
On Systematic Simulation of Open Continuous

Systems

Jim Kapinski1, Bruce H. Krogh1, Oded Maler2, and Olaf Stursberg3

1 Dept. of Electrical and Computer Engineering
Carnegie Mellon University, 5000 Forbes Avenue

Pittsburgh, PA 15213-3890 USA
krogh@ece.cmu.edu jpk3@andrew.cmu.edu

2
Verimag

Centre Equation, 2, av. de Vignate
38610 Gières, France
Oded.Maler@imag.fr

3 Process Control Lab (CT-AST)
University of Dortmund

44221 Dortmund
Germany

olaf.stursberg@uni-dortmund.de

Abstract. In this paper we investigate a new technique to determine
whether an open continuous system behaves correctly for all admissible
input signals. This technique is based on a discretization of the set of
possible input signals, and on storing neighborhoods of points reachable
by trajectories induced by those signals. Alternatively, this technique,
inspired by automata theory, can be seen as an attempt to make simu-
lation a more systematic activity by finding a small set of input signals
such that the behaviors they induce “cover” the whole reachable state
space.

1 Introduction

Practitioners in control and in other domains use numerical simulations in or-
der to convince themselves that their systems behave correctly. It is a trivial
observation that the level of confidence for analysis results from simulations of
continuous dynamic systems is much lower than what can be obtained for dis-
crete finite-state systems [M98,M01]. Consider first a closed continuous system
over R

n defined by a differential equation ẋ = f(x) and the following question:
does the trajectory ξ of that system starting from a point x0 ever reach a set P?
Even if the differential equation admits a closed form solution, this solution is
not of much help for answering the reachability problem. For example, in linear
systems the problem

∃t eAtx0 ∈ P

is not known to be solvable except for some very special cases [PLY99].

Numerical simulation is based on selecting a discrete set of time points T̄ ⊂
R+, a discrete but very large subset of the state space X̄ ⊂ X (the floating
point numbers), and on successive generation, via numerical integration, of a
discretized approximation of ξ of the form ξ′ : T̄ → X̄ such that for every t ∈ T̄
there is some bound on the distance between ξ[t] and ξ′[t]. The user looks at the
image of ξ′ (with sufficiently fine discretization and graphical resolution it looks
continuous to the human eye) and draws conclusions about ξ. The fact that the
time domain of ξ′ is restricted to T̄ (and, even there, its value only approximates
ξ) can be overcome by replacing the condition ξ′[t] ∈ P with a weaker condition
on the distance between ξ′ and P , or equivalently by over-approximating P by
P ′ to compensate for the approximation error (see Figure 1). This way one can
guarantee that if ξ[t] ∈ P for some t ∈ [0, r] then there is some t′ ∈ T̄ ∩ [0, r]
such that ξ′[t′] ∈ P ′.

The more challenging problem is when the simulated trajectory does not
reach P and the question is when to stop the simulation. In deterministic finite-
state systems every trajectory is ultimately-periodic and the simulation can be
stopped once ξ[t] = ξ[t′] for some t′ < t. This is rarely the case in numerical
simulation of continuous systems, including those that admit limit cycles.4 Nev-
ertheless, an intelligent user observing the evolution of ξ′, and having a strong
intuition regarding the behavior of continuous systems, can become convinced
in the non-reachability of P by ξ after performing the simulation for a finite
amount of time. Given the undecidability of most reachability problems for con-
tinuous systems this is the best we can hope for, excluding, of course, techniques
of a different nature such as those based on Lyapunov functions. So our starting
point is:

Postulate 1 (Simulation is Fine) An intelligent mortal can solve the reach-
ability problem for a well-behaved closed continuous system using a finite amount
of numerical simulation.

P

ξ′
ξ

P ′

x0

Fig. 1. A continuous behavior ξ and its numerical approximation ξ′.

Consider now open systems, that is, systems exposed to input signals, each of
which induces a distinct trajectory. When inputs are interpreted as uncontrolled

4 And if such an equality occurs it might be the result of rounding errors.

disturbances or parameters, we want to convince ourselves that such a system
behaves correctly for all inputs. When we interpret input as control, our goal
is to find an input signal that makes the system behave as desired or optimizes
some performance index. In both cases we want to lift simulation practice from
a single trajectory to many and to this end discretize the space of admissible
inputs.

2 The Basic Idea

Let T = R+ be the time domain, X be a bounded subset of R
n (state space)

and V be a bounded subset of R
m (input space). An open dynamical system is

a system whose dynamics is defined by

ẋ = f(x,v).

We use S(V) to denote all V -valued signals, i.e. functions from T to V , without
putting any restrictions on them. Every input signal ψ ∈ S(V) and initial state
x ∈ X induces a behavior ξ(x, ψ) : T → X and we use the notation

x
ψ,t−→ x′

to denote the fact that ξ(x, ψ)[t] = x′, that is, ψ steers the system from x to
x′ at time t. Our goal is to show that for every ψ ∈ S(V), the trajectory ξ(ψ)
behaves correctly, or, in other words, that the set of states reachable from x,

R(x) = {x′ : ∃ψ ∈ S(V) ∃t ∈ T x
ψ,t−→ x′},

does not intersect P .
For each individual input signal the problem can be reduced to a simulation

of a closed system. If we could conduct a simulation with each and every such
signal, the problem could be solved. However, the set of input signals is very

uncountable, consisting of (2ℵ0)2
ℵ0

elements, and even if we restrict it to more
reasonable sub-classes, such as measurable, piecewise-continuous or even smooth
functions from T to V , its size excludes the possibility of exhaustive simulation.

Our first step is to discretize the set of input signals by discretizing both
time and space. To avoid notational complications we assume V to be a hyper-
rectangle that fits a uniform discrete grid.5

Definition 1 ((δ, ε)-Discretization). A (δ, ε)-discretization of S(V) consists
of a discrete time domain

Tδ = {nδ : n ∈ N}
and a discrete input space

Vε = V ∩ {(n1ε, . . . nmε) : (n1, . . . nm) ∈ Z
m}.

5 Grids that are non-uniform inside a dimension or have different scales at each di-
mension pose no problem for the techniques described in this paper.

A discrete input signal is a function ψ′ : Tδ → Vε which induces naturally a
piecewise-constant signal ψ̄ : T → Vε defined for every r ∈ R+ as ψ̄[r · ε] =
ψ′[brc · ε]. We denote the set of all such signals by Sδ(Vε).

V

T

V ε

Tδ

V ε

T

ψ ψ′ ψ̄

Fig. 2. A signal ψ, its discretization ψ′ and the induced piecewise-constant signal ψ̄.

The whole situation is illustrated in Figure 2. Since Sδ(Vε) is a subset of
S(V), the set of states reachable by piecewise-constant signals,

Rδ,ε(x) = {x′ : ∃ψ ∈ Sδ(Vε) ∃t ∈ T x
ψ,t−→ x′},

is a subset of R(x). However, for most cases of practical interest, we can find
for every signal ψ ∈ S(V) a (δ, ε)-discretization and a piecewise-constant signal
ψ̄ ∈ Sδ(Vε) as close to ψ as we want (in terms of some appropriate metric), by
making δ and ε small enough. For well-behaved systems, this means that for
every reachable point in R we can find a close point in Rδ,ε. Moreover, we can
restrict further the set of reachable states to those that are reached at discrete
time points,

R̄δ,ε(x) = {x′ : ∃ψ ∈ Sδ(Vε) ∃t ∈ Tδ x
ψ,t−→ x′},

and this set approaches Rδ,ε as δ goes to zero.The number of discretized signals
of (real-time) length t is (V/δ)(t/ε) and one can pose some interesting questions
concerning the trade-off between time and space discretization. ¿From now on
we consider fixed δ and ε, use T̄ and V̄ to denote the discretized domains, and
assume:

Postulate 2 (Discretized Signals) Solving the reachability problem with re-
spect to Sδ(Vε), that is, computing Rδ,ε or even R̄δ,ε instead of R, is interesting.

The set Sδ(Vε) is “isomorphic” to one of the most fundamental structures
of computer science, namely the set V̄ ∗ of all sequences over a finite alphabet,
also known as the free monoid generated by V̄ . From now on we will use the
V̄ ∗ notation for signals, with a sequence like v1v2v1 corresponding to a signal
of length 3δ whose value is v1 at [0, δ), v2 at [δ, 2δ) and v1 at [2δ, 3δ). The

juxtaposition of signals corresponds to concatenation of sequences, e.g. v1v2v1 ·
v1v1 = v1v2v1v1v1. We denote by V̄ k the set of sequences of length k, with
V̄ 0 being the set consisting of the empty sequence which corresponds to a zero-
duration signal, and let V̄ ≤k =

⋃k
i=1 V̄

i. The set V̄ ∗ can be visualized as a tree
rooted in the empty word where every node has |V̄ | successors as in Figure 3-(a).
The trajectories induced by elements of V̄ ∗ on the state space inherit the same
structure as can be seen in Figure 3-(b).

v1 v2

v1

v1 v1 v1 v1

v1
v2

v2 v2 v2 v2

v2

x

v1
v2

v1
v1

v2
v2

v2

v1

(a)

x1

(b)

x2

Fig. 3. (a) A finite fragment of the V̄ ∗ tree; (b) The trajectories it induces on X

starting from point x.

Endowing the input space and its induced trajectory space with a tree struc-
ture opens new possibilities for state-space exploration techniques inspired from
the enormous amount of work on graph searching procedures. The input and
state spaces can be explored in breadth-first, depth-first or best-first search
regimes, with or without user intervention. Many heuristics developed for test-
case generation or for algorithmic debugging can be applied, as well as probabilis-
tic techniques. Moreover, if we interpret V as control rather than disturbances,
similar search techniques can be used to synthesize controllers that steer systems
into goal states. In the rest of the paper we demonstrate the potential of this
approach on the problem of computing reachable states under all disturbance
signals. From now on we work in discrete time, i.e. we consider the problem
computing R̄δ,ε.

3 Simulation-guided Reachability

In this section we develop a new algorithm for computing an approximation of
reachable states of an open system. Unlike “traditional” approaches for solving
this problem, e.g. [KV97,V98,ABDM00,CK03], in this approach the exploration
of the state space is guided by individual input signals and the trajectories they
generate.

A useful algebraic notation that we will employ is to write the “action” of
a sequence ψ ∈ V̄ ∗ on a state x as x · ψ = x′, meaning that the input signal ψ
drives the system from x to x′. This notation can be lifted naturally to sets of
states and sets of inputs. The set of points reachable from x at time k is Rk(x) =
{x ·ψ : ψ ∈ V̄ k} and those reachable until time k is R≤k(x) = {x ·ψ : ψ ∈ V̄ ≤k}.
Clearly, Rk+1(x) = Rk(x) · V̄ .

If we are interested only in reachability within a bounded time horizon, we can
do with a finite (although exponential) number of simulations. The semigroup
property x · (ψ · v) = (x · ψ) · v allows us to “re-use” partial simulation; that is,
instead of running two simulations for ψ · v1 and ψ · v2 starting from the initial
state, we can simulate with ψ to reach a point x′ and then simulate from x′,
once with v1 and once with v2. In other words, we can compute Rk+1(x) directly
from Rk(x) using the following standard breadth-first algorithm, which has the
property that at the end of the kth iteration of the main loop the set Reached is
equal to R≤k(x) which is exactly the set of points that we will encounter if we
run |V̄ |k simulations.

Algorithm 1 (Reachability for Discretized Input Signals)

Reached:=Waiting:={x0};New:=∅;
Repeat k = 0, 1, . . .

For each x ∈ Waiting
For each v ∈ V̄

Compute x′ = x · v;
Insert x′ into New;

Remove x from Waiting;
Waiting:=New; Reached:=Reached∪New; New:=∅;

Forever

For unbounded time (or just for large k), even Postulate 1 is not going to help
us because the number of trajectories to simulate grows indefinitely (and expo-
nentially). We borrow the following observation from automata theory, which is
just another instance of the semigroup property: If x ·ψ1 = x ·ψ2, then for every
v we have x · (ψ1 · v) = x · (ψ2 · v) and the simulations with extensions of ψ2

need not be performed since all of them will be “represented” by extensions of
ψ1. Thus, we could modify the algorithm slightly by not inserting to New points
that are already in New or in Reached. For finite automata with n states this
usually results in a dramatic decrease of the number of input sequences needed
to reach all states from |V̄ |n to O(n).

For continuous systems, however, strict equality is rare and should be re-
placed by a weaker notion. Looking, for example, at the trajectories of Figure 3-
(b) we see that inputs v2v1v2 and v2v2v1 lead to two neighboring points x1

and x2. For certain systems and under certain conditions we can guarantee that
for every input ψ, x1 · ψ will remain close to x2 · ψ, and hence the points reach-
able from x1 and their neighborhoods can “represent” those reachable from x2

without the latter being actually computed. This has the potential of slowing
down significantly the explosion in the number of explored trajectories.

x0

x1 x2

x′
2x′

1

x3

x1

x2

(a) (b)

Fig. 4. (a) Someone should represent your ancestors; (b) Nearness is not transitive.

A naive application of this idea will discard (i.e. not insert into New) points
that are close to previously-reached points. This will not work, however, as the
two following types of counter-examples show. In the simpler one, shown in
Figure 4-(a), we have a slow system such that the successor x2 = x1 · v is
close to x1 and the simulation is stopped without any other representative of
the trajectory that goes further away from x1. This problem, which is the same
as the problem of deciding when to stop a single simulation, could be easily
prevented by not discarding a point just because it is in the neighborhood of its
predecessor.

The second counter-example in Figure 4-(b) is more problematic. Suppose
that x1 and x2 are two close points in Rk(x0) for some k and we decide not
to explore x2 further and let it be represented by x1. At some later time k′ a
successor x′

1 of x1 is close to some x3 and is discarded, but the successor x′
2

of x2 is not close to x3 and is not represented by it. In other words, nearness,
unlike equality, is not transitive.

To overcome this problem we move from a point-based to a neighborhood-
based algorithm, where a neighborhood N(x) is a set consisting of all points
close to x according to some metric (a metric which may change during the
system evolution). The problem is then re-formulated as finding R̄δ,ε(N(x0)),
all points reachable from an initial neighborhood. The action of an input v on
a neighborhood N(x), denoted by N(x) · v is the result of applying v to all
elements of N(x), yielding a neighborhood N ′(x′) of x′ = x · v. Algorithm 1
when applied to N(x0) will produce at each step k a set of neighborhoods whose
union is exactly the set of points reachable from N(x0) at time k.

Now we can record the fact that a point represents another point by in-
creasing its neighborhood, that is, whenever two close points are “merged” their
neighborhoods are merged into a neighborhood that contains both. This way an
algorithm for over-approximating R̄δ,ε(N(x0)) is obtained. We will first describe
the exploration technique in abstract terms, without specifying the actual form
of neighborhoods and operations. The algorithm needs three operations:

1. Next which produces an over-approximation of the action of an input on a
neighborhood, that is, a function satisfying

Next(N(x),v) ⊇ N(x) · v.

2. JoinTest, a function that selects from a set of neighborhoods one which
should be merged with a given neighborhood. For example, JoinTest(Set,N(x))
may return the neighborhood N ′(x′) ∈ Set which minimizes some distance
between N(x) and N(x′). It may return the empty set in case no elements
of Set is close to N(x).

3. Join, merging two neighborhoods into a containing neighborhood, a function
satisfying

Join(N1(x1), N2(x2)) ⊇ N1(x1) ∪N2(x2).

Algorithm 2 (Reachability with Neighborhoods)

Reached:=Waiting:={N(x0)}; New:=∅;
Repeat k = 0, 1, . . .

For each N(x) ∈ Waiting
For each v ∈ V̄

Compute N ′(x′) = Next(N(x),v);

N̂(x̂) := JoinTest(Reached∪New,N ′(x′));

If N̂(x̂) 6= ∅ Then

If N ′(x′) 6⊆ N̂(x̂) Then

Remove N̂(x̂) from New and from Reached

If N̂(x̂) ⊆ N ′(x′) Then
Insert N ′(x′) into New

Else

Compute N∗(x∗) = Join(N ′(x′), N̂(x̂));
Insert N∗(x∗) into New

Else
Insert N ′(x′) into New;

Remove N(x) from Waiting;
Waiting:=New; Reached:=Reached∪New; New:=∅;

Forever

The JoinTest function for merging neighborhoods can be subject to heuristic
considerations related to the trade-off between accuracy (the degree of over-
approximation) and complexity (the number of points).

Claim 1 (Coverage) For every k

R≤k(N(x0)) ⊆
⋃

N(x)∈Reached

N(x)

holds at the end of the kth iteration of the main loop of Algorithm 2.

4 Linear Systems in Discrete time

In this section we describe a concrete version of the algorithm for linear time-
invariant (LTI) systems in discrete time, i.e., systems with state equations of the
form

xk+1 = Φxk + Γvk,

with Φ nonsingular.6 As neighborhoods we use ellipsoids, each parameterized by
a positive definite symmetric matrix Q ∈ R

n×n, i.e.

NQ(x) = {x̂ : ‖x̂ − x‖Q−1 ≤ 1},

where ‖x‖Q is defined as xTQx. The action of an input v on a neighborhood is
defined as

Next(NQ(x),v) = NQ′(x′)

with x′ = x · v and
Q′ = ΦQΦT .

The join operation for merging of two ellipsoidal neighborhoods is defined as

Join(NQ1
(x1), NQ2

(x2)) = NQ̃(x̃),

where NQ̃(x̃) is the minimum volume ellipsoid containing NQ1
(x1) and NQ2

(x2).

Efficient LMI-based numerical routines exist for computing Q̃ and x̃ [BGFB94].
The function JoinTest(Set,N(x)) returns the ellipsoid in Set whose center min-
imizes the distance to x, provided that this distance is smaller than a given
threshold (a tunable parameter of the algorithm).

It is not hard to see that this concrete version of Algorithm 2 satisfies Claim 1
and computes an over-approximation of the reachable set. It is important to dis-
tinguish this technique from other reachability algorithms [CK99,BM99,ABDM00]
including those that use ellipsoids for representing reachable sets [KV97,V98,BT00].
Typically such algorithms are inherently “breadth-first” where at every step k
there is one object (a polyhedron or an ellipsoid) that represents all reachable
points for all inputs at time k. This set is computed by running an optimiza-
tion over the input domain V to find the input that takes the system mostly
“outwards”. Our approach is more enumerative in nature and may use sev-
eral ellipsoids at each time step. Our technique can be tuned by modifying the

6 We note that the matrix Φ is always nonsingular when the discrete-time system is
obtained by sampling a continuous LTI dynamic system.

neighborhood size, the JoinTest definition, and the Next and Join operations.
Working with small neighborhoods makes the algorithm closer to exhaustive
simulation while larger neighborhoods make it closer to “standard” reachability
algorithms. Like those algorithms, ours can be easily adapted to hybrid automata
by intersecting the reachable sets with transition guards.

5 Experimental Results

We have implemented the algorithm in MATLAB and we illustrate its behavior
with the following two examples.

5.1 Servo System Example

For the servo system shown in figure 5 we want to show that for all reference
inputs, the distance between the actual value and the reference remains within
a given bound. The system has first-order plant dynamics and a first-order ref-
erence signal filter. In the figure, x1 is the plant output, v is the reference input,
x2 is the output of the reference signal filter, and d = x2 − x1 is the error. The
continuous time dynamic equations are given by ẋ = Ax +Bv with

A =

[

−g g
0 − 1

τ

]

B =

[

0
1
τ

]

For piecewise constant inputs with a sampling period of δ, the sampled system
dynamics are

xk+1 = Φxk + Γvk

Φ = eAδ Γ = A−1(eAδ − I)B

For g = 10, τ = 0.1, and δ = 0.1 this yields

Φ =

[

0.368 0.368
0.000 0.368

]

Γ =

[

0.264
0.632

]

g
v x2 d x1+

-

Fig. 5. A simple servo system.

We wish to verify that the system does not reach the set

P = {x : |x1 − x2| > 1}

for all sequences in V̄ ∗, V̄ = {0.0, 0.5, 1.0}. Figure 6-(a) shows one sample 8-
step trajectory of the system and Figure 6-(b) shows the states reached along
the trajectories generated by all elements of V̄ 8 starting from x0 = [0 0]T . The
boundaries of P are the diagonal lines in the figure. The number of simulation
points is

∑8
k=0 3k = 9841. Figure 6-(c), generated by exhaustive simulation (i.e.,

iterative application of theNext operator), shows the set of states reachable from
all points within N10I(x0) (a circle with radius

√
0.1 centered at the origin).

Figure 6-(d) shows the result of applying 8 iterations of Algorithm 2 to the
example, starting with the same initial set. Only 273 Next operations were
required and upon completion of the procedure, Reach contained only the 21
ellipsoids shown in the figure.

Figure 7 shows a comparison of the computation time for exhaustive simula-
tion versus our algorithm for the servo system. Note that that the computation
time of our algorithm grows only linearly with the number of time increments
in contrast to the exponential inherent in exhaustive simulation. For small num-
bers of steps (k < 8) exhaustive simulation requires less computation time due
to the LMI optimizations in the Join operation of our algorithm. We are cur-
rently investigating other examples of stable systems hoping to reproduce the
phenomenon of sub-exponential growth in the number of computed points.

5.2 A Marginally Stable System

We next consider a four-dimensional system with a four-dimensional input space
derived from the continuous-time system ẋ = Ax + v with

A =









0 1 0 0
−8 0 0 0

0 0 0 1
0 0 −4 0









and

v ∈ V = [−1, 1] × [−0.1, 0.1] × [−1, 1] × [−0.1, 0.1].

This example appeared first in [KV97], p. 279, where it was subject to an
ellipsoid-based reachability algorithm and was treated later in [D00], p. 83, using
polyhedra. The system is marginally stable, but the inputs can make it diverge.

As a discretized input space for the continuous-time model we use the ver-
tices, i.e.

V ′ = {−1, 1} × {−0.1, 0.1} × {−1, 1} × {−0.1, 0.1}.
Time-discretization with δ = 0.2 yields

xk+1 = Φxk + vk,

where Φ = e0.2A, and vk ∈ V̄ , where

V̄ = {(Φ− I)v : v ∈ V ′}

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

x
1

x 2

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

x
1

x 2

(a) (b)

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

x
1

x 2

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

x
1

x 2

(c) (d)

Fig. 6. (a) A sample trajectory of the system under the input ψ = 1.0 ·0.5 ·1.0 ·0.0 ·0.0 ·

0.5 · 0.5 · 0.5; (b) The states reachable from (0, 0) for all 8-step trajectories generated
by exhaustive simulation; (c) states reachable from a circle around (0, 0) for all these
trajectories as computed by exhaustive simulation; (d) The over-approximation of the
reachable states as computed by our algorithm.

Fig. 7. Computation times for exhaustive simulation and our algorithm for the servo
example

Figure 8 shows the over approximation of the set of reachable states (pro-
jected onto third and fourth dimensions) generated with Algorithm 2, computed
for 3 time steps, starting with the top left plot showing the initial ellipsoid,
which is a hyper-sphere of radius 0.01. Note that the ellipsoids that appear to
be subsets of other ellipsoids are not subsets in the full four-dimensional space.
For each time increment, the set of reachable states grows due to the fact that
the system is marginally stable.

Figure 9 shows a comparison of the computation times between exhaustive
simulation and systematic simulation. For this system, the time required by
systematic simulation is exponential in the number of time increments. For the
servo system many paths in the search tree terminate because new ellipsoids
(N ′(x′) in Algorithm 2) land completely within existing ellipsoids; only few paths
in the marginally stable example terminate.

6 Conclusions

We have developed a framework for systematic simulation of open continuous dy-
namical system. By relating the structure of the discretized input space with the
structure of the induced trajectory space, state-space exploration can be done as
a variation of graph search algorithms. As a first application of this framework
we developed a new algorithm for computing reachable sets. We intend to con-
tinue this work by improving the algorithm and comparing its performance with
that of other algorithms, by developing other search techniques and by applying
these ideas to controller synthesis.

Acknowledgments We would like to thank Eugene Asarin and some anony-
mous referees for many useful comments concerning this paper. This work was

partially supported by the EC project IST-2001-33520 CC (Control and Computation)

by DARPA (contracts F33615-02-C-0429 and F33615-00-C-1701), ARO (DAAD19-01-

1-0485) and NSF (CCR-0121547).

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
3

x 4

k=0

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

k=1

x
3

x 4

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
3

x 4

k=3

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
3

x 4

k=2

Fig. 8. Reachable set for the marginally stable example from 0 to 3 time increments,
projected on the first two variables.

Fig. 9. Computation times for exhaustive simulation method and systematic simulation
for the marginally stable example

References

[D00] T. Dang, Verification and Synthesis of Hybrid Systems, PhD thesis, INPG,
Grenoble, 2000.

[ABDM00] E. Asarin, O. Bournez, T. Dang and O. Maler, Reachability Analysis of
Piecewise-Linear Dynamical Systems, in B. Krogh and N. Lynch (Eds.),
Hybrid Systems: Computation and Control, 20-31, LNCS 1790, Springer,
2000.

[BM99] A. Bemporad and M. Morari, Verification of Hybrid Systems via Mathe-
matical Programming, in F.W. Vaandrager and J.H. van Schuppen (Eds.),
Hybrid Systems: Computation and Control, 31-45, LNCS 1569, Springer,
1999.

[BT00] O. Botchkarev and S. Tripakis, Verification of Hybrid Systems with Linear
Differential Inclusions Using Ellipsoidal Approximations, in B. Krogh and
N. Lynch (Eds.), Hybrid Systems: Computation and Control, 73-88, LNCS
1790, Springer, 2000.

[BGFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, SIAM, 1994.

[CK99] A. Chutinan and B.H. Krogh, Verification of Polyhedral Invariant Hybrid
Automata Using Polygonal Flow Pipe Approximations, in F.W. Vaan-
drager and J.H. van Schuppen (Eds.), Hybrid Systems: Computation and
Control, 76-90, LNCS 1569, Springer, 1999.

[CK03] A. Chutinan and B.H. Krogh, Computational Techniques for Hybrid Sys-
tem Verification, IEEE Transactions On Automatic Control, 2003.

[KV97] A. Kurzhanski and I. Valyi, Ellipsoidal Calculus for Estimation and Con-
trol, Birkhauser, 1997.

[M98] O. Maler, A Unified Approach for Studying Discrete and Continuous Dy-
namical Systems, Proc. CDC’98, IEEE, 1998.

[M01] O. Maler, Control from Computer Science, IFAC Symposium Nonlinear
Control (NOLCOS’01), Elsevier, 2001.

[PLY99] G. Pappas, G. Lafferriere and S. Yovine, A New Class of Decidable Hy-
brid Systems, in F.W. Vaandrager and J.H. van Schuppen (Eds.), Hybrid
Systems: Computation and Control, LNCS 1569, 29-31, Springer, 1999.

[V98] P. Varaiya, Reach Set Computation using Optimal Control, Proc. KIT
Workshop, Verimag, Grenoble, 1998.

