
satisfies the desired properties: all the behaviors generated by
the system are those accepted by the specification

I Verification techniques come in two major flavors:
I Deductive/Analytic
I Algorithmic (Model Checking)
I Plug and Pray

Deductive, Analytic Verification

I An intelligent user (an engineer) proves that all behaviors
never reach a bad state (safety) or eventually reach a good
state (progress) without actually computing all these
behaviors

I The proof is based on specific features of the dynamics (the
program, in the discrete case, the vector field in the
continuous case)

I For safety, you find an invariant, a subset of the state space,
closed under the dynamics (preserved by the transitions). In
the continuous domain it is called a barrier certificate

I For liveness you find some progress measure (ranking
function) which always decreases along the execution. In the
continuous domain it is called a Liapunov function

I The need for an intelligent user is a major drawback

Algorithmic Verification

I Also known as Model Checking (Turing Award 2007,
Clarke, Emerson, Sifakis)

I Best understood (at least by me) as a model-aware
exhaustive simulation

I Rather than stimulating a black box with all input
sequences, use graph algorithms to explore all the paths in
the system

I Symbolic version (to cope with state explosion): compute
sets of reachable states, represented by logical formulae, in a
breadth first manner

I Compute all states reachable by all inputs of length k + 1
from states reachable by all inputs of length k

I In other words, a qualitative version of dynamic programming

I Although algorithmic, it is not a push-button (nor
click-mouse) activity

Temporal Properties in a General Context

I Any system is evaluated according to the observable
behaviors (trajectories, signals, runs) it produces

I This is done according to performance measures defined on
these behaviors

I In Control such measures are typically quantitative: the
average cost/energy, the distance from a reference signal,
quadratic norms,...

I Properties are qualitative yes/no measures. They classify
behaviors as good or bad according to property satisfaction

I Temporal logic is good at specifying properties of sequences
based on the occurrence of certain events in certain orders

I Regular expressions constitute an alternative formalism of a
different flavor for specifying sets of sequences

Why Temporal Logic

I Consider the statement: one day the sun will shine again

I In first-order predicate logic: there is some t such that
t > now and the sun will shine at t

I Temporal logic, like human language, has special concise
constructs to talk about time

I Sooner and later, before and after, until and since, next and
previous

I A typical property: every customer will be (eventually) served

I Always (request → eventually grant) �(r → ♦g)

I Compare to first-order: ∀t(r [t]→ (∃t ′ > t g [t ′]))

I “Manna and Pnueli try to do everything with one hand tied
behind their back” (J. McCarthy)

How to use Properties in Verification

I From a temporal logic formula one can build a property
tester (observer), an automaton or a program that accepts
exactly the sequences satisfying the property

I The property tester can be used to check behaviors produced
by simulators (monitoring, runtime verification)

I It can be composed with the system model and integrated
in the model-checking process to see whether states
representing property violations are reachable

I Verification aside, the very process of writing down and
debugging the specifications helps enormously in
understanding the system requirements in a non-ambiguous
manner

Part Two: Hybrid Systems, a Personal Perspective

Information and Control

I In 1957 the journal Information and Control has been
founded

I I am not that old to remember this event

I The editorial board included figures such as Noam Chomsky,
Peter Elias, Benoit Mandelbrot, Claude Shannon, and Norbert
Wiener and many others

I These were the days of Cybernetics where information,
communication, control, computation, linguistics and
psychology were all mixed

I Computer Science as a distinct discipline did not exist

A Sample of Articles from the First Volumes

L. Brillouin: Mathematics, Physics, and Information (An Editorial)
C.E. Shannon: Certain Results in Coding Theory for Noisy Channels
N. Chomsky, G.A. Miller: Finite State Languages
M.-P. Schutzenberger: On the Quantization of Finite Dimensional
Messages
R. Bellman: Dynamic Programming and Stochastic Control Processes
M. Eden: A Note on Error Detection in Noisy Logical Computers
J. Hartmanis: Symbolic Analysis of a Decomposition of Information
Processing Machines
R.M. Karp: A Note on the Application of Graph Theory to Digital
Computer Programming
I.J. Good, K.C. Doog: A Paradox Concerning Rate of Information
W.H. Burge: Sorting, Trees, and Measures of Order
L-H. Zetterberg: Detection of Moving Radar Targets in Clutter
C.A. Desoer: The Bang Bang Servo Problem Treated by Variational
Techniques
C.W. Merriam: An Optimization Theory for Feedback Control System
Design

H. Jacobson: The Informational Content of Mechanisms and Circuits

One Generation Later

I From the journal web site:

I “The journal was one of the earliest to publish extensively on
formal language and automata theory, computability, inductive
inference, and complexity theory, as well as on its titular
subjects

I The present editor-in-chief took over in 1982 and recruited to
the editorial board a distinguished international group of
scholars focusing primarily on theoretical Computer Science

I The journal was renamed Information and Computation in
1987, reflecting its new focus.”

I The divorce between computation and control was
formalized during the period of my thesis under Pnueli

I A similar episode happened with another journal from the
same period, Mathematical Systems Theory

A Sample of CS Articles from 1987

D. Peleg, B. Simons: On Fault Tolerant Routings in General Networks
A. Marron, K-I. Ko: Identification of Pattern Languages from Examples
and Queries
J. Sakarovitch: Easy Multiplications. I. The Realm of Kleene’s Theorem
R.B. Boppana, J.C. Lagarias: One-Way Functions and Circuit
Complexity
A.Z. Broder, D. Dolev, M.J. Fischer, B. Simons: Efficient
Fault-Tolerant Routings in Networks
G. Bracha: Asynchronous Byzantine Agreement Protocols
Y. Mansour, S. Zaks: On the Bit Complexity of Distributed
Computations in a Ring with a Leader
A. Amir, D.M. Gabbay: Preservation of Expressive Completeness in
Temporal Models
G. Winskel: Petri Nets, Algebras, Morphisms, and Compositionality

D. Angluin: Learning Regular Sets from Queries and Counterexamples

Personal Motivation

I Although my thesis was purely mathematical (automata
theory) I felt from time to time as an captive poet

I Consequently I kept looking from time to time at softer
sciences such as AI

I One day I found technical reports from MIT AI lab by
R. Brooks, advocating a behavior-based approach to
robotics and AI

I His proposed architecture was a sort of a block diagram

I Some blocks represented sensors, some were realized by
finite-state machines or programs, some were timers

I I asked Amir: how can one specify and verify the correct
behavior of these creatures?

I Amir was very responsive and called me immediately to his
office. He has been thinking about the physical environment
of the reactive system for a long time

A Research Proposal

I After discussing the issue we decided to write a research
proposal on the topic, intended to support my post-doc

I The title was Systematic Development of Robots

I In other words: we propose to export the practical failure
of program verification toward new domains ¨̂

I The proposal did not pass and I moved to France

From Timed to Hybrid Systems I

I Amir was already involved in extending discrete system model
with timing information

I In this an extremely-important level of abstraction

I Can be used to specify (and verify) not only that every
customer is (eventually) served, but also that he is served at
most 5 minutes after the request

I Semantically speaking, in such systems the behaviors are
Boolean signals rather than just sequences

I He already worked on real-time extensions of temporal logic
and on timed transition systems, similar to timed automata

I In 1990 he proposed the model of phase-transition systems,
a kind of hybrid automaton

From Timed to Hybrid Systems II

From Timed to Hybrid Systems III

From Timed to Hybrid Systems IV

CS Research on Hybrid Systems
I The paper was accepted with enthusiasm and various groups

started looking at the verification of hybrid systems
I At that time the algorithmic (model-checking) approach

became more popular than the deductive
I Encouraged by the verification of timed automata, people

started looking for similar algorithmic result on a class of
piecewise-trivial hybrid automata

I Automata where in each state the derivative is constant and
complexity comes from switching

x1

x2

c1

c2

c3

V1

V2

Open 1

Close 2 Close 2

Open 1

A B

C D

ẋ2 = −c3

ẋ1 = 0 ẋ1 = c1
ẋ2 = −c3

ẋ1 = c1 − c2
ẋ2 = c2 − c3

ẋ1 = −c2
ẋ2 = c2 − c3

Close 1

Close 1

Open 2 Open 2

Some of Amir’s Contributionsd to Hybrid Systems

I Extending StateCharts to hybrid StateCharts [Kesten]

I Contribution to deductive verification [Manna, Henzinger]

I Decidability and undecidability results on classes of
stopwatch automata, timed automata with preemptible
clocks, [Kesten, Sifakis, Yovine]

I Decidability (in 2 dimensions) and undecidabilty (in 3
dimensions) of verification for a class of systems with
piecewise-constant derivatives [Asarin, M]

I Controller synthesis for timed automata [Asarin, M, Sifakis]

I Switching controller synthesis for piecewise-linear systems
[Asarin, Bournez, Dang, M]

I The topic has evolved since, abandoning exact computations,
replacing them with approximation of reachable states,
illustrated in the coming commerical

Commercial I: SpaceEx

I Coming soon: SpaceEx the state space explorer (G. Frehse)

I A tool platform for developing hybrid verification tools

I Two tools will be released: PHAVer 2.0 for linear hybrid
automata and a tool for piecewise-linear differential
equations based on LeGuernic/Girard support function
algorithms

I Web interface

Back to Temporal Logic

I In the last years Amir’s focused more on new problems in
discrete verification and synthesis

I Meanwhile some variants of temporal logic have been
adopted as standards in the semi-conductor industry

I We participated together in the EU project property-based
systems design (PROSYD) with IBM, ST and Infineon

I My part in the project was to extend the specification
language to treat analog and mixed signals

I We called the logic STL (signal temporal logic), An
extension of the real-time logic MITL with numerical
predicates

Specifying Stabilization in Temporal Logic

I A water-level controller for a nuclear plant should maintain
a controlled variable y around a fixed level despite external
disturbances x

I We want y to stay always in the interval [−30, 30] except,
possibly, for an initialization period of duration 300

I If, due to disturbances, y goes outside the interval [−0.5, 0.5],
it should return to it within 150 time units and stay there for
at least 20 time units

I The property is expressed as

�[300,2500]((|y | ≤ 30)∧((|y | > 0.5)⇒ ♦[0,150]�[0,20](|y | ≤ 0.5)))

Monitoring Stabilization

Commercial II: AMT

I The Analog Monitoring Tool (D. Nickovic) is available for
download

Concluding Remarks

I Hybrid extensions of Amir’s temporal logic has a lot of
potential applications:

I Analog circuits: it was used to check properties of DDR and
Flash memories and is considered by some as an interface
language for combining digital and analog design flows

I In Biology it can be used, non traditionally, to give a short
descriptive model of experimental data

I In Control it can be used to define a new class of
performance measures based on events

I In Robotics it has been used to specify goals for planners

I New studies on quantitative semantics: how robustly is a
property satisfied

I Even in these domains, which were not his core domains, the
contributions and insights of Amir Pnueli will occupy us for
some time

Last Photos: CAV, June 2009, Grenoble

Last Photos: CAV, June 2009, Grenoble

