
Sensitive State-Space Exploration

Thao Dang, Alexandre Donzé, Oded Maler and Noa Shalev

Abstract— In this paper, we describe a simulation-based
approach to the verification of high dimensional nonlinear
systems subject to disturbances and uncertainty in the initial
conditions. Standard simulation can only sample finitely many
initial states and disturbance signals and cannot verify cor-
rectness in an exhaustive manner. The alternative approach of
computing all the reachable states of the system using set-based
simulation, can provide, in principle, correctness proofs but is
computationally expensive especially for high dimensional and
nonlinear systems. In this paper we propose an approach that
provides a good compromise between set-based computation
and simulation by combining guided random exploration of the
state space together with sensitivity analysis. The exploration
technique is used to choose input signals that guarantee good
coverage of the reachable set, while sensitivity information is
used to create neighborhoods around explored behaviors that
cover the trajectories generated by neighboring input signals.

I. INTRODUCTION

Simulation-based verification of continuous and hybrid

systems [11], [8] attempts to demonstrate, as rigorously

as possible, the correctness of a system based on a finite

number of simulations that sample only finitely-many initial

conditions and input signals. The potential advantages of

this approach, compared to “traditional” reachability-based

techniques [1] are:

• Simulations are closer to the world view of practition-

ers and can be better understood than the “tubes” of

trajectories computed in reachability-based methods;

• Simulation-based methods can be applied to complex

nonlinear systems for which no efficient reachability

computation technique has been developed to date.

• Simulation can be applied to systems given as a simu-

lator black-box without a decent mathematical descrip-

tion, as is often the case with transistor-level circuit

models;

• Heuristics can be used to guide the process to discover

property violations quickly;

• The computational burden associated with storing sets

of states can sometimes be alleviated.

The present paper combines two recent research threads

in simulation-based verification and reachability analysis:

Guided random exploration: In [7], [2], [12], [3], [16] guided

random exploration methods originating from robotics path

planning [13], are used to generate input signals that induce

trajectories that have good coverage of the reachable state

space. The g-RRT procedure [14], which is based on the star

T. Dang, O. Maler and N. Shalev are with Verimag, 2 Avenue de Vignates,
38610 Gières, France, e-mail: thao.dang@imag.fr, A. Donzé is with the
Department of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213, USA, e-mail: adonze@cs.cmu.edu

discrepancy coverage measure, generates trees of trajectories

such that in the limit, for every ǫ > 0, every reachable state

of the system has, with probability 1, an ǫ-close state in an

exploration tree. Of course, since the algorithm is run for a

finite number of steps, the only information it can provide

upon termination is whether one of the simulated trajectories

violates the property in question.

Sensitivity analysis: In [6] we have shown that sensitivity

information, already available in numerical simulators, can

be used to approximate the reachable set based on simulated

trajectories. The technique developed in [6] can verify safety

properties of a system subject to uncertainty in initial condi-

tions using a finite samplings of the initial set. A sampling

of the initial set X0 defines a ball cover with each ball

centered around a sample point and the radius is determined

by the sample density. Sensitivity information is then used

to compute for each ball Nx a ball Nx(t) such that all

trajectories originating from Nx end up at time t in Nx(t).
Since Nx(t) is an over approximation of the states reachable

from Nx, its intersection with a set of forbidden states does

not imply property violation, and the procedure of [6] refines

the sampling of X0 until a safety property is proved or

a counter-example is found. This technique cannot, in its

present form, handle systems subject to input uncertainty

where, in addition to sampling the initial set, one has to

sample the input space in every step of the simulation.

In the present paper we combine these two ideas. We use

g-RRT to generate trajectories that achieve good coverage

of the reachable set. If any of these trajectories reaches the

bad set we are done and the safety property is violated.

Otherwise, when a trajectory gets dangerously close to

the bad set we use sensitivity analysis to check whether

trajectories in its neighborhood (trajectories generated by

neighboring input signals) may intersect the bad set. To this

end we extend the technique of [6] to deal with sensitivity

to variation in the input and expand the suspicious trajectory

with sensitivity balls that over-approximate its neighboring

trajectories. If an intersection with the bad set is detected we

conclude that the system is not robustly safe, otherwise we

continue the exploration in other branches of the tree. We

have implemented this technique and used it to verify some

complex examples.

The rest of the paper is organized as follows. Section II

summarizes the approximate computation reachable states

using sensitivity information with respect to initial conditions

and input. Section III summarizes the g-RRT procedure while

in Section IV we augment the latter by the former, leading

to an algorithm that gives a more refined verification answer.

The application of the algorithm to some complex examples

is described in Section V, followed by concluding remarks.

II. REACH SET ESTIMATION USING SENSITIVITY

A. Preliminary Definitions

We are interested in dynamical systems of the form

ẋ(t) = f(x(t), u(t))

where x ranges over a state space X ⊆ R
n and u(·) is an

admissible input function of the form u : R
+ → U ⊂ R

m.

We assume that f are Lipschitz continuous and that all u(·)
are piecewise continuous. We will refer to such systems as

(X , U, f,X0) where X0 ⊂ X is a set of initial states.

Definition 1 (Trajectories): Given a positive real number

h > 0 and an admissible input function u(·), x
u(·),h
−→ x′ is a

trajectory from x to x′, iff x′ = ξx,u(·)(h) where ξx,u(·)(t) is

the solution of the differential equation with initial condition

x and under the input u(·).
We will be interested by the following question: given a

systems (X , U, f,X0) and a set B ⊂ X of bad states, is there

an initial state x0 ∈ X0, a time h, an input u(·) and a state

x′ ∈ B such that x′ = ξx)0,u(·)(h). We use ⊕ to denote the

Minkowski sum of two sets, that is, X ⊕ Y = {x + y : x ∈
X, y ∈ Y }. For a set X and a linear transformation A, we

let AX = {Ax : x ∈ X}.

B. Autonomous Evolution

In the following, we present a method to approximate

reachable sets using sensitivity analysis techniques that was

initially proposed in [6]. We first assume that the system is

deterministic admitting only one u(·) which is continuous.

Consequently, we drop u(·) in the notation ξx which denotes

the unique trajectory starting from ξx(0) = x. Let Nx be a

neighborhood of a state x from which we want to estimate

the set reachable at time h. We have

Rh(Nx) =
⋃

x′∈Nx

ξx′(h).

We first explain how this set can be approximated using

sensitivity analysis. The concept of sensitivity to initial

conditions is a classical topic in the theory of dynamical

systems. It is concerned with the question of the influence

on a trajectory of a perturbation of its initial state. To get a

first order approximation of this influence, we use the Taylor

expansion of ξx(t + h) seen as a function of x. For ǫ ∈ R
n

we have:

ξx+ǫ(h) = ξx(h) +
∂ξx

∂x
(h)ǫ + O‖ǫ‖2 (1)

The second term in the right hand side of (1) is then

the derivative of the trajectory with respect to the initial

condition x. Since x is a vector, this derivative is a matrix,

known as the sensitivity matrix. We note it as

Sx(h) =
∂ξx

∂x
(h).

Given a state x′ in Nx, we can use this matrix to get an

estimation of ξx′(h) by dropping higher order terms in (1):

ξ̂x′(h) = ξx(h) + Sx(h)(x′ − x) (2)

Nx

x
ξx(h)

Rh(Nx)

R̂h(Nx)

Fig. 1. Approximation of the reachable set using one trajectory and the
corresponding sensitivity matrix. In this picture, the initial set is an ellipsoid
and thus, by the affine transformation, so is the approximation of Rh(Nx)

If we extend this estimation to all the states x′ ∈ Nx, we

get the following estimation of the reachable set Rh(Nx):

R̂h(Nx) =
⋃

x′∈Nx

ξ̂x′(h) (3)

= {ξx − Sx(h)x} ⊕ Sx(h)Nx (4)

Note that this estimation is an affine transformation of the

initial neighborhood Nx (see Figure 1) which is exact in the

special case of affine dynamics.

To improve the precision of the approximation scheme

(3) it has been suggested in [5] to refine the sampling of the

initial set, that is, to partition it into smaller neighborhoods,

to issue one trajectory from each of those, along with their

sensitivity matrices, and to approximate Rh(Nx) with the

union of the sets obtained by the above transformation. Due

to (1), the resulting approximation error will then decrease

quadratically w.r.t. the size ǫ of the neighborhoods in the

initial sampling.

C. Computing Sensitivity Matrices

Computing the sensitivity matrix requires to compute the

derivative of ξx with respect to x. It is very unlikely in

general that we have an explicit formulation of ξx hence

we cannot obtain its derivative directly. However its value at

time t = 0 is trivially the identity matrix and we can relate

its evolution to that of ξx. Indeed, ξx satisfies the ordinary

differential equation ẋ = f(x, u) with ξx(0) = x meaning

that ∀t ∈ [0, h]

ξ̇x(t) = f(ξx(t), u(t)). (5)

Then, if we take the time derivative of this expression by

applying the chain rule to the right hand side term we obtain

Ṡx = ∂xf(ξx, u) Sx, Sx(0) = In (6)

where ∂xfq is the derivative of fq w.r.t. x. Then computing

the full sensitivity matrix Sx amounts to solving (5) and (6)

i.e. to solve n + 1 ordinary differential equations of order

n. Note that the cost can be made less than that of the

resolution of n + 1 different systems since the Jacobian fx

can be extensively reused in the computation [15], [9].

The precise computation of Rh(Nx) thus relies on the

size of Nx and on the precise computation of the trajectory

and the sensitivity matrix at time h. To do this, we use

a numerical ODE solver with an error control mechanism

[15], [9]. To compute the solutions of (5) and (6) at time

h, the solver typically performs several internal steps to

get intermediate values at time instants in (0, h). Each

internal step satisfies the tolerances specified to the solver.

The method also guarantees that an interpolated solution

between two internal steps satisfies these tolerances as well.

Thus, by using such an interpolated solution, one can get an

estimation of the trajectory and the sensitivities, and thus of

the reachable set, at any time instant between 0 and h. The

precision of this estimation is controlled by the tolerances

specified to the ODE solver.

D. Extension to Non Deterministic Inputs

We now consider the case where the input function u(·)
is constant on the interval, u(t) = u ∈ U for all t ∈ [0, h].
Given an initial state x and an input u, we get a unique

trajectory ξx,u on [0, h]. Let Su(h) be the derivative of

ξx,u(h) w.r.t. u, that is, the sensitivity matrix related to the

input parameter u. Then taking a neighboring state x′ and a

neighboring input u′ and applying the Taylor expansion as

in (1), we get

ξx′,u′(h) = ξx,u(h) + Sx(h) (x′ − x) + Su(h) (u′ − u) (7)

+O‖x′ − x‖2 + O‖u′ − u‖2 (8)

By ignoring higher order terms, we can then build an

estimation of ξx′,u′ for any x′ and u′ using ξx,u and matrices

Sx and Su:

ξ̂x′,u′(h) = ξx,u(h) + Sx(h) (x′ − x) + Su(h) (u′ − u) (9)

and correspondingly an estimation of the set reachable from

initial states in Nx using inputs in Nu:

R̂h(Nx,Nu) =
⋃

(x′,u′)∈Nx×Nu

ξ̂x′,u′(h) (10)

= {ξx(h)} ⊕ Sx(h)(Nx − x) ⊕ Su(h)(Nu − u) (11)

Note that Su can be computed by solving:

Ṡu = ∂xf(ξx,u, u) Su + ∂uf(ξx,u, u) (12)

Su(0) = 0 (13)

where ∂uf is the partial derivative of f w.r.t. u.

This means that we can compute the set reachable from Nx

using constant inputs in Nu on the interval [0, h]. However,

the process of refinement (at least its straightforward realiza-

tion) is now more costly: if we refine Nu into two smaller

neighborhoods Nu1 and Nu2 then the number of piecewise-

constant input signals with which we need to simulate in

order to approximate the states reachable at time Nh is

2N . In the following sections we propose an intermediate

approach using an exploration algorithm that computes tra-

jectories with a good coverage property, and estimates the

actual reachable sets only around those trajectories that get

too close to the bad set B.

III. RRT-BASED EXPLORATION

RRT (Rapidely-exploring Random Trees) [13] is a family

of of space exploration techniques, motivated by robotic path

planning. In the context of dynamical systems with input, it

can be used to generate input signals that induce trajectories

with a good coverage of the reachable part of the state space.

In what follows we describe g-RRT , a “guided” variant of

this technique, first presented in [14].

A. The g-RRT Algorithm

To simplify presentation assume that X0 is a singleton

set {x0} so that we have one tree instead of several. We

assume a fixed time-discretization step h during which the

input remains constant. By abuse of notation we write x′ =
f(x, u) if x′ = ξx,u(h), that is, x′ is reached from x when

the constant input u is applied for duration h.

Definition 2 (Exploration Trees): An exploration tree for

a dynamical system (X , U, f, {x0}) is a labeled tree T =
(S,E, s0) where S ⊆ X is a set of nodes, E ⊆ S × U × S
is a set of labeled edges, and s0 = x0 is the root of the tree.

An edge (x, u, x′) appears in the tree only if x′ = f(x, u).

The g-RRT algorithm (Algorithm 1) works as follows.

Initially, the tree has only a root. At every step, a goal state

xg ∈ X − S is chosen semi-randomly (we explain later

how this choice is made). Then, for the nearest neighbor

x∗ of xg in S we find u∗ ∈ U which minimizes the distance

between xg and f(x∗, u). The node x′ = f(x∗, u∗) and the

edge (x∗, u∗, x
′) are inserted into the tree. The process is

repeated J times, where J is determined according to the

system characteristics and the computational budget. We use

Euclidean distance while selecting x∗ and u∗. When X0 is

not a singleton, we sample it and grow several trees rooted

by those initial points.

Algorithm 1 The g-RRT Exploration Algorithm

T := (x0, ∅, x0) ⊲ initial tree

repeat j = 1, 2 . . .
x′ := ADDNEW ⊲ explore a new node

if x′ ∈ B then ⊲ new state is bad

return unsafe

end if

until j = J
return no violation found

Procedure ADDNEW

xg := GUIDEDSAMPLING(S,X)
x∗ := arg minx∈S |x − xg|
u∗ := arg minu∈U |f(x∗, u) − xg|
x′ := f(x∗, u∗)
S := S ∪ {x′}
E := E ∪ {(x∗, u∗, x

′)}
return (x′)

B. Coverage-guided Sampling

The only random and heuristic component of Algorithm 1

is the GUIDEDSAMPLING procedure for choosing the goal

state xg toward which the rest of the ADDNEW procedure

tries to steer the system. In classical RRT algorithms, xg is

typically sampled uniformly over the state space. In contrast,

our procedure attempts to improve the sample coverage. To

this end we use the star discrepancy measure [4], that we

explain intuitively below.

For simplicity assume that X is a box (hyper rectangle)

and let P ⊂ X be a finite sample whose coverage quality we

want to evaluate. The local discrepancy of P with respect to

sub-box Y of X is

D(P,Y) = |♯(P ∩ Y)/♯(P) − λ(Y)/λ(X)|

where ♯ denotes the number of elements and λ denotes

volume. Intuitively, D(P,Y) will be close to 0 when the

share of Y in the sample is more or less proportional to

its volume. On the other hand D(P,Y) will approach 1
when either Y is a low-volume set with a lot of sample

points or a high-volume set sampled very sparsely. The

star discrepancy of P with respect to X is defined as

D∗(P,X) = supYD(P,Y). Intuitively, the star discrepancy

is a measure for the irregularity of a set of points with large

value of D∗(P,X) indicating that points in P are not well

equidistributed over X .

To evaluate the coverage of a set of states, we estimate a

lower and upper bound of the star discrepancy (exact com-

putation is hard). These bounds, as well as the information

obtained from their estimation, are used to decide which parts

of the state space have been sufficiently explored and which

parts need to be explored further. Our implementation keeps

X partitioned into a finite set Π of elementary boxes, where

the partition is refined during execution. At each step we

first select a box Y ∈ Π with a distribution biased toward

coverage improvement, that is, we favor an elementary box

such that adding a new point to it will reduce the lower and

upper bounds on the star discrepancy. Once the box has been

selected, a random point is drawn from it uniformly. More

details concerning the g-RRT procedure can be found in [14].

IV. COMBINING BOTH APPROACHES

We assume from now on that U is discretized into a

finite number of points Û = {u1, . . . , uk} around which

neighborhoods {Nu1 , . . . ,Nuk} are defined whose union

covers U . The exploration tree is thus labeled by elements

of Û .

A. The Algorithm

In Algorithm 2, the function ADDNEW inserts a new node

x′ to the exploration tree as in Algorithm 1 and behaves

likewise if x′ ∈ B. If x′ is only close to the bad set, the path

τ from the root to x′ is retrieved. Then, as described below,

the function REACHSENS computes an approximation R of

the reachable set along that path using sensitivity analysis.

If R intersects B the algorithm concludes that the system is

not robustly safe.

Algorithm 2 sg-RRT : Combining g-RRT with Sensitivity

T := (x0, ∅, x0) ⊲ initial tree

repeat j = 1, 2 . . .
x′:= ADDNEW

if x′ ∈ B then ⊲ new state is bad

return unsafe

end if

if |x′ − B| ≤ ǫ then ⊲ new state close to bad

τ := TRACETO(x′) ⊲ retrieve the path to x′

R :=REACHSENS(τ) ⊲ compute neighborhood

if R∩ B 6= ∅ then

return not robustly safe

end if

end if

until j = J
return no violation found

Assume that TRACETO returns a trace of the form

τ : x0
u1−→ x1

u2−→ · · ·
uN−→ xN

we would like to approximate all the states reachable at time

T = Nh by similar traces, that is, traces of the form

τ ′ : x′
0

u′

1−→ x′
1

u′

2−→ · · ·
u′

N−→ x′
N

where x′
0 ∈ Nx0

and u′
k ∈ Nuk

for every k = 1..N . To

this end, we first compute the sensitivity matrix Sx0
(T)

w.r.t. x0 by solving (6) on [0, T]. Then we compute the

matrices Suk
(h) for each step from xk to xk+1 as described

in Section II-D. Finally, we remark that due to the time-

invariance of the dynamics, the sensitivity matrix Suk
(T)

w.r.t. the input uk at time T is the product

Suk
(T) = Suk

(h)Suk+1
(h) . . . SuN

(h). (14)

From there, we can deduce the estimation for the reachable

set at time T that REACHSENS will return:

R = {xN} ⊕ Sx0
(T)(Nx0

− x0)

⊕
N

⊕

k=1

Suk
(h)(Nuk

− uk) (15)

Note that the precision of this approximation depends on

the size of the sets Nx0
and Nuk

for all k. The size of the

latter depends on the density of the discretization Û of U that

we use. In fact, there is a tradeoff here between accuracy and

complexity: the larger is Û the smaller are the neighborhoods

surrounding the trajectories but more of them are needed to

cover the reachable set.

B. Bounding boxes

To compute the intersection of R with B we need to

represent it in a form for which intersection is easy to

compute. In the following we assume that the sets Nx0
and

{Nuk
}N

k=1 are boxes of the form

Nx0
=

n
∏

i=1

[xi
0, x

i
0] and Nuk

=

n
∏

i=1

[ui
k, ui

k],

and the B is a box as well. We would want to find the

smallest box

NxN
=

n
∏

i=1

[xi, xi]

containing R. Then for every dimension i, xi is the solution

of the following linear optimization problem:

max
x̃0∈Nx0

, ũk∈Nuk

xi s.t.

x = xN + Sx0
(x̃0 − x0) +

N
∑

k=0

Suk
(ũk − uk)

and xi is a solution of the corresponding minimization

problem. Thus to find NxN
we have to solve 2n linear

programs with n+Nm variables each. Since N is typically

large we use an incremental procedure that computes an

approximation of Nxk+1
from Nxk

and Nuk
.

V. EXAMPLES

We have applied a preliminary implementation of Algo-

rithm 2 to several examples.

A. Helicopter

We consider a simplified model of a quadri-rotor heli-

copter [10] (see Figure 2). Only the altitude z and the axis

x are considered. The equations of motions are given by:

ẍ = −
b

m
ẋ +

1

m
(u1 + u2 + u3 + u4)sin(θ)

z̈ = −
b

m
ż +

1

m
(u1 + u2 + u3 + u4)cos(θ) − g

θ̈ =
L

Iy

(u1 − u3) −
c

L
θ̇

where m = 0.5184, c = 0.15, L = 0.236, Iy = 0.04774.

The state variable is then x = (ẋ, x, ż, z, θ̇, θ). Given a goal

state x
∗, a linear quadratic regulator can be used to drive the

system to x
∗ from any state. It is given by:

u = K(x − x
∗) +

mg

4
1

where 1 is the vector (1, 1, 1, 1) and

K =

−.8521 .7071 −.5457 −.5 −1.122 −4.461
0 0 −.5457 −.5 0 0

−.8521 .7071 −.5457 −.5 1.1217 4.461
0 0 −.5457 −.5 0 0

We assume that due to imperfections in the sensors, the

angle velocity θ̇ is estimated with an additional error w by

the regulator, meaning that the value of u it computes uses
˜̇
θ = θ̇+w instead of θ̇. Our goal is to verify that despite this

error, the system still reaches its goals state while the angle

θ always remains less than O.15 rad. We present preliminary

results on Figure 3.

L

L

mg

u1

u3

θ

z

x

Fig. 2. Simplified model of a quadrirotor helicopter

xx

θ

θ

z

(a) (b)

Fig. 3. Preliminary results for the quadrirotor helicopter. The vehicule is
assigned three way-points: (x = 1, z = 1, θ = 0), (x = 2, z = 1, θ = 0)
and (x = 3, z = 0, θ = 0). The solid line represents the ideal trajectory
without uncertainties. (a) Simulation states around the ideal trajectory
generated by the exploration algorithm. (b) Reachable set estimation around
one trajectory. This estimation is found to intersect with θ = 0.15 thus the
system is declared not robustly safe.

B. A Robotic Vehicle Benchmark

This example is adapted from the robotic navigation sys-

tem benchmark of [16]. We consider a car with the following

continuous dynamics with 5 variables: ẋ = vcos(θ), ẏ =
v sin(θ), θ̇ = v tan(φ)/L, v̇ = u0, φ̇ = u1 where x, y, θ
describe the position and heading of the car, v is its speed

and φ is its steering angle. The inputs of the system are u0

and u1 which are, respectively, the acceleration and steering

control inputs. The system uses a hybrid control law with 3
modes. In the first mode, called RandomDriver, the control

inputs are selected uniformly at random between their lower

and upper bounds. In the second mode, called StudentDrive,

when the speed is low, u0 is randomly chosen as in first

mode; otherwise, the strategy is to reduce the speed. In the

third mode, called HighwayDrive, the strategy is to reduce

the speed when it is high and increase it when it is low. A

detailed description of this control law can be found in [16].

In our model, the system selects a control mode randomly

and uses it for some fixed amount of time. After that, the

system selects again a control mode randomly.1

A safety property is specified by a bad set

x ∈ [20.0, 21.0] ∧ y ∈ [20.0, 21.0] ∧ θ ∈ [1.2, 1.25],

a small rectangle in the state space. We compared the

performance of the sg-RRT algorithm (with sensitivity) with

1In [16], in addition to the three modes of the controller, the car itself
can be in one of three modes. In this work, we consider only one of those.

that of the standard g-RRT algorithm on this example. For

the uncertainty δu1 ≤ 0.005, the sg-RRT algorithm discovers

that the system is not robustly safe after 7643 iterations

(with 0.56 minutes of computation time), while g-RRT needs

20751 iterations to detect the violation of the property (with

about 1 minute of computation time).

Note that since this example is hybrid we use the hybrid

version of g-RRT described in [14] as well as a hybrid

adaptation of the sensitivity computation which works in

this case because the system does not perform jumps while

switching between modes.

C. Linear systems

To evaluate the performance of the algorithm, we per-

formed similar experiments on a set of randomly-chosen

linear systems in various dimensions. These linear systems

are given in the Jordan form with the values on the diagonal

chosen from the interval [−3, 3]. The results are summarized

in Table I showing the number of iterations needed by sg-

RRT and g-RRT in order to discover the violation of a safety

property. The corresponding computation times are reported

in the third column of the table. The fourth column contains

the computation time for 10000 iterations of the sg-RRT

algorithm. Note that in the versions of the two algorithms

used in this experimentation, we did not use a precise

coverage estimation in the guiding strategy, which allows

shorter computation time (compared to the experimental

results reported in [14]) at the price of poorer coverage

quality. From these results we can see that sg-RRT detected

the violation faster than the g-RRT algorithm. In addition,

the sg-RRT algorithm is still scalable to high dimensional

systems.

VI. CONCLUSION

We have made some progress in the difficult problem of

analyzing complex nonlinear systems subject to disturbances.

Our solution was based on a combination of two ideas,

the g-RRT algorithm which solves the coverage problem

efficienctly at the exepense of formal completeness (in

detecting bad behaviors), and sensitivity-based reachability

computation which brings back partial completeness around

dangerous trajectories. The heuristic nature of g-RRT (and

other RRT algorithms) does not leave much room for use-

ful theorems but, neverthelss, completeness can be proved

relative to the coverage provided by g-RRT. For example, it

can be shown that if every reachable state x has an ǫ-close

x′ ∈ S then the sg-RRT algorithm is conservative in the

sense of not missing an erronous behavior.

We mention some ideas for further research: once a

sensitivity ball NxN
intersects B, we can launch a refinement

process in order to either find a concrete disturbance that

actually leads to B, or replace NxN
with a collection of

smaller neighborhoods which are safe. As mentioned above,

care should be taken so that the refinement process will not

lead to exponentially-many trajectories. Alternative guiding

heuristics and as well as other represntation and computation

scheme for neighborhoods are subject to ongoing research

and experimentation.

dim n Nb of Iter Time Time for
until detection 10000 iter.

sg-RRT g-RRT sg-RRT g-RRT

10 7653 11090 7s 12s 23s

20 7720 10025 11s 15s 29s

100 9920 11152 36s 44s 37s

200 3035 11243 21s 1m 16s 1m 27s

200 125 >50000 2s 6m 45s 2m 52s

TABLE I

EXPERIMENTAL RESULTS FOR SOME LINEAR SYSTEMS.

REFERENCES

[1] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler,
Recent Progress in Continuous and Hybrid Reachability Analysis,
CACSD 2006, 1582-1587, IEEE, 2006.

[2] A. Bhatia and E. Frazzoli, Incremental Search Methods for Reachabil-
ity Analysis of Continuous and Hybrid Systems, HSCC’04, 142-156,
2004.

[3] M.S. Branicky, M.M. Curtiss, J. Levine, and S. Morgan, Sampling-
based Reachability Algorithms for Control and Verification of Com-
plex Systems. 13th Yale Workshop on Adaptive and Learning Systems,
2005.

[4] J. Beck and W.W.L. Chen, Irregularities of Distributios Relative to
Convex Polygons III, J. London Mathematical Society 56, 222-230,
1997.

[5] A. Donzé. Trajectory-Based Verification and Controller Synthesys

for Continuous and Hybrid Systems. PhD thesis, University Joseph
Fourier, June 2007.

[6] A. Donzé and O. Maler. Systematic simulations using sensitivity
analysis. In HSCC’07, LNCS, April 2007.

[7] J.M. Esposito, J. W. Kim, and V. Kumar, Adaptive RRTs for
Validating Hybrid Robotic Control Systems, Workshop on Algorithmic

Foundations of Robotics, 2004.
[8] A. Girard and G.J. Pappas: Verification Using Simulation, HSCC’06,

LNCS 3927, 272-286, 2006.
[9] A.C. Hindmarsh and R. Serban, User Documentation for CVODES

v2.4.0, March 2006.
[10] G. Hoffmann, H. Huang, S. Waslander, and C.J. Tomlin, Quadrotor

Helicopter Flight Dynamics and Control: Theory and Experiment,
AIAA Conf. on Guidance, Navigation and Control, 2007.

[11] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg, On Systematic
Simulation of Open Continuous Systems, HSCC’03, 283-297, 2003.

[12] J.W. Kim, J.M. Esposito, and V. Kumar, Sampling-based Algorithm
for Testing and Validating Robot Controllers, Int. Journal of Robtics

Research 25, 1257-1272, 2006.
[13] S. LaValle and J. Kuffner. Rapidly-Exploring Random Trees: Progress

and Prospects Workshop on the Algorithmic Foundations of Robotics,
2000.

[14] T Nahhal and T. Dang, Test Coverage for Continuous and Hybrid
Systems, CAV’07, LNCS 4590, 449-462, 2007.

[15] R. Serban and A.C. Hindmarsh, Cvodes: the Sensitivity-enabled ODE
Solver in Sundials, IDETC/CIE’05, 2005.

[16] E. Plaku, L.E. Kavraki, and M.Y. Vardi, Hybrid Systems: from
Verification to Falsification, CAV’07, LNCS 4590, 468-481, 2007.

	Introduction
	Reach Set Estimation using Sensitivity
	Preliminary Definitions
	Autonomous Evolution
	Computing Sensitivity Matrices
	Extension to Non Deterministic Inputs

	RRT-based exploration
	The g-RRT Algorithm
	Coverage-guided Sampling

	Combining Both Approaches
	The Algorithm
	Bounding boxes

	Examples
	Helicopter
	A Robotic Vehicle Benchmark
	Linear systems

	Conclusion
	References

