
Timed Systems: The Unmet Challenge

Oded Maler

CNRS - VERIMAG
Grenoble, France

QAPL, April 2014

A Concrete Motivation for an Abstract Talk

I You want to run an application represented as a task graph on
a new multi-core platform

I Tasks are annotated by execution times and communication
rates

I In addition to compilation you need to:

I Map tasks to processors, schedule them, allocate buffers and
channels, select data transfer mechanisms

I These deployment problems are difficult and can have serious
consequences on performance

I We don’t want application programmers to deal with them
and want to provide automatic support

I Timed systems give, in principle, the conceptual and
mathematical framework to handle such problems

What is the Message of this Talk?

I Models of timed systems are extremely important

I They represent a level of abstraction which underlies almost
any domain of engineering and daily life

I In particular, they are useful for performance analysis and
optimization of embedded systems (and systems in general)

I Unfortunately, sociological factors, both in academia and
industry, as well as complexity problems, prevent this potential
from being fully realized

I We are doing our best to change this situation

I Paper appears in From Programs to Systems, LNCS 8415

Outline

1. The timed level of abstraction in modeling

2. Timed automata and the heavy burden of the formal
methodist

3. Strange encounters with reality

Levels of Abstraction: Low

I Phenomena can be modeled at different levels of abstraction

I Lower levels are more detailed, zoomed at more “elementary”
entities and are supposed to be closer to God’s reality

I This is, at least what reductionists (physicists, molecular
biologists) want us to believe

I The price of more detailed models is :

I It is hard to build them and to measure initial/boundary
conditions

I It takes much more computation time to analyze (simulate,
verify) them

Levels of Abstraction: High

I High level models are more coarse

I They use concepts that, in principle, could be derived as
aggregation/abstraction of lower-levels entities

I But more often than not, only in principle

I Example: in Civil Engineering, the resistance of a beam to
different loads (module of elasticity) is not derived from a
detailed models of zillions of interacting molecules

I Remark: software is exceptional in the sense of having a
formal equivalence between several levels, (eg compilation)

Concrete Example: Transistors and Gates

I At a lower-level a logical gate, say inverter, is an electrical
circuit whose voltage at the output port depends on the
voltage in its input

I Its behavior is a signal, a trajectory of a continuous dynamical
system

I At an abstract Boolean level we say that when the input goes
down the output takes a transition from 0 to 1

DiscreteContinuous

t

v0

v1

0 1
i ↓ /o ↑

i ↓ o ↑
0 0′ 1

Concrete Example: Coming to Grenoble

I Coming to Grenoble from your hometown via Lyon airport

I Low level description: a trajectory of the center of mass of the
person on the spatial earth coordinates

I High level: fly to Lyon than take bus to Grenoble (sequence of
transitions)

Home

Lyon

Grenoble Time

Home Lyon

Bus

Grenoble

Flight

Concrete Example: Software

I Low level: a piece of code that transforms some input to some
output using instructions that run on some hardware platform

I High level description: decode or filter an image

for i=1 to 1024 do
...
...
something
...
...

end

process an image

Which Information is Sufficient?

I From the more abstract discrete point of view you have:

I Some kind of a (physical) process that you do not care so
much about its intermediate details

I Unless you are an airplane pilot or an electron or a
programmer

I What is important is that at the end of the day?:
I You will be in Grenoble
I The gate will switch from 0 to 1 following Boole-Shannon rules
I The image will be decoded

I This is “functional” reasoning

You Cannot Get Rid Completely of the Physics

I To determine the clock rate your computer can use, you need
to know how long it takes to switch from 0 to 1

I To see UTube on your smart phone you care about the
execution time of your decoding algorithm

I To come on time to the conference you need to know the
duration of the flight

I The purely discrete automaton model does not distinguish
between flying from Paris and flying from San Francisco

I It is an abstract sequence of transitions:
take-off → fly → land

Timed Behaviors

I Hide intermediate values of the process but represent:

I The distance between events (threshold crossing, starting,
stopping) or

I The durations of sojourn in states

Take−off Land Take bus Grenoble

Airplane

Lyon

Bus

Take−off Land Take bus Grenoble

Airplane

Lyon

Bus

Timed Dynamical Systems

I A new intermediate class of dynamical systems, between:

I Models based on differential equations: continuous
behaviors (trajectories, signals)

I Models based on automata: discrete behaviors, sequences of
state/events

I Timed automata are the dynamical systems for timed
behaviors

I They generate discrete-valued signals or time-event sequences
(= sequences of time-stamped events)

Basic Elements: Processes that Take Time

I Processes that take some time to conclude after having started

I Mathematically they are simple timed automata:

x := 0
φ(x)
end

start

p p p

I An idle state p; a start transition which resets a clock x to
measure time elapsed in active state p

I An end transition guarded by a temporal condition φ(x)

I Condition φ can be true (no constraint), x = d
(deterministic), x ∈ [a, b] (non-deterministic) or probabilistic

Sequential Composition

I Sequential composition captures precedence relations between
tasks, for example p precedes q:

x1 := 0
φ1(x1)
end

start

p p p

p

end
start

pq pq end
start

pqpq

q x2 := 0
φ2(x2)
end

start

qq

pqx1 := 0
φ1(x1)

x2 := 0

φ2(x2)

I You take the bus after you land

I A gate switching triggers a change in the next gate

I You can start processing the image after having decoded it

Parallel Composition

I Parallel composition models partially-independent processes,
sometimes competing with each other (race)

....

.
.
.
.

x1 ∈ [a1, b1]

s

x1 := 0

x2 := 0

end

x2 ∈ [a2, b2]

end

x2 ∈ [a2, b2]

x1 ∈ [a1, b1]

I Analyzing the possible behaviors of such concurrent timed
processes is at the heart of almost anything we do

Questions

I Will there be a glitch in the circuit?

I Will he finish his boring talk by the coffee break?

I Will the meal be ready exactly when the guests arrive?

I Will my student finish the thesis before I run out of money?

I Will the image be processed before the arrival of the next one?

I Will the server answer the query before the attention span of
the client expires?

I

I All these are questions about possible paths in timed automata

Intermediate Summary

I I hope by now you are convinced that timed systems are
important for modeling

I You can formulate with them all kinds of interesting questions
in an important level of abstraction

I It is the level of abstraction that people use implicitly in
scheduling, timing analysis, planning - you name it

I Now remains the question, how can you use these models to
provide answers to these questions

I To answer this question, let us have a retrospective look at
“formal verification” our home discipline

Outline

1. The timed level of abstraction in modeling

2. Timed automata and the heavy burden of formal
methodist

3. Strange encounters with reality

What is Verification?

I Most of verification is about showing that components in a
network of automata interact properly with each other

I Some sequences of events are considered ok while others
violate the requirements, bad things happen (safety) or some
good things do not (liveness)

I Models are discrete and often abstract away from the data
and focus on control/synchronization

I The systems in question are open and under-determined

I This means that a model may have many executions, some
correct and some incorrect

I Verification is a kind of exhaustive simulation that explores all
paths in a huge automaton

Extending Verification to Timed Systems

I In addition to the non-determinism associated with external
discrete actions

I There is also dense temporal non-determinism

I We do not know execution times, propagation delays,
inter-arrival times and process durations with precision

I We model them typically using bounded intervals

I Following the safety-critical spirit of verification, we attempt
to reason universally about this uncertainty space

I Compute all possible behaviors under all choices of duration
values

Timed Verification Tools I

I Construct the reachability graph in an extended state-space
which includes the clocks values

I Due to the dense non-determinism one has to treat sets of
clock valuations (similar to hybrid systems)

init guard reset guard resettime time

q1 q2 q3

y ≥ 2x ≥ 1

x ≤ 3 y ≤ 6

0

3

6

y

x

q1

x = y = 0

q1

x = y

0 ≤ x ≤ 3

q1

x = y

1 ≤ x ≤ 3 1 ≤ y ≤ 3

q2

x = 0

q2

1 ≤ y ≤ 6
1 ≤ y − x ≤ 3 1 ≤ y − x ≤ 3

q2

2 ≤ y ≤ 6

q3

y = 0

0 ≤ x ≤ 5

I These sets constitute a restricted type of polyhedra called
zones represented as DBMs

Timed Verification Tools II

I Verification algorithms developed in a series of theses and
tools at Verimag under the guidance of Joseph Sifakis

I Kronos, Open-Kronos, IF: Sergio Yovine, Alfredo Olivero,
Conrado Daws, Stavros Tripakis, Marius Bozga

I The most celebrated and actively maintained tool these days
is UPPAAL (Uppsala and Aalborg), started with Wang Yi,
Paul Pettersen, and Kim Larsen

I Continued under Kim’s guidance with major contributions by
Gerd Behrman and Alexandre David

I The only problem is that this approach rarely scales up
beyond toy problems

I It is also PSPACE-hard

Fighting the Clock Explosion

I I spent around ten years of my life in trying to scale up

I Using numerical decision diagrams that give a unified symbolic
representation for discrete states and clocks (CAV 97)

I Using timed polyhedra that provide a canonical representation
for non-convex sets (ICALP 00)

I Using heuristic search to solve scheduling problems (CAV 01)

I Using bounded model-checking via SMT solvers (FTRTFT 02)

I The last heroic attempt was Compositional Timing Analysis
with Ramzi Ben Salah and Marius Bozga, EMSOFT 2009

I Was all this a waste of time?

On the Sociology of Science

I Before giving a hopefully negative answer let me reflect a bit
on the state of science

I Ideally one would like to apply noble first class science and
mathematics to solve real problems

I Formal Language Theory and Compilation, Information
Theory and Telecommunication, Number Theory and
Cryptography

I We accept good mathematics for its own sake and

I Technological gadgets produced by people who do not
formulate themselves in a clean mathematical way

I However, we should be careful not to commit the double sin
of doing mediocre mathematics over marginal questions
under the excuse of imagined applications

I This seems to be unavoidable in the current state of affairs
and the structure of scientific communities (and industry)

Outline

1. The timed level of abstraction in modeling

2. Timed automata and the heavy burden of the formal
methodist

3. Strange encounters with reality

Getting Real

I Context: in the ATHOLE project we promised to help solving
one of the most pressing questions in informatics:

I How to deploy efficiently application programs on parallel
multi-core architectures

I The self-confidence was based partly on our knowledge of
timed automata, scheduling, SMT solvers, etc.

I The lessons learned were of many sorts, I will mention some

I I am sure most of it is known to many people but each person
discovers things in his own way and order

The Practical and Theoretical Difference between Theory
and Practice

I The theoretician has the liberty to choose the problems and to
ignore aspects that are outside the scope of his interest and
capabilities

I The real practitioner does not have this choice, his deadlines
are not self-imposed and his time is measured

I The theoretician solves general problems: verification applies,
in principle, to all automata, all temporal logic formulae, etc.

I The partitioner solves one problem at a time

I Consequently the real-life scope of a theoretical solution is any
number of problems in [0,∞): it is 0 if the compromises with
reality were too violent, and infinity if they were clever

I A theoretician observation: [0,∞) and 1 are not comparable

From Correctness to Performance

I Correctness is a Boolean performance measure

I A performance measure is a way to associate cost/utility with
individual system behaviors and with the system as a whole

I We can measure elapsed time, associate costs with states and
transitions and accumulate them along runs

I We need not necessarily Booleanize them via inequalities such
as deadline conditions - we can remain quantitative

I We should provide real numbers (and vectors of real numbers
in multi-criteria) as answers

I Many people will agree on that and performance evaluation is
a major issue in the embedded world

Who Needs Universal Quantification?

I Because of safety-criticality or cost-criticality (hardware
errors) verification always aspired to cover all possible points
in the under-determination space

I In other words, a pessimistic worst-case approach

I This is, at the same time, too much and too little for most
systems (soft real-time, best effort, mixed criticality)

I Too much because if the worst-case is rare we can live with it
(as in daily life)

I Too little because we really want to know what will typically
happen, not only what is possible in principle

I Solution: replace measureless duration bounds by distributions

I From Minkowski sum to convolution:

=

=⊕

∗

What to do with these Duration Probabilistic Automata?

I Probabilizing the timing uncertainty does not alleviate the
scalability problem

I Computing probabilities over sets is harder than computing
the sets themselves

I One direction to think about: fat first search, exploring only
reachable sets of high probability

I The other solution: do random Monte-Carlo simulation,
sample the uncertainty space and collect statistics

I Then call it statistical model checking to hide the fact that
after 20 years we resort finally to what practitioners have
always been doing...

One of my Favorite Quotations

I Kurt Vonnegut in Cat’s Cradle says:

I Beware of the man who works hard to learn something, learns
it, and finds himself no wiser than before... He is full of
murderous resentment of people who are ignorant without
having come by their ignorance the hard way

I If we replace exhaustive verification by Monte Carlo simulation
what was the worth of the exhaustive verification episode?

I Well, there are still systems which are critical and require
exhaustivity, especially wrt discrete under-determination

I Newcomers to any domain can bring fresh insights

I The other answer: abstract modeling with clear behavioral
semantics and distinction between different types of
non-determinism has some potential contribution

Between System Builders and Model Builders I

I System builders use formalisms such as C or Verilog to build
their systems

I This coding is unavoidable if you want the system to be built;
You must write this code

I Abstract models used in verification or performance analysis
are considered by them as an extra burden

I By the way, I can understand them: I don’t want anyone to
tell me how to annotate my LaTeX code or use UML to
structure my research

I Building abstract models, not corresponding to something
concretely executable requires capabilities that many system
builders do not have

Between System Builders and Model Builders II

I Consequently they use their designs as the models for
simulation: the program (or circuit) models itself

I When the hardware and software already exists it is the most
efficient way to evaluate performance and correctness

I But in stages of design-space exploration when the hardware
architecture or configuration is not realized

I The software is run on a hardware simulator at some low
granularity (cycle accurate...) and this is expensive

Between System Builders and Model Builders III

I If you want to explore different configurations, task mappings,
scheduling policies, buffer sizing

I Simulation at this level might be too slow

I It is much more efficient to use a discrete event simulator in
timed automaton style

I Computations and communications are modeled as timed
processes that immobilize some resources for some duration

I Of course, you need to fill in the numbers (profiling,
estimation, past experience) but you need not be precise and
deterministic

The Design-Space Explorer I

I A prototype tool developed in the thesis of JF Kempf (2012)
with the help of Marius Bozga and Olivier Lebeltel

I It has four components:

I Application description: task-graphs annotated with
execution times and data transfer quantities

I Input generators: model of task arrivals (periodic, jitter,
delayed periodic, bounded variability)

I Architecture description: processors and their speeds,
memories, busses

I Deployment: mapping and scheduling

The Design-Space Explorer II

I We convert these descriptions into timed automata (in IF)
representing all possible behaviors under all choices from the
timing uncertainty space

I We analyze them using formal verification (when possible and
useful) and mostly via statistical simulation

I Time will tell whether such techniques will find their way to
the design flow of MPSoCs and/or the compilation and
deployment chain

I More details will be given tomorrow by JF Kempf

Conclusions

I Timed automata are the best invention since cut-and-paste

I Although they are n-tuples they can be useful

I Not only for the paper industry or the tool-paper industry

I This requires more blood sweat and tears, less theorem
hunting and less incremental bibliometric activities

I It is Time for a break

