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Abstract. Multiprocessor mapping and scheduling is a long-old difficult prob-
lem. In this work we propose a new methodology to perform mapping and schedul-
ing along with buffer memory optimization using an SMT solver. We target split-
join graphs, a formalism inspired by synchronous data-flow (SDF) which pro-
vides a compact symbolic representation of data-parallelism. Unlike the tradi-
tional design flow for SDF which involves splitting of a big problem into smaller
heuristic sub-problems, we deal with this problem as a whole and try to compute
exact Pareto-optimal solutions for it. We introduce symmetry breaking constraints
in order to reduce the run-times of the solver. We have tested our work on a num-
ber of SDF graphs and demonstrated the practicality of our method. We validate
our models by running an image decoding application on the Tilera multicore
platform.

Keywords: synchronous data-flow, multiprocessor, multicore, mapping, schedul-
ing, SMT, SAT solver

1 Introduction

This work is motivated by a key important problem in contemporary computing: how
to exploit efficiently the resources provided by a multicore platform while executing ap-
plication programs. The problem has many variants depending on the intended use of
the platform (general-purpose server or a dedicated accelerator), the specifics of the ar-
chitecture (memory hierarchy, interconnect), the granularity of parallelism (instruction
level, task level), the class of applications and the programming model. We focus on ap-
plications such as video, audio and other forms of signal processing which are naturally
structured in a data-flow style as a network of interconnected software components (ac-
tors, filters, tasks). Such a description already exposes the precedence constraints among
tasks and hence the task-level parallelism inherent in the application. More specifically
we address applications written as split-join graphs, which can be viewed as a vari-
ant of the Synchronous Data-Flow (SDF) formalism [13,20], or an abstract semantic
model of a subset of streaming languages such as StreaMIT [24]. Such formalisms, in
addition to precedence constraints, also provide a compact symbolic representation of
data-parallelism, namely, the presence of numerous tasks which have identical function
and can be executed in parallel for different data. Once the split-join graph is annotated
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with execution time figures and the data-parallel tasks have been explicitly expanded
we obtain a task graph [3] whose deployment on the execution platform is the subject
of optimization.

The deployment decisions that we consider and which may affect cost and per-
formance are the following. First we can vary the number of processors used which
gives a rough estimation of the cost of the platform (and its static power consump-
tion). On a given configuration it remains to map tasks to processors, and to schedule
the execution order on each processor. The performance measures to evaluate such a
deployment are the total execution time (latency) and the size of the communication
buffers which depend on the execution order. This is a multi-criteria (cost, latency and
buffer size) optimization problem whose single-criterium version is already intractable.
We take advantage of recent progress in SMT (SAT modulo theory) solvers [17,7] to
provide a good approximation of the Pareto front of the problem. We encode the prece-
dence and resource constraints of the problem in the theory of linear arithmetic and,
following [15,14], we submit queries to the solver concerning the existence of solutions
whose costs reside in various parts of the multi-dimensional cost space. Based on the an-
swers to these queries we obtain a good approximation of the optimal trade-off between
these criteria. The major computational obstacle is the intractability of the mapping
and scheduling problems aggravated by the exponential blow-up while expanding the
graph from symbolic to explicit form. We tackle this problem by introducing “symme-
try breaking” constraints among identical processors and identical tasks. For the latter
we prove a theorem concerning the optimality of schedules where instances of the same
actor are executed according to a fixed lexicographical order.

The rest of the paper is organized as follows. In Section 2 we give some background
on split-join graphs and their transformation into task graphs and prove a useful prop-
erty of their optimal schedules. In Section 3 we write down in more detail the constraint-
based formulation of deployment and present our multi-criteria cost-space exploration
procedure. An experimental evaluation of our approach appears in Section 4, including
a validation on the Tilera multicore platform. We conclude by discussing related and
future work.

2 Split-Join Graphs

A parallelization factor is any number of the form α (split) or 1/α (join) for α ∈ N.
We use Σ∗ to denote the set of sequences over a set Σ and use < for the prefix relation
with ξ < ξ · ξ′, where ξ · ξ′ denotes concatenation.

Definition 1 (Split-Join and Task Graphs). A split-join graph is S = (V,E, d, r)
where (V,E) is a directed acyclic graph (DAG), that is, a set V of nodes, a set E ⊆
V × V of edges and no cyclic paths. The function d : V → R+ defines the execution
times of the nodes and r : E → Q assigns a parallelization factor to every edge. An
edge e is a split, join or neutral edge depending on whether r(e) > 1, < 1 or = 1.
A split-join graph with r(e) = 1 for every e is called a task-graph and is denoted by
T = (U, E , δ), where the three elements in the tuple correspond to V , E and d.

The decomposability of a task into parallelizable sub-tasks is expressed as a numerical
label (parallelization factor) on a precedence edge leading to it. A label α on the edge
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from A to B means that every executed instance of task A spawns α instances of task
B. Likewise, a 1/α label on the edge from B to C means that all those instances of
B should terminate and their outputs be joined before executing C (see Fig. 1). A
task graph can thus be viewed as obtained from the split-join graph by making data
parallelism explicit . To distinguish between these two types of graphs we call the nodes
of the split-join graphs actors (task types) and those of the task graph tasks.

A B C A Bi

B1

Bα

C
α 1/α

Fig. 1: A simple split-join graph and its expanded task graph. Actor B has α instances.

The DAG structure naturally induces a partial-order relation ∠ over the actors such
that v∠v′ if there is a path form v to v′. The set of minimal elements with respect to ∠ is
V• ⊆ V consisting of nodes with no incoming edges. Likewise, the maximal elements
V • are those without outgoing edges. An initialized path in a DAG is directed path
π = v1 ·v2 · · · vk starting from some v1 ∈ V•. Such a path is complete if vk ∈ V •. With
any such path we associate the multiplicity signature

ξ(π) = (v1, α1) · (v2, α2) · · · (vk−1, αk−1)

where αi = r((vi, vi+1)). We will also abuse ξ to denote the projection of the signature
on the multiplication factors, that is ξ(π) = α1 · α2 · · ·αk−1.

To ensure that different instances of the same actor communicate with the match-
ing instances of other actors and that such instances are joined together properly, we
need an indexing scheme similar to indices of multi-dimensional arrays accessed inside
nested loops. Because an actor may have several ancestral paths, we need to ensure
that its indices via different paths agree. This will be guaranteed by a well-formedness
condition that we impose on the multiplicity signatures along paths.

Definition 2 (Parenthesis Alphabet). Let Σ = {1} ∪ Σ{ ∪ Σ} be any set of symbols
consisting of a special symbol 1 and two finite sets Σ{ and Σ} admitting a bijection
which maps every α ∈ Σ{ to α′ ∈ Σ} .

Intuitively α and α′ correspond to a matching pair consisting of a split α and its inverse
join 1/α. These can be viewed also as a pair of (typed) left and right parentheses.

Definition 3 (Canonical Form). The canonical form of a sequence ξ over a parenthe-
ses alphabet Σ is the sequence ξ̄ obtained from ξ by erasing occurrences of the neutral
element 1 as well as matching pairs of the form α · α′.

For example, the canonical form of ξ = 5 · 1 · 3 · 1 · 1 · 1/3 · 1 · 2 is ξ̄ = 5 · 2. Note
that the (arithmetic) products of the factors of ξ and of ξ̄ are equal and we denote this
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value by c(ξ) and let c(ε) = 1. A sequence ξ is well-parenthesized if ξ̄ ∈ Σ∗{ , namely
its canonical form consists only of left parentheses. Note that this notion refers also to
signature prefixes that can be extended to well-balanced sequences, namely, sequences
with no violation of being well-parenthesized by a join not compatible with the last
open split.

Definition 4 (Well Formedness). A split-join graph is well formed if:

1. Any complete path π satisfies c(ξ(π)) = 1;
2. The signatures of all initialized paths are well parenthesized.

The first condition ensures that the graph is meaningful (all splits are joined) and that the
multiplicity signatures of any two paths leading to the same actor v satisfy c(ξ) = c(ξ′).
We can thus associate unambiguously this number with the actor itself and denote it by
c(v). This execution count is the number of instances of actor v that should be executed.

The second condition forbids, for example, sequences of the form 2 · 3 · 1/2 · 1/3.
It implies an additional property: every two initialized paths π and π′ leading to the
same actor satisfy ξ̄(π) = ξ̄(π′). Otherwise, if two paths would reach the same actor
with different canonical signatures, there will be no way to close their parentheses by
the same path suffix. Although split-join graphs not satisfying Condition 2 can make
sense for certain computations, they require more complicated mappings between tasks
and they will not be considered here, but see a brief discussion in Section 5. For well-
formed graphs, a unique canonical signature, denoted by ξ̄(v), is associated with every
actor.

Definition 5 (Indexing Alphabet and Order). An actor v with ξ̄(v) = α1 · · ·αk de-
fines an indexing alphabet Av consisting of all k-digit sequences h = a1 · · · ak such
that 0 ≤ ai ≤ αi − 1. This alphabet can be mapped into {0, . . . , c(v) − 1} via the
following recursive rule:

N (ε) = 0 and N (h · aj) = αj · N (h) + aj

We use �v to denote the lexicographic total order over Av which coincides with the
numerical order over N (Av).

Every instance of actor v will be indexed by some h ∈ Av and will be denoted as vh. We
use notation h and Av to refer both to strings and to their numerical interpretation via
N . In the latter case vh will refer to the task in position h according to the lexicographic
order�v . See for example, tasks B0, B1, . . . in Figure 1.

Definition 6 (Derived Task Graph). From a well-formed split-join graph S = (V,E, d, r)
we derive the task graph T = (U, E , δ) as follows: U = {vh|v ∈ V, h ∈ Av},
E = {(vh, v′h′) | (v, v′) ∈ E, (h v h′ ∨ h′ v h)} and ∀v,∀h ∈ Av, δ(vh) = d(v).

Notation h v h′ indicates that string h′ is a prefix of h. To take an example, ac-
cording to the definition, a split edge (v, v′) is expanded to a set of edges {(vh, v′h·a) |
a = 0 . . . α − 1}, where α = r((v, v′)). The tasks can be partitioned naturally accord-
ing to their actors, letting U =

⋃
v∈V Uv and Uv = {vh : h ∈ Av}. A permutation

ω : U → U is actor-preserving if it can be written as ω =
⋃
v∈V ωv and each ωv is a

permutation on Uv .
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Definition 7 (Deployment). A deployment for a task graph T = (U, E , δ) on an ex-
ecution platform with a finite set M of processors consists of a mapping function
µ : U → M and a scheduling function s : U → R+ indicating the start time of
each task. A deployment is called feasible if it satisfies precedence and mutual exclu-
sion constraints, namely, for each pair of tasks we have:

Precedence: (u, u′) ∈ E ⇒ s(u′)− s(u) ≥ δ(u)

Mutual exclusion: µ(u) = µ(u′)⇒ [(s(u′)− s(u) ≥ δ(u)) ∨ (s(u)− s(u′) ≥ δ(u′))]

Note that µ(u) and s(u) are decision variables while δ(u) is a constant. The latency
of the deployment is the termination time of the last task, maxu∈U (s(u) + δ(u)). The
problem of optimal scheduling of a task-graph is already NP-hard due to the non-convex
mutual exclusion constraints. This situation is aggravated by the fact that the task-graph
will typically be exponential in the size of the split-join graph. On the other hand, it ad-
mits many tasks which are identical in their duration and isomorphic in their precedence
constraints. In the sequel we exploit this symmetry by showing that all tasks that cor-
respond to the same actor can be executed according to a lexicographic order without
compromising latency.

Definition 8 (Ordering Scheme). An ordering scheme for a task-graph T = (U, E , δ)
derived from a split-join graphG = (V,E, r, d) is a relation≺=

⋃
v∈V ≺v where each

≺v is a total order relation on Uv .

In the lexicographic ordering scheme�, the tasks vh ∈ Uv are ordered in the lexico-
graphic order�v of their indices ‘h’. We say that a schedule s is compatible with an
ordering scheme ≺ if vh ≺ vh′ implies s(vh) ≤ s(vh′). We denote such an ordering
scheme by ≺s and use notation v[h] for the task occupying position h in ≺sv .

Lemma 1. Let s be a feasible schedule and let v and v′ be two actors such that (v, v′) ∈
E. Then

1. If r(v, v′) = α ≥ 1, then for every h ∈ [0, c(v) − 1] and every a ∈ [0, α − 1] we
have

s(v′[αh+ a])− s(v[h]) ≥ d(v).

2. If r(v, v′) = 1/α then for every h ∈ [0, c(v)− 1] and every a ∈ [0, α− 1] we have

s(v′[h])− s(v[αh+ a]) ≥ d(v).

Proof. The precedence constraints for Case 1 are in fact s(v′αh+a)− s(vh) ≥ d(v), and
we have to prove that in this expression the lexicographic index vh can be replaced by
schedule-compatible index v[h]. Let j = hα+ a and j′ = j+ 1. Since each instance of
v is a predecessor of exactly α instances of v′, the execution of v′[j] must occur after
the completion of at least dj′/αe instances of v. By construction, this is not earlier than
the termination of the first dj′/αe instances of v to occur in schedule s. In our notation
this can be written as:

s(v′[j]) ≥ s(v[dj′/αe − 1]) + d(v)
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Substituting j and j′ into the above formula we obtain our thesis. A similar argument
holds for Case 2. ut

Theorem 1 (Lexicographic Ordering). Every feasible schedule s can be transformed
into a latency-equivalent schedule s′ compatible with the lexicographic order�.

Proof. Let ωs be an actor-preserving permutation on U defined as ωs(vh) = v[h]. In
other words, ωs maps the task in position h according to� to the task occupying that
position according to ≺s. The new deployment is defined as

µ′(vh) = µ(ωs(vh)) and s′(vh) = s(ωs(vh)).

Permuting tasks of the same duration does not influence latency nor the satisfaction of
resource constraints. All that remains to show is that s′ satisfies precedence constraints.
Each vh is mapped into v[h] and each of its v′ sons (resp. parents) is mapped into
v′[αh+ a], 0 ≤ a ≤ α− 1. Hence a precedence constraint for s′ of the form

s′(vh·a)− s′(vh) ≥ d(v)

is equivalent to
s(v[αh+ a])− s(v[h]) ≥ d(v)

which holds by virtue of Lemma 1 and the feasibility of s. ut

For example, in Figure 2 we illustrate a task graph, a feasible schedule and the same
schedule transformed into a lexicographic-compatible schedule by a permutation of the
task indices.

The implication of this result is that we can introduce additional lexicographic con-
straints to the formulation of the scheduling problem without losing optimality and thus
significantly reduce the search space, i.e., we can do symmetry breaking.

A0 B1

B0

B2

C0

C1

C2

D0

(a) A task graph

A0 B0B1

B2 C2 C1

C0 D0

Time

P1

P2

(b) A schedule

A0 B2B1

B0 C0 C1

C2 D0

Time

P1

P2

(c) A lexicographic schedule

Fig. 2: Illustration of the lexicographic ordering theorem

3 Constraint-Based Feasible Cost-Space Exploration

In this section, to illustrate the effectiveness of the proposed symmetry breaking re-
sult, we encode the multicore deployment for split-join graphs as a quantifier-free SMT
problem, defined by a set of constraints in the theory of linear arithmetics. Expressing
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scheduling problems using constraint solvers is fairly standard [1,2,27,15] and various
formulations may differ in the assumptions they make about the application and the
architecture and the aspects of the problem they choose to capture. For clarity and page
limitation reasons, we present only the non-pipelined scheduling case.

To take advantage of symmetry breaking, we assume a multicore architecture where
all cores are symmetric (homogeneous) both in terms of the computation times and
the memory access times to the task communication data located in a shared mem-
ory. Fortunately, many advanced multicore architectures [16,25,11] either have a global
symmetric shared memory for all processors or contain large groups of processors –
so-called clusters – inside which this assumption holds. The access to the shared mem-
ory (including contentions and cache misses) is taken into account in the task execution
times δ. In accordance with a common practice in SDF literature, we assume that a
separate communication buffer is assigned to each edge (channel) (v, v′) of the split-
join graph so that tasks associated with the same actor read from and write to the same
buffer.

To take buffer storage into account, we enrich the split-join graph model to become
G = (V,E, d, w, r) with w(v, v′) assigning to any edge in E the amount of data (in
bytes) communicated from an instance of v to an instance of v′ (this is called token size
in the SDF literature). The corresponding task graph is T = (U, E , δ, w↑, w↓) where
w↑v,v′ is the amount of data written on the channel (v, v′) by a task in Uv and w↓v,v′ is
the amount read by a task in Uv′ . We assume that u allocates this memory space while
starting and that u′ releases it upon termination. The relation between w, w↑ and w↓

depends on the type of the edge: for a split edgew↑v,v′ = αw(v, v′) andw↓v,v′ = w(v, v′)

while for join edges we have w↑v,v′ = w(v, v′) and w↓v,v′ = αw(v, v′).
In the following we write down the constraints that define a feasible schedule and

its cost in terms of latency, number of processors and buffer size.

– Completion time and precedence: e(u) is the time when task u terminates and a
task cannot start before the termination of its predecessors.∧

u∈U
e(u) = s(u) + δ(u) ∧

∧
(u,u′)∈E

e(u) ≤ s(u′)

– Mutual exclusion: tasks running on same processor should not overlap in time.∧
u6=u′∈U

(µ(u) = µ(u′))⇒ (e(u) ≤ s(u′) ∨ (e(u′) ≤ s(u))

– Buffer: these constraints compute the buffer size of every channel (v, v′) ∈ E.
They are based on the observation that buffer utilization is piecewise-constant over
time, with jumps occurring upon initiation of writers and termination of readers.
Hence the peak value of memory utilization can be found among one out of finitely-
many starting points.
The first constraint defines W ↑v,v′(u, u∗), the contribution of writer u ∈ Uv to the
filling of buffer (v, v′) observed at the start of a writer u∗ ∈ Uv:∧

(v,v′)∈E

∧
u∈Uv

∧
u∗∈Uv

(s(u) > s(u∗)) ∧ (W ↑v,v′(u, u∗) = 0) ∨
(s(u) ≤ s(u∗)) ∧ (W ↑v,v′(u, u∗) = w↑v,v′)
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Likewise the valueW ↓v,v′(u
′, u∗) is the (negative) contribution of reader u′ to buffer

(v, v′) observed at the start of writer u∗:

∧
(v,v′)∈E

∧
u′∈Uv′

∧
u∗∈Uv

((e(u′) > s(u∗)) ∧W ↓v,v′(u′, u∗) = 0) ∨
(e(u′) ≤ s(u∗)) ∧ (W ↓v,v′(u

′, u∗) = w↓v,v′)

The total amount of data in buffer (v, v′) at the start of task u∗ ∈ Uv , denoted by
Rv,v′(u∗), is the sum of contributions of all readers and writers already executed:∧

(v,v′)∈E

∧
u∗∈Uv

Rv,v′(u∗) =
∑
u∈Uv

W ↑v,v′(u, u∗)−
∑

u′∈Uv′

W ↓v,v′(u
′, u∗)

The buffer size for (v, v′), denoted by Bv,v′ is the maximum over all the start times
of tasks in Uv: ∧

(v,v′)∈E

∧
v∗∈Uv

Rv,v′(u∗) ≤ Bv,v′

– Costs: The following constraints define the cost vector associated with a given
deployment, which is C = (Cl, Cn, Cb), where the costs indicate, respectively,
latency (termination of last task), number of processors used and total buffer size.∧

u∈U
e(u) ≤ Cl ∧

∧
u∈U

µ(u) ≤ Cn ∧
∑

(v,v′)∈E

Bv,v′ ≤ Cb

We refer to the totality of these constraints as ϕ(µ, s, C) which are satisfied by any
feasible deployment (µ, s) whose cost is C.

– Symmetry breaking: We add two kinds of symmetry-breaking constraints, which
do not change optimal costs. Firstly, we add the lexicographic task ordering con-
straints as implied from Theorem 1 – henceforth: task symmetry∧

v∈V

∧
vh,vh+1∈Uv

s(vh) ≤ s(vh+1)

where vh denotes the instance of v at the h-th position in the order�v .
Secondly we add fairly standard constraints to exploit processor symmetry: proces-
sor 1 runs task 1, processor 2 runs the lowest index task not running on processor
2, etc.. Therefore, let us number all tasks arbitrarily with a unique index: u1, u2, etc.
The processor symmetry breaking is defined by the following constraint:

µ(u1) = 1 ∧
∧

2≤i≤|U |

µ(ui) ≤ max
1≤j<i

µ(uj) + 1

More details on how all constraints were encoded in Z3 solver can be found in [22].
SAT and SMT solvers were designed for deciding satisfiability, not for optimization.

However, such solvers can be used to find optimal costs by submitting queries concern-
ing the existence of solutions with specific costs, which can be viewed as a binary search
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in the cost space with the solver acting as an oracle. We focus on multi-criteria opti-
mization problems where we seek to find optimal trade-offs between latencyCl, number
of processors Cn and buffer storage Cb. Such problems [8] do not admit a unique opti-
mal solution but rather a set of efficient Pareto solutions [18] that cannot be improved in
one cost dimension without being worsened in others. The set of such solutions, known
as the Pareto front, represents the optimal trade-offs between the conflicting criteria.
Following [14] we use queries to an SMT solver to find an approximation of the Pareto
front. We summarize below the essence of the exploration methodology of [14], which
can be viewed as a multi-dimensional generalization of binary search. Other approaches
for multi-criteria optimization can be found in [8,28,6].

LetQ(c) be a shorthand for the satisfiability query ∃µ∃s s.t. ϕ(µ, s, c) which asks
whether there is a feasible deployment whose cost vector is equal to c. If the solver
answers affirmatively with some cost c we have a solution and may also conclude any
cost in forward cone of c set B+(c) = {c′ | c′ ≥ c} is feasible, which follows directly
from the cost constraints. If the answer is negative we can conclude that any cost in the
backward cone B−(c) = {c′ | c′ ≤ c} is infeasible. After submitting any number of
queries with different values of c we face a situation illustrated in Fig. 3. The sets C0
and C1 are, respectively, the maximal costs known to be infeasible (unsat) and minimal
costs found (sat). Sets C0 and C1 are defined as the sets of all points known to be
unsat and sat, they are equal to the forward/backward cone of the extremal points.
The feasibility of costs which are outside C0 ∪C1 is unknown. The set C1 constitutes an
approximation of the Pareto front and its quality, defined as a kind of Hausdorff distance
to the actual front, is bounded by its distance to the boundary of the backward cone of
C0.

C0 C1

C1 = B+(C1)

C0 = B−(C0)

C̃

(a) (b)

Fig. 3: (a) Sets C0 (unsat) and C1 (sat) represented by their extremal points C0 and C1; (b) The
state of our knowledge at this point as captured by C0 (infeasible costs) C1 (feasible costs) and C̃
(unknown). The actual Pareto front is contained in the closure of C̃.

Before we apply the exploration procedure we need to bound the cost space. For
latency Cl, a lower bound is the size of the the longest path (in terms of δ) through the
task graph. The upper bound is the total amount of work (sum of δ over all tasks). The
bounds on buffers size are obtained by the two extreme scenarios. The lower bound is
when each buffer is filled by the writer(s) to the minimal level required by the reader(s)
to execute, that is, Bv,v′ = αw(v, v′) for an edge with multiplicity α or 1/α. The
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upper bound should cover the execution of all instances of v before any instance of v′,
Bv,v′ = w(v, v′) ·max(c(v), c(v′)). The number of processors ranges trivially between
1 and the maximal number of processors on the platform. The width of the task-graph,
when smaller than the number of processors, can serve as a tighter upper-bound as it
limits the number of tasks that can execute in parallel.

Unlike the distance-oriented algorithm of [14], we use here a simpler exploration
algorithm based on grid refinement. At every stage of the algorithm we refine the grid
defined on the cost space and ask Q(c)-queries with c ranging over those newly-added
grid points which are outside C0∪C1. Note that not all these new points will necessarily
be queried because each query increases the size of C0∪C1 so as to include some of these
points. The description so far was based on the assumption that all queries terminate.
However it is well-known that as c gets closer to the boundary between sat and unsat,
the computation time may grow prohibitively and the solver can get stuck. To tackle
this problem we bound the time budget per query and when this bound is reached we
abort the query and interpret the result as unsat. Choosing the appropriate value for this
time-out bound is a matter of trial and error.

Fig. 4: Exploring the cost space via grid refinement. The dark points indicate the new candidates
for exploration after each refinement.

4 Experiments

In this section we investigate the performance of the cost-space exploration algorithm.
First, we assess the contribution of the symmetry reduction constraints on the execution
time and the quality of solutions for a synthetic example. Then we explore the cost
space for a split-join graph derived from a real video application. These experiments
use version 4.1 of the Z3 Solver [17] running on a Linux machine with Intel Core i7
processor at 1.73 GHz with 4 GB of memory. Finally, we validate the model used to
derive the solution by deploying a JPEG decoder on the Tilera platform [25] according
to the derived schedule. The measured performance is very close to the predicted model.
Finding Optimal Latency: We use the split-join graph of Fig. 1 with various values
of α to explore the effect of the symmetry reduction constraints on the performance of
the solver. We start with a single cost version of the problem and perform binary search
to find the minimum latency that can be achieved for a fixed number of processors.
We solve the same problem using four variations of the constraints: without symmetry
reduction, with processor symmetry, with task symmetry and with both. Figure 5 depicts
the computation times for finding the optimal latency as a function of α on platforms
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with 5 and 20 processors. We use time-out per query of 20 minutes, which is much
larger than the one minute we typically use because we want to find the exact optimum
in order to compare the effects of different symmetry constraints. Scheduling problems
are known to be easy when the number of processors approaches the number of tasks.
For the difficult case of 5 processors, task symmetry starts dominating beyond 10 tasks
and the combination of both gives the best results. It increases the size of graphs whose
optimal latency can be found (with no query executing more than 20 minutes) from
α = 12 to α = 48. Not surprisingly, for 20 processors, the relative importance of
processor symmetry grows. In Figure 5(b) we see no advantage from the task symmetry
presumably because we could not try large values of α.
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Fig. 5: Time to find optimal latency as a function of the number of tasks for 5 and 20 processors.

Processor-Latency Trade-offs: To demonstrate the effect of symmetry reductions on
the Pareto front exploration we fix α = 30 and seek trade-offs between latency and the
number of processors. We use a time budget of one minute per query. Fig. 6 depicts
the results obtained with and without symmetry breaking constraints. The square points
show the unsat points whereas the circle are the sat points. The black curve is the
approximation of the Pareto front, connecting all the minimal sat points. Points whose
queries took long time to answer are surrounded by a dark halo whose intensity is
proportional to the time (the darkest areas are around the timeout points). As one can
see from the figure, symmetry constraints reduce significantly the number of time-outs
with processor symmetry doing the job on the upper-left part of the curve while task
symmetry is useful around the middle. The total time to find the minimal latency for
each and every value of Cn is 42 minutes without symmetry, and 16 minutes with both
types of symmetry constraints.
Video Decoder: Next we perform a 3-dimensional cost exploration for a model of a
video decoder taken from [10] and described in more detail in [22]. The application
admits 11 actors expanding to 122 tasks. Without any symmetry constraints the solver
quickly times out for most queries of interest. Symmetry constraints do not completely
eliminate time-outs but reduce them significantly and therefore the quality of the Pareto
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(b) With Task and Proc Symmetry

Fig. 6: Pareto Exploration Result

front approximation is much better, as shown in Fig. 7. Note that for a sequential im-
plementation (Cn = 1) the constraints improve the buffer size from 276 to 182 and for
the most parallel deployment (Cn = 122) they reduce the latency from 10 K to 7 K and
the buffer size from 333 to 229. The Pareto point (14, 333, 62) found without symmetry
reduction is strongly dominated by the point (10, 229, 31) found with symmetry break-
ing. This solution improves the latency and buffer usage by roughly a third while using
half of the processors. We believe it is a promising indication of the applicability of our
approach and of the potential performance gains in treating the optimization problem
globally.
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Jpeg Decoder: Finally we validate our model by deploying a JPEG decoder on the
Tilera platform [25] which is a 64-core symmetric multicore platform running at 862.5
MHz. The theoretical scheduling problem that we solve is deterministic where task du-
rations are assumed to be precisely known. The obtained schedule is time-triggered,
given in terms of the exact start time function s. In reality, there are variations in execu-
tion times and in our implementation we use static order schedules, preserving only the
order of task execution on each processor. This is a common way to generate sched-
ules for task graphs and SDF, see for example [20]. When task durations agree with
the nominal values used in the optimization problem, this scheduling policy coincides
with s. Unlike the traditional work on dataflow mapping, we support mappings where
the writers and readers of the same buffer storage can be spread over more than two
different processors. Our experience confirms that this dynamic scheduling policy can
be implemented with a reasonable amount of additional synchronization between the
cores. Note also that when the schedule is compatible with lexicographical task order
(justified by Theorem 1), the accesses to the channels automatically become FIFO and
this facilitates the implementation of cyclic buffers.

The split-join graph of the decoder can be found in in [22]. It has three main actors:
variable length decoding (vld), inverse quantization and inverse discrete cosine trans-
form (iq/idct) combined and color conversion (color). To measure execution times we
run the decoder several times on a single processor and measure the execution time
of each actor. To mitigate cache effects, we consider the average execution time rather
than worst case, which occurs only in the first execution due to cache misses. We use
these average execution times in the model we submit to the solver. We then deploy the
decoder on the platform and run it 100 times (again to dampen cache effects). The rela-
tion between the average latency (in µs) observed experimentally and the Pareto points
computed by the SMT solver is depicted below and the deviation is typically smaller
than 15%.

no. proc 1 3 4 6 8 12
predicted 506 314 278 261 243 226
measured 461 309 299 307 300 351

5 Discussion

The deployment of programs on parallel machines is a very old problem whose param-
eters change with the evolution of computer architecture. The problem exists in both
software [12] and hardware [5] and in the latter it is viewed as an instance of high-level
synthesis . Due to problem complexity the problem is often solved using heuristics such
as list scheduling and/or decomposed into separate phases, for example, optimizing la-
tency and buffers separately [21]. Recent advances in SAT and SMT solvers and other
constraint propagation techniques suggest an opportunity to formulate and solve the
problem in a monolithic way, avoiding the sub-optimality of decomposed solutions. For
example, [15] exploits SMT solvers to combine multiple deployment sub-problems: the
task-to-processor assignment, the ordering of tasks on each processor and the assign-
ment of scalable voltage per processor. For SDF graphs, [2] and [27] combine multiple
phases using a constraint programming (CP) engine. In the context of high-level syn-
thesis, the tool FACTS (see [9] for references) uses branch-and-bound approach com-
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bined with constraint analysis, whereas [5] discusses various ILP formulations. In [26]
a quantitative model checking engine is developed using a variant of timed automata
for combined scheduling and buffer storage optimization of SDF graphs.

Various approaches to facilitate the task of the solver by additional symmetry break-
ing constraints have been tried, for example [19] for graph coloring or an automated
method for discovering graph automorphism [4] which can lead to significant improve-
ments [9]. However, our deployment problem does not require complex detection of
isomorphic subgraphs. Instead we exploit the knowledge about the structure of the task
graphs coming from the original split-join graph and not relying in any way on the graph
automorphism. In fact, our approach leads to stronger symmetry reduction than could
be obtained by exploiting the automorphism in the task graph as done in [9]. Theorem 1
provides the necessary compact symmetry breaking constraints that do the job. As for
the restrictions that we imposed on the split-join graph compared to more general SDF
graphs admitting non-divisible token production and consumption rate, let us first re-
mark that Theorem 1 can be extended, somewhat less elegantly, to this more general
case. Moreover, the extensive study of StreaMIT benchmarks found in [23] reports that
most actors in most applications, fall into the category of well-formed split-join graphs
that we treat.

The contribution of the paper can be summarized as follows. We provide a frame-
work for multi-criteria optimization and cost-space exploration, not based on heuris-
tic sub-optimal decomposition. Using symmetry reduction justified by Theorem 1, we
could conduct a 3-dimensional cost-space exploration for a non-trivial problem with
122 tasks. The theorem itself generalizes the result of [9] which proves optimality of
lexicographic order for one level of nesting. We prove the result for arbitrary nesting
depth and give a simpler proof. In the future it might be interesting to apply this result
in various alternative solution space exploration methods for the scheduling problems,
e.g., ILP, model checking or genetic programming.

In future, we plan to extend this work in several directions. First we will employ
more refined models of data communication where different mappings imply differ-
ent data transfer costs. Secondly we will consider pipelined executions as was done in
[15,2,27,26], using e.g., a finite unfolding. This will increase the number of tasks but
will reduce the effect of precedence constraints. Thirdly we should adapt the methodol-
ogy to a more significant variability in task duration and this will require an implemen-
tation of scheduling under uncertainty that can deviate from the task execution order
provided by s. Finally we will seek ways for a more direct exploitation of the symbolic
representation of data-parallel tasks and a tighter interaction between the cost explo-
ration algorithm and the solver.
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