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Abstract. In this paper we propose a new technique for verification by
simulation of continuous and hybrid dynamical systems with uncertain
initial conditions. We provide an algorithmic methodology that can, in
most cases, verify that the system avoids a set of bad states by conducting
a finite number of simulation runs starting from a finite subset of the set
of possible initial conditions. The novelty of our approach consists in the
use of sensitivity analysis, developed and implemented in the context of
numerical integration, to efficiently characterize the coverage of sampling
trajectories.

1 Introduction

Numerical simulation is a commonly-used method for predicting or validating
the behavior of complex dynamical systems. It is often the case that due to
incomplete knowledge of the initial conditions or the presence of external dis-
turbances, the system in question may have an infinite and non-countable num-
ber of trajectories, only a finite subset of which can be covered by simulation.
Two major directions for attacking this coverage problem have been reported in
the literature. The first approach, see e.g. [ACH+95,DM98,CK98,ADG03,Gir05]
consists of an adaptation of discrete verification techniques to the continuous
context via reachability computation, namely computing by geometric means an
over-approximation of the set of states reached by all trajectories. The other com-
plementary approach attempts to find conditions under which a finite number
of well-chosen trajectories will suffice to prove correctness and cover in some sense
all the trajectories of the system [KKMS03,BF04,BCLM05,BCLM06,GP06]. This
paper is concerned with the second approach.

The main contribution of the paper is an algorithm whose input consists of
an arbitrary dynamical system, an initial set X0, a set of “bad” states F , a time
interval [0, T ] and some δ > 0. The algorithm picks a point in X0 and simulates
the trajectory of the system. If a bad state occurs in the trajectory the algo-
rithm stops and declares the system “unsafe”; otherwise, a systematic refinement
operator is used to extend the sampling of the initial points from which new tra-
jectories are numerically simulated and so on. The algorithm is guaranteed to
terminate in a finite number of steps, either by finding a bad trajectory and
declaring the system unsafe, by declaring the system “safe” when the sampled



trajectories provably cover the reachable set, or returning an “uncertain” answer
when sampled trajectories are less than δ-close to F .

The novelty of this paper w.r.t. similar works is the notion of coverage used,
which is based on the concept of an expansion function which characterizes how
neighboring trajectories are getting closer to or further from one another as time
goes by. We show that this notion can be effectively approximated1 using the
concept of sensitivity function implemented in standard numerical integrators.
The rest of the paper is organized as follows. In Section 2 we define samples, their
dispersion and expansion functions and use them to introduce an abstract algo-
rithm for safety verification. The algorithm is then concretized and implemented
using a numerical solver, a grid-based sample refinement scheme (Section 3) and
sensitivity to approximate expansion (Section 4). In Section 5 we demonstrate
the behavior of our implementation of the algorithm on a linear time-varying
system and on two nonlinear analog circuits, the tunnel diode oscillator and the
voltage controlled oscillator. The extension of sensitivity analysis to hybrid sys-
tems is the topic of Section 6, which is followed by discussions of future steps in
simulation-based verification.

2 Verification by Simulation

We consider a dynamical system of the form

ẋ = f(t,x), x(0) = x0 ∈ X0, (1)

where x is a vector in R
n, X0 is compact and f is assumed of class C1. The

problem is known to have a unique solution noted ξx0(t). We say that the system
is safe if all trajectories starting from any x0 ∈ X0 do not intersect a set F of
bad states. We consider a bounded time horizon [0, T ]. Let Reach≤t(X0) (resp.
Reach=t(X0)) be the set reachable from X0 in less than (resp. exactly) t units of
time. A usual way to prove that the system is safe is to prove emptiness of the
intersection of the reachable set Reach≤T (X0) with the set F . In this section, we
introduce the concept of expansion function which allows to characterize how a
finite set of trajectories covers the reachable set and use such a set of trajectories
trying to refute intersection with the bad set F .

2.1 Preliminaries

We use a metric d and extend it to distance from points to set using d(x,X ) =
infy∈X

(

d(x,y)
)

When used, the notation ‖ · ‖ denotes the infinity norm. It
extends to matrix with the usual definition: ‖A‖ = sup‖x‖=1 ‖Ax‖. A ball Bδ(x)
is the set of points x′ satisfying d(x,x′) ≤ δ. Given a set X , a cover for X is a

1 For linear time varying systems, as we show, these two notions coincide.



set of sets {X1, . . .Xk} such that X ⊂
⋃k

i=1 Xi. A ball cover is a cover consisting
of balls. We extend the notation Bδ to sets and trajectories as follows

Bδ(S) =
⋃

x∈S

Bδ(x) and Bδ(ξx) =
⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive
notion of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S)
is the smallest radius ǫ such that the union of all ǫ

radius closed balls with their center in S covers X .

αX (S) = min
ǫ>0
{ǫ | X ⊂ Bǫ(S)} (2)

ǫ

We now define the process of refining a sampling, which simply consists in
finding a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X 7→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A

refinement operator is complete if ∀S,

lim
k→∞

αX

(

ρ
(k)
X (S)

)

= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which
has been infinitely refined is dense in X . Until we define one in section 3, we
assume the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ǫ.

Definition 4 (Expansion function). Given x0 ∈ X0, and ǫ > 0, the expan-
sion function of ξx0 , denoted by Ex0,ǫ : R

+ 7→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bǫ(x0) reach a

point in Bδ(ξx0(t)) at time t:

Ex0,ǫ(t) = sup
d(x0,x)≤ǫ

d
(

ξx0(t), ξx(t)
)

(3)



Clearly, a first property of the expansion functions is that it approaches 0 as
ǫ tends toward 0:

∀t > 0, lim
ǫ→0
Ex,ǫ(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ǫ(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bǫ(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ǫ

Reach=t

[

Bǫ(x0)
]

Ex0,ǫ(t)

Proposition 1. Let S = {x1, . . . ,xk} be a sampling of X0 such that
⋃k

i=1 Bǫi(xi)
is a ball cover of X0 for some {ǫ1, . . . , ǫk}. Let t > 0 and for each 1 ≤ i ≤ k, let

δi = Exi,ǫi(t). Then
⋃k

i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t)) con-
tains Reach=t(Bǫi(xi)), and the rest follows from the commutativity of the dy-
namics with set union and containment. ⊓⊔

In particular, if S is a sampling of X0 with dispersion ǫ then we are in the
case where ǫi = ǫ for all 1 < i < k and since the result is true for all t ∈ [0, T ],
we have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion

αX0(S) = ǫ. Let δ > 0 be an upper bound for Exi,ǫ(t) for all 1 < i < k and

t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S

BEx,ǫ(ξx) ⊆
⋃

x∈S

Bδ(ξx) ⊆ Bδ

(

Reach[0,T ](X0)
)

(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). ⊓⊔

In other terms, if we bloat the sampling trajectories starting from S with a
radius δ, which is an upper bound for expansion functions of these trajectories,
then we get an over-approximation of the reachable set which is between the
exact reachable set and the reachable set bloated with δ. Because of (4), it
is clear that δ, and then the over-approximation error, decreases when ǫ gets
smaller.
The second corollary of proposition 1 underlies our verification strategy.



Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bǫi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,ǫi(t). If for all

t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

then for all trajectory ξx starting from x ∈ X0, the intersection of ξx and the

bad set F is empty and thus the system is safe.

2.3 A Verification Algorithm

In theory, then, from previous proposition and corollaries, a unique trajectory
could be sufficient to verify the system: take one point x0, find ǫ such that
X0 ⊂ Bǫ(x0), then check for all t ∈ [0, T ] that Bδ(t)(ξxi(t)) ∩ F = ∅, where
δ(t) = Ex0,ǫ(t). If this is the case, then the system is safe. Obviously, the opposite
case does not mean that the system is unsafe since Bδ(t)(ξxi(t)) is actually an
over-approximation of Reach=t(X0), rather it indicates that the distance between
the reachable set and F is less than δ(t). If this indication is not sufficient, then
more trajectories have to be simulated until a sufficiently dense sampling of X0

is found. This is what Algorithm 1 does.

Algorithm 1 Safety Verification. The algorithm takes δ > 0 as input.

1: U ← ∅, S0 ← {x0} with x0 ∈ X0, k ← 0
2: loop

3: /* For Sk, check each trajectory and compute an upper bound δk for E */
4: ǫk ← αX0(Sk,X0), δk ← 0
5: for all x ∈ Sk do

6: if ξx ∩ F 6= ∅ then

7: return (unsafe, {x})
8: else if BEx,ǫk

(ξx) ∩ F 6= ∅ then

9: U ← U ∪ {x}
10: end if

11: δk ← max
“

sup
t∈[0,T ]

(Ex,ǫk(t)) , δk

”

12: end for

13: /* Stop either if no uncertain trajectory was found (safe) or if the upper
bound is smaller than precision δ. Else refine the sampling and loop */

14: if U = ∅ then

15: return safe

16: else if δk < δ then

17: return (uncertain, U)
18: else

19: Sk+1 ← ρX0(Sk), U ← ∅, k ← k + 1 /* Refine the sample */
20: end if

21: end loop



Theorem 1. Under assumptions mentioned above, algorithm 1 terminates and

its output satisfies:

– it is safe only if the system is safe.

– it is (unsafe, {x}) only if the system is unsafe and {x} is a counter-example,
i.e.: ξx intersects F .

– it is (uncertain, U) only if all the points in U induce uncertain trajectories:
∀ x ∈ U , d(ξx,F) ≤ δ.

Proof. For unsafe, the result is obvious from the algorithm. For safe and
uncertain, the algorithm terminates because ρ is complete, lim

k→0
ǫk = 0 and

lim
ǫk→0

δk = 0. Consequently for some k, δk < δ. Now, if U was found empty, at

or before iteration k, this means that corollary 2 applies which proves that the
system is safe, while if U is still not empty at iteration k i.eif the algorithm has
returned (unsafe, U), then U contains states x for which

d(ξx,F) ≤ sup
t∈[0,T ]

(Ex,ǫk
(t)) ≤ δk ≤ δ.

Note that moreover, the inclusions (5) are true for Sk. ⊓⊔

The algorithm requires some δ > 0 as input to guarantee termination. In
fact, the problematic case is when the distance between the reachable set and
the bad set is exactly 0. In this case, there is no way to get an answer other than
uncertain. On the other hand, we can state the following theorem:

Theorem 2. If d
(

Reach≤T (X0),F
)

> 0, then there exist a δ > 0 for which

algorithm 1 returns safe.

Proof. This is true for any δ < d
(

Reach≤T (X0),F
)

. Indeed, since for some k,
the inclusions (5) in corollary 1 are true for Sk then

Bδ

(

Reach[0,T ](X0)
)

∪ F = ∅ ⇒ Bδ

(

⋃

x∈S

ξx

)

∪ F = ∅

so U is empty at the end of the for loop and the algorithm will return safe. ⊓⊔

3 An Efficient Sampling Strategy

In this section, we focus on the sampling strategy, that is, on the sample refine-
ment operator.

3.1 Local Refinement

First, we can remark that when Algorithm 1 ends with the uncertain answer,
one choice is to try a smaller δ. In that case, it is not necessary to restart
the algorithm from scratch; the set U can be used. Indeed, it is clear that any



trajectory starting from the ball Bǫk
(x), where x ∈ Sk has not been inserted into

the uncertain set U , is safe. Thus the set Bǫk

(

Sk \ U
)

is safe and it is enough to

verify the set Bǫk

(

U
)

. In fact, this observation is also relevant at each iteration of
the for loop inside Algorithm 1. Instead of refining globally Sk by the instruction
Sk+1 ← ρX0(Sk), Sk could be refined locally only around uncertain states. This
can be done simply by replacing X0 with Bǫk

(U) and refine this new initial set.
Line 19 thus becomes:

X0 ← Bǫk
(U)

Sk+1 ← ρX0(U), U ← ∅, k← k + 1

Now we proceed to describe the particular sampling method that we use in the
implementation of the algorithm.

3.2 Hierarchical Grid Sampling

We saw that algorithm 1 terminates as soon as δk gets sufficiently small, which
requires also the dispersion ǫk to be sufficiently small. Then we need that the
convergence of sequence (ǫk)k∈N towards 0 to be as fast as possible. This requires
that for a given number of points, our sampling strategy tries to minimize its
dispersion. In this section, we assume that with an appropriate change in vari-
ables, sampling X0 is equivalent to sampling the unit hypercube [0, 1]n. In case
we use the L∞ metrics, i.e. d(x,y) = maxi(|xi−yi|), the solution of the problem
of minimizing dispersion of N points in [0, 1]n is known (see e.g. [LaV06]): the
minimum possible dispersion is 1

2⌊N1/n⌋
and is obtained by placing the points at

the center of smaller hypercubes of size 1
⌊N1/n⌋

, partitioning the unit hypercube.

Note that there are (⌊N1/n⌋)n such hypercubes, which may
be less than N . In this case, the remaining points can placed
anywhere without affecting the dispersion. Obtained grids
are referred to as Sukharev grids. The picture on the right
gives an example of such a grid for n = 2 and N = 49.

Sukharev grids have optimal dispersion but for a fixed number of points while
in our verification algorithm, we do not know in advance how many points in the
initial set we will have to use. In fact, we need to implement the refinement op-
erator to be used throughout Algorithm 1, starting from the singleton sampling
set S0. An elegant way to do it is to superpose hierarchically Sukharev grids,
the refinement process being defined simply in a recursive fashion. Let X be a
hypercube of size 1

2l (we say that such a cube is part of the grid of resolution l)
and S be a sampling of X , then:

– if S = ∅ then ρX (S) = {x}, where x is the center of the hypercube X ;

– if S 6= ∅ then ρX (S) = S ∪
2n
⋃

i=1

ρXi(Si) where the sets Xi are the 2n hypercubes

of size 1
2l+1 partitioning X and the sets Si contain the points of S that are

inside Xi.



On figure 1, we show the effect of three iterations in dimension 2 and 3 along
with an example of successive local refinements. From this definition, it is clear

l = 0 l = 1 l = 2

n = 2

n = 3

Resolution:

Fig. 1. Refinements for n = 2 and n = 3 dimensions for resolutions from l = 0
to l = 2. On the right, local refinements until resolution 3.

that the operator ρ is a refinement operator and that it is complete since we
have:

αX (ρX (S)) =
1

2
αX (S).

In [LYL04], a simple procedure is described for choosing the order in which
the partitioning cubes are processed so that the mutual distance between two
consecutive cubes is maximized. This is an interesting feature from the point of
view of fast falsification since it means that every two consecutive simulation
runs will be far from each other and that for any k ∈ N, the initial states of the
first k trajectories will constitute a good coverage of the initial set X0.

4 Implementation using Sensitivity Analysis

4.1 Sensitivity Analysis Theory

Recall that we consider dynamics of the general form: ẋ = f(t,x), x(0) ∈ X0.
As a function of x0, the flow ξx0 is differentiable w.r.t x0. Thus the sensitivity

to initial conditions at time t is well defined by:

sx0(t) ,
∂ξx0

∂x0
(t). (6)

where sx0(t) is a square matrix of order n. To compute the sensitivity matrix,
we first apply the chain rule to get the derivative of sx0 w.r.t. time:

∂

∂t

∂ξx0

∂x0
(t) =

∂

∂x0
f
(

t, ξx0(t)
)

= Df(ξx0(t))
∂ξx0

∂x0
(t)



which gives the following sensitivity equation:

ṡx0(t) = Df,x0(t) sx0(t) (7)

where Df,x0 is the Jacobian matrix of f along trajectory ξx0 . Hence, this equa-
tion is a linear time-varying ordinary differential equation (ODE). Note that this
is a matrix differential equation but it can be viewed as a system of n ODEs of
order n. The ijth element of sx0(t) basically represents the influence of varia-
tions in the ith coordinate xi

0 of x0 on the jth coordinate xj(t) of ξx0(t). Then
it is clear that the initial value sx0(0) of sx0 must be the identity matrix, In.
Efficient solvers exist that implement the computation of sensitivity functions
(in our implementations, we use the tool suite described in [SH05]).
A particularly interesting case is when the dynamics is linear time-varying, i.e.
when f(t,x) = A(t) x. Indeed, in this case, we know that the Jacobian matrix of
f is just the matrix A which means that sensitivity matrix sx0(t) share the same

dynamics as the flow ξx0 . In fact, the columns of sensitivity matrix are solu-
tions of the system dynamics equation where initial conditions are the canonical
vectors of R

n.

4.2 Sensitivity Functions and Expansion Functions

The following important result relates sensitivity functions to expansion func-
tions:

Theorem 3. Let x0 ∈ X0, t ∈ [0, T ] and assume that f is C2. Then there exists

a real M > 0 such that ∀ǫ > 0:

|Ex0,ǫ(t)− ‖sx0(t)‖ ǫ | ≤Mǫ2 (8)

Proof. Since f is C2, the flow ξx0 is also C2 w.r.t. x0 ([HS74]). Let x ∈ X0.
Then the Taylor expansion of ξx0(t) around x0 shows that there exist a bounded
function ϕt such that:

ξx(t) = ξx0(t) +
∂ξx0

∂x0
(t) (x− x0) + ‖x− x0‖

2 ϕt(x − x0)

⇔ ξx(t)− ξx0(t) = sx0(t) (x− x0) + ‖x− x0‖
2 ϕt(x− x0) (9)

Equation (9) implies that ∀x ∈ Bǫ(x0),

‖ξx(t)− ξx0(t)‖ ≤ ‖sx0(t)‖‖x−x0‖+‖x−x0‖
2 ‖ϕt(x−x0)‖ ≤ ‖sx0(t)‖ǫ+ ǫ2 M

which implies in turn that

Ex0,ǫ − ‖sx0(t)‖ǫ ≤Mǫ2 (10)

On the other hand, 9 can be rewritten as

sx0(t) (x0 − x) = ξx(t)− ξx0(t)− ‖x− x0‖
2 ϕt(x− x0)

⇒ ‖sx0(t) (x0 − x)‖ ≤ ‖ξx(t)− ξx0(t)‖ + ‖x− x0‖
2 ‖ϕt(x− x0)‖

≤ Ex0,ǫ(t) + ǫ2M (11)



From the definition of matrix norm, we know that we can find a unit vector y
such that ‖sx0(t)‖ = ‖sx0(t) y‖. The inequality (11) is true for all x ∈ Bǫ(x0)
so in particular for x = x0 + ǫy in which case

‖sx0(t) (x0 − x)‖ = ‖sx0(t) (ǫy)‖ = ‖sx0(t)‖ǫ.

If we substitute in the right hand side of (11) and subtract Ex0,ǫ(t) , we get:

‖sx0(t)‖ǫ− Ex0,ǫ(t) ≤Mǫ2 (12)

The conjunction of inequalities (10) and (12) proves the result. ⊓⊔

When the dynamics of the system is affine, i.e. when f(t,x) = A(t)x + b(t),
where A(t) and b(t) are time varying matrices of appropriate dimensions, then
expansion function can be computed exactly.

Theorem 4. Let x0 ∈ X0, t ∈ [0, T ] and assume that f is affine. Then ∀ǫ > 0:

Ex0,ǫ(t) = ‖sx0(t)‖ǫ (13)

Proof. This follows immediately from the fact that if f is affine, ϕt in equation
(9) is null. Indeed, following the remark at the end of the previous subsection, we
know from (7) that the lines of matrix sx0(t) are solutions of the homogeneous
system ẋ = A(t)x. Since this is a linear system, the vector sx0(t) (x − x0) is
also solution of this system. Then ξx0(t) + sx0(t) (x− x0) is solution of the full
system ẋ = A(t)x + b(t). Furthermore, as sx0(0) is the identity matrix,

ξx0(0) + sx0(0) (x− x0) = x0 + (x− x0) = x.

In other words, ξx0 + s (x − x0) and ξx are two trajectories of the system with
the same initial conditions so by uniqueness, they are equal. Then clearly,

ξx(t)− ξx0(t) = sx0(t) (x0 − x)

⇒ sup
x∈Bǫ(x0)

‖ξx(t)− ξx0(t)‖ = sup
x∈Bǫ(x0)

sx0(t) (x0 − x)

⇔ Ex0,ǫ(t) = ‖sx0(t)‖ǫ. ⊓⊔

From what precedes, then, we can approximate Ex0,ǫ(t) with the quantity
‖sx0‖ǫ and use it to implement Algorithm 1. In the case of affine systems, the
implementation is exact and Theorem 1 applies to the concrete implantation. In
the general case, when f may be nonlinear, we know that the error is quadratic
with respect to ǫ. In order to take this error into account, we can force the
algorithm to guarantee that the initial set is sampled with a sufficiently small
dispersion ǫ. The new algorithm then takes an additional input parameter ǫ >

0, refine globally the initial sampling until the dispersion ǫ is reached (while
checking only for unsafe trajectories), and then continues and terminates as
Algorithm 1 with local refinements.



5 Examples

We have implemented the techniques described in the preceding sections on top
of a numerical simulation tool that supports sensitivity analysis and have applied
it to several examples.

5.1 A High Dimensional Affine Time-varying System

We consider a system with affine dynamics of the form ẋ = A(t)x + b(t) with
A(t) = e−tM − I50 and b(t) = b0e

−t sin t where M and b0 are respectively
50 × 50 and 50 × 1 matrices with random coefficients in [0, 1]. We used a 2-
dimensional X0 = [0.5, 1.5]× [0.5, 1.5]× {1}48. The bad set F is the half plane
given by an inequality of the form x1 ≤ d. The figure below illustrates the
behavior of the verification algorithm in different scenarios (projected on the
three first coordinates). In all cases, a small number of trajectories was needed
to obtain the answer.

x1x1
x1

x2x2

x2x2

x3

X0

F

d = 2.6: One trajectory
was enough to prove that
the system is safe.

d = 2.5: The system is
declared uncertain using
δ = 0.1 after 25 trajecto-
ries.

d = 2.5: The system was
found unsafe with δ =
0.01 after 63 trajectories.

5.2 Verifying the invariant of two oscillator circuits

For the following examples, our goal is to prove that a set is invariant for an
unbounded horizon. To do this, the classical idea is to show that for a certain
T > 0, the set Reach=T is contained in Reach≤t with t < T which implies that
Reach≤T is the reachable set for unbounded horizon. Our method is to use our
verification algorithm slightly modified so that every trajectory is considered as
uncertain. As previously, the algorithm stops when δk < δ. At this point, then,
we can characterize the reachable sets thanks to inclusions (5) of Corollary 1.



We applied this idea to analyze the periodic
steady state behavior of two analog oscillator
circuits. The first one is a tunnel-diode oscilla-

tor (TDO) whose second-order nonlinear dy-
namics is given in Figure 2. The second circuit
is a voltage controlled oscillator (VCO) circuit,
the schema of which is given on the right. Its
dynamics is governed by a third-order nonlin-
ear equation. A fully-detailed model can be
found in [FKR06].

RR

CC

IDS1 IDS2

IL1 IL2

Vctrl

VDD

VD1 VD2

LL

VCO schema

Id

Vd
(0.,0.)

(0.055,1e−3)

(0.35,1/9e−3)

(0.50,1e−3)

Vin

R L IL

C
VC

Diode characteristic:

Id(Vd)

V̇d =
1

C
(−Id(Vd) + IL)

İL =
1

C
(−Id(Vd) + IL)

where C = 1pF, L = 1µH , G = 5mΩ−1, Vin = 0.3V .

Fig. 2. Tunnel Diode Oscillator Circuit

What makes this problem difficult for traditional tools performing reacha-
bility is that most often, the reachable set is computed step by step forward in
time and each step increases the error of over-approximation. This error after one
period may have become too large to prove the invariant property. This is partic-
ularly serious for the VCO for which the limit cycle is much less contractive than
for the TDO. In [FKR06], this problem is addressed using forward-backward re-
finement. Our method, however, does not suffer from this problem. If we neglect
the inherent error of the numerical solver used to compute the trajectories, the
quality of the over-approximation that we get with the sensitivity function does
not depend on the time we measure it. If the dynamics is neither really contrac-
tive nor diverging as for the VCO, this means that the norm of the sensitivity
function will remain near 1 and then we know from Theorem 1 and Theorem 3
that if we sample the initial set with a precision ǫ then we will get an approxi-
mation of the reachable set at time T with a precision which is quadratic w.r.t.
ǫ. We show some results we obtained in Figure 3. In both cases, we sampled the



initial set with ǫ = 1 × 10−3. Since ǫ2 is then negligible before the size of the
reachable sets Reach=T (X0) that we obtain, we can conclude that the sets are
invariant. Since, we must note that with this method, we did not yet obtain a
formal proof of the result because of the remaining indetermination of constant
M in Theorem 3. To get this formal bound, a deeper analysis of the dynamics
equations still needs to be done. Techniques and tools recently developed are
related to this issue (see [SB06]).

X0

X0

Reach=T (X0)

Reach=T (X0)

Reachable sets for the TDO.

Reachable sets for the VCO.

Fig. 3. Verifying the invariant of two oscillator circuits.

6 Extension to Hybrid Systems

Extending sensitivity analysis to the hybrid case is not straightforward and even
in the simplest case of a transition with state continuity, a discontinuity often
appears in the sensitivity function that needs to be evaluated. The most general
setting for sensitivity analysis includes hybrid systems for which dynamics in
each mode is governed by differential algebraic equations [HP00,BL02] To sim-
plify the presentation and get the intuition of what are the changes induced by
the hybridicity of the dynamics, we restrict the study to the case of a unique
transition between two modes. Let us assume that transitions are governed by
crossings of an hyper-surface G implicitly defined by a continuous function g and
that the flow is continuous. The dynamics of this system is described by:



ẋ =

{

f1(t,x) if g(x) < 0
f2(t,x) if g(x) ≥ 0

,x(0) ∈ X0 (14)

We consider a trajectory ξx0 performing a first transition at time τ > 0, i.e.
such that g(ξx0(t)) < 0 ∀t ∈ [0, τ [ and g(ξx0(t)) = 0. We make the following
standard assumption:

Assumption 1 At the crossing point x, 〈∇xg(x), f1(τ
−,x)〉 6= 0, where 〈, 〉 is

the Euclidean cross product. Moreover, there exists a neighborhood N of x0 such

that for all x ∈ N , this assumption is also true for the flow ξx.

Assumption 1 prevents the trajectory to cross the frontier tangentially and
ensures that there exists a tube of trajectories around ξx0 which also crosses the
frontier under the same condition. In this setting, we consider the most standard
behavior of a hybrid system, i.e. it follows a continuous trajectory for some time,
then switches to another continuous mode for again some time and so on. During
a continuous evolution, we know how sensitivity evolves. The remaining question
is about its continuity at transition times. We have the following

Proposition 2. Under assumptions 1, the sensitivity function at time τ satis-

fies:

s(τ+)− s(τ−) =
dτ

dx0

(

f2(τ, ξx0(τ)) − f1(τ, ξx0(τ))
)

(15)

where
dτ

dx0
=
〈∇xg(ξx0(τ)), sx0 (τ)〉

〈∇xg(ξx0(τ)), f1(τ, ξx0)〉
(16)

We omit the proof for brevity (it can be found in [HP00,BL02]). Rather, we
provide a picture in Figure 4 giving an intuition of why a a discontinuity happens.

Proposition 2 provides a constructive formula to compute the values of the
jumps. This means that sensitivity functions can be computed for hybrid tra-
jectories and thus Algorithm 1 can be implemented. The assumption made is
reasonable in the sense that it is very likely that the set of points for which the
frontier is crossed tangentially has a zero measure. Still, current work investigates
the behavior of our algorithm around such points, along with the adaptation of
Theorem 3 and 4 to the hybrid case.

7 Conclusion

We have developed a novel and general simulation-based method for proving
safety of arbitrary continuous systems and demonstrated its effectiveness on
several non trivial examples. This method can treat arbitrary nonlinear systems
and can be particularly efficient for affine time-varying systems. As shown in
Section 6, it can, under reasonable assumptions, be extended to hybrid systems
as well. The use of the tunable tolerance parameter δ gives an elegant solution



x = x0 + ∆x0

x0

ξ−

x0

ξ+
x0

ξ−

x

ξ+
x

g(x) = 0

≃
s
−

∆
x
0

≃
s
+ ∆

x
0

Fig. 4. Illustration of sensitivity discontinuity. The jump condition 15 results
from the fact that between τ− and τ+ (− and + superscripts in the figure), the
flows ξx0 and ξx evolve with different dynamics f1 and f2.

to the eternal tension between finite algorithmic termination and the potential
infinite precision of the real numbers. In addition to its theoretical properties
and efficiency, our method is more likely to be accepted by practitioners who
already use simulation as a key validation tool.

Future work will extend the implementation to hybrid automata, look at the
problem of unbounded horizon and, most importantly, deal with non-autonomous

systems with bounded inputs. An appropriate sampling of the input space com-
bined with the use of search heuristics (branch and bound, RRT etc.), and/or
optimal control techniques should provide interesting results which could be in-
corporated naturally into the design process of complex control systems.
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