Satisfiability Checking with Difference
Constraints

Scott Cotton

A masters thesis supervised by
Andreas Podelski and Bernd Finkbeiner

IMPRS Computer Science
Saarbruecken

May 13, 2005

Abstract

This thesis studies the problem of determining the satisfiability of a Boolean
combination of binary difference constraints of the form x — y < ¢ where z
and y are numeric variables and c is a constant. In particular, we present
an incremental and model-based interpreter for the theory of difference con-
straints in the context of a generic Boolean satisfiability checking procedure
capable of incorporating interpreters for arbitrary theories. We show how to
use the model based approach to efficiently make inferences with the option
of complete inference.

Contents

1 Introduction
1.1 Introduction
1.2 Related Work
1.3 Contributions
1.4 Organization

2 DPLL
2.1 Overview.
2.2 Conjunctive Normal Form
2.2.1 Simple Translation
2.2.2 Translations with extra variables
2.3 Variable Ordering Heuristics
2.3.1 MOMs Heuristics
2.3.2 Literal Counting Heuristics . . .
2.3.3 Clause Based Heuristics
2.4 FEfficient Constraint Propogation
2.5 Conflict Directed Learning
2.5.1 Implication Graph
2.5.2 The Various Cuts
2.5.3 Non Chronological Backtracking
26 Conclusion

3 Parametric DPLL
3.1 DPLL Implementation
3.2 A Generic Theory Interface
3.3 Some Changes to DPLL
3.3.1 Decision Time Inconsistency . .
3.3.2 Pure Literals

3.3.3 Constraint Propogation

3.4 Conclusion

Difference Constraints

4.1 Conjunctions and Constraint Graphs
Negative Cycle Detection
Incremental Negative Cycle Detection
4.2 Real and Integer Domains
4.3 Diffference Constraints in CNF
Negation Closure
4.3.2 Satisfying Partial Assignments

4.1.1
4.1.2

4.3.1

4.4 Conclusion

5 Model Based Interpretation

5.1 Overview
cture . .

5.2 Archite
5.2.1

5.4.1

5.4.3

5.5 Conclusion

Stack Threaded Constraint Graphs

5.2.2 Uninterpreted Constraint Graph
5.3 Interpretation and Backtracking
5.4 Constraint Propogation
Round Robin Constraint Propogation
5.4.2 Complete Propogation
Incomplete Propogation
54.4 Complexity

Experiments

6.1 Job Shop Scheduling
Problem Description

6.1.2 Experimental Analysis
6.2 Bounded Model Checking of Timed Automata
Definitions oo
Circuit Timing Analysis
Coding the BMC problem
Experiments oo

6.1.1

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

7 Conclusion

Analysis

29
29
32
36
37
39
39
39
40

41
41
42
42
43
43
44
44
46
47
48
48

50
50
50
ol
56
56
58
99
60
61

64

List of Figures

2.1

2.2

2.3
24

3.1
4.1

4.2
4.3
4.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Pseudocode for the Davis-Putnam-Loveland-Logemann proce-

Two literal watching assignment update requiring a scan of

the clause.
Implication graph of a conflict.
Implication graph of a conflict with 1UIP cut.

DPLL modified to accept decisions inconsistencies.

Pseudocode for Bellman-Ford-Moore Algorithm with negative

cycle detection.
Pseudocode for Tarjan’s subtree disassembly algorithm.
Pseudocode for the Goldberg-Radzik algorithm.
Pseudocode for incremental negative cycle detection.

FT06 without numerical constraint propogation.
FT06 with incomplete numerical constraint propogation.
FT06 with complete numerical constraint propogation.

ABZ5 with no numerical constraint propogation..
ABZ5 with incomplete numerical constraint propogation. . . .
ABZ5 with complete numerical constraint propogation.
Timed automaton for a gate.
A 3-bitadder.

Maximum stabilization query results.

Acknowledgements

There are several people whose aid and support made this thesis possible.
In particular, Oded Maler provided the topic, the funding, and much advice.
Without his support, none of this work would have been possible. Andreas
Podelski welcomed me at IMPRS. Even under constraints of a different sort,
he has ensured that the IMPRS masters program would be both pedagogical
and feasible. Kerstin Meyer-Ross made the apparently impossible possible,
performing veritable miracles from time to time. Moez Mahfoudh provided
the starting point with his thesis on the topic. I would like to extend my
most sincere thanks to these folks and to my family for their kind support
and patience during the undertaking of this work.

Chapter 1

Introduction

1.1 Introduction

This thesis studies the problem of determining the satisfiability of a Boolean
combination of binary difference constraints of the form x — y < ¢ where
x and y are numeric variables and c is a constant. Such constraints, here
called difference constraints, are often used in the modelling and verification
of timed systems. Algorithms for the satisfiability and inclusion problem for
conjunctions of difference constraints are well known and applied in a variety
of tools such as Kronos [36] or Uppaal [9]. However, the development of
algorithms treating arbitrary Boolean combinations of difference constraints
has recently become a topic of research. This research is in part motivated by
limitations in the tools for verifying timed systems and also by the successes
witnessed in the algorithmics associated with Boolean functions.

1.2 Related Work

Methods for determining the satisfiability of a Boolean combination of dif-
ference constraints can be broadly categorized into two branches. In the first
branch, a Boolean combination of difference constraints is translated into a
diagram or data structure which is the object of various algorithms. This
approach often follows the principles of binary decision diagrams [5], in which
a propositional formula is given a canonical form. This approach is better
suited for solving a wider array of problems than that of satisfiability check-
ing — in particular the methods are generally designed to include efficient

conjunction, disjunction and negation. In its simplest and most often used
form, the formula is maintained as a list of matrices each of which encodes
a conjunction of difference constraints. The elements in the list represent
disjuncts of the formula. However, there can be a great deal of redundancy
in the structure, since entire conjunctions are treated atomically. This ob-
servation led to the development of difference decision diagrams [22], and
clock difference diagrams [18] which eliminate the redundancy by defining
and using a canonical order over the set of difference constraints.

The second branch makes use of algorithms for Boolean satisfiability and
is more focused on the satisfiability problem. Work that falls in this cat-
egory can make use of Boolean SAT solvers in any number of ways. One
straightforward method is to translate a formula with difference constraints
to an equisatisfiable formula in propositional logic, and then employ an off-
the-shelf SAT solver. This method, utilized in [30], can be fast when the
translation is fast. However, the translation can often create a large, even
exponential, formula.

Another straightforward method, which we call the lazy method, is to use
a Boolean SAT solver repeatedly on a formula which replaces each difference
constraint with a Boolean variable. If at any time the SAT solver determines
the problem is not satisfiable, the process is complete. Otherwise, the satis-
fying assignment A is used to check the consistency of the set of difference
constraints required to satisfy the formula under the assignment A. If this
set is not consistent, a new constraint is added to the formula and the process
continues. If the set is consistent, the problem is satisfiable. This approach
is taken for example by MathSAT [21], and makes use of model enumeration
capabilities available in many SAT solvers.

Finally, one can extend a Boolean SAT solver so that it can interpret
difference constraints directly, in a fashion exactly synchronized with the
Boolean SAT solver’s interpretation of Boolean variables. While there are
problems for which this method can be slower than either of the previous
methods, there are also various advantages. In particular, this approach is
more dynamic in how it adapts to a given input problem. It can find incon-
sistencies earlier than in the lazy method and at the same time it can avoid
much of the processing required in the translation based methods by ignor-
ing altogether many of the possible sets of difference constraints which are
inconsistent. Perhaps most importantly, the direct method allows for con-
straint propogation based on the interpretation of the difference constraints.
Constraint propogation recursively identifies and then interprets those con-

7

straints which are implied by a given set of interpreted constraints. Such
constraint propogation can accelerate the solving process a great deal, in
exactly the same fashion that Boolean constraint propogation accelerates
Boolean SAT solving.

All of the methods which make use of SAT solvers have been generalized
to handle constraints of various types. They are not in general restricted
to difference constraints. For example, many translation based methods are
in use which solve any arithmetical constraints with the finite model prop-
erty [26], such as those constraints in the language of Presburger arithmetic.
The lazy method can make use of any external solver capable of determin-
ing the satisfiability of a conjunction of constraints, and thus can be easily
generalized to a wide class of constraints. In addition, a framework called
DPLL(T) was presented in [12] which implements the direct method for any
type of constraints by defining an interface for a theory specific solver which
interprets the constraints and communicates with the Boolean SAT solving
process. As is the case for the lazy method, all that is required of an ex-
ternal solver is the ability to determine the consistency of a conjunction of
constraints. However, the interface between the theory solver and the SAT
solver allows for some interaction, such as constraint propogation, which is
not possible in the lazy approach.

1.3 Contributions

In this thesis, we present a novel implementation of the direct method for
checking the satisfiability of a Boolean combination of difference constraints.
In particular, we present a solver for the theory of difference constraints
within the DPLL(T) framework. The solver is unique in that it maintains a
stack of models that mirrors the stack of truth assignments made in the SAT
solving process. Within this structure, a single model at the top of the stack
provides the basis for fully incremental consistency checking as well as for
constraint propogation. All the while, the stack structure as a whole allows
for both efficient backtracking and a compact representation which shares
information between models. This methodology is in contrast to other ap-
proaches, such as those found in [19, 27], which maintain a representation of
all the models associated with any given truth assignment. By comparison,
these approaches suffer from scalability in the number of numeric variables
or from inefficient backtracking, in which the representation of all the models

must be recalculated. In addition, our approach offers more efficient consis-
tency checking for sparse systems of constraints, which is the norm in the
problems we have encountered.

One of the most developed features of our prototype solver is its treatment
of constraint propogation. We give methods for complete propogation as
well as for cheaper incomplete propogation. In the later case, we present an
effective heuristic which experimentally outperforms complete propogation
and which does not add to the asymptotic complexity of our incremental
consistency checking algorithm. In both cases, we employ a method called
round robin constraint propogation, which takes advantage of the DPLL(T)
framework in a way that allows for semi-lazy constraint propogation. The
method is in addition largely based on observations which are independent
of difference constraints per se and thus may be applicable in other contexts.

In addition, we evaluate our methods in two experimental settings with a
prototype implementation. First, we examine the classic problem of job shop
scheduling and second we examine the problem of maximum stabilization
time of a combinatorial circuit, phrased as a problem in the bounded model
checking of timed automata.

1.4 Organization

In chapter 2, we present the DPLL procedure for propositional satisfiability
checking with an emphasis on widely adopted modern optimizations. This
chapter describes the framework within which we later incorporate difference
constraints and forms the primary the basis for chapter 3. In chapter 3, we
present a generic DPLL procedure with which the satisfiability of a Boolean
combination of atoms in a given theory may be determined. In chapter 4,
we study properties of difference constraints and graphical representations
of systems of difference constraints under dense and integer domains. In
chapter 5 we present an implementation of a theory interpreter for the theory
of difference constraints within the framework of the generic DPLL procedure
presented in chapter 3 and based on ideas presented in chapter 4. Chapter 6
contains descriptions of experiments, results, and the analysis of the results.
We conclude in chapter 7.

Chapter 2
DPLL

The Davis-Putnam-Loveland-Logemann procedure for determining the satis-
fiability of a propositional formula originated in [10]. This procedure works on
propositional formulae in conjunctive normal form and proceeds by branching
on truth values of propositional variables, backtracking whenever an assign-
ment to these variables falsifies a constraint. Although this overall framework
is quite straightforward, there are many variations in the components which
lead to widely varying performance. In fact the performance of DPLL pro-
cedures over the last decade has drastically improved at a rate well above
what can be attributed to Moore’s law.

In this chapter, we present the DPLL procedure with a focus on compo-
nents which are common to many of the most performant solvers, and which
are generally perceived as essential for a performant DPLL solver by the SAT
community. While this study is not concerned with attaining a more efficient
propositional satisfiability solver per se, we will lift the techniques presented
here to a DPLL based solver capable of handling difference constraints. In
doing so we will leverage some of the recent success witnessed by proposi-
tional solvers, but we will first proceed with a presentation of well exercised
techniques within the DPLL framework for propositional formulae.

2.1 Overview
The DPLL procedure recursively explores a tree of truth assignments to the

variables in a formula ¢, which is required to be in conjunctive normal form.
The tree is formed as follows. First an arbitrary order is given to the variables

10

in the formula. The root of the tree represents the first variable in this order.
More generally, any node at depth ¢ in the tree will represent the ith variable.
Each node n has two children ¢ and ¢;;. The edge between a node n at depth
i and ¢ represents the assignment {v; — true}, and similarly the edge to ¢,
represents the assignment {v; — false}. In this way every path in the tree
from the root to a leaf represents a total assignment A. The algorithm, given
in pseudo code below, recursively searches the tree of possible assignments
by building up partial assignments as it goes deeper into the search tree.

Figure 2.1: Pseudocode for the Davis-Putnam-Loveland-Logemann proce-
dure.

def DPLL(¢, A):

stat := getStatus(¢, A)

if (stat = SAT) then return true

else if (stat = UNSAT) then return false

else if AU {v +— h} is deducible for some variable v and truth value h
return DPLL(¢, AU {v +— h})

else
let v be the next unassigned variable
if DPLL(¢, AU {v + true}) return true
else return DPLL(¢, AU {v — false})

The function getStatus determines whether a partial assignment renders
¢ satisfiable, unsatisfiable, or unknown. The deducibility of a variable’s truth
value under a partial assignment refers to a very simple, incomplete form of
propositional deduction specific to formulae in conjunctive normal form: if
¢ simplifies ! under assignment A to a formula in the form x A ... for some
variable z, then AU{z — true} is deducible. The case of ~z A ... is treated
similarly.

This simple backtracking framework is the theoretically fastest known
algorithm for determining the satisfiability of a propositional formula. How-
ever, vast performance improvements can result from careful attention to

'The notion of simplification is described in more detail in the next section covering
conjunctive normal form.

11

implementation details and heuristics. For example, the order given to the
variables turns out to be quite important, and has been the subject of various
studies. In addition, the process of identifying deducibility of variable’s truth
values and transitively assigning deducible variables from other assignments
has been observed to occupy the majority of DPLL solver’s time [37]. Con-
sequently, this process has been highly optimized in various solvers [23, 14],
also leading to significant performance enhancements.

Perhaps the most important development is the addition of a completely
new component to the algorithm: learning. As stated above, when the algo-
rithm detects that the formula is unsatisfiable under an assignment, it simply
backtracks to the next available assignment. With learning, the algorithm
first identifies a small subset of the assignment which is sufficient to lead to
unsatisfiability of the formula. It encodes the negation of this assignment as
a constraint that must be satisfied if ¢ is to be satisfied, and remembers this
constraint as the remainder of the assignments are explored. The effect of
the added clause on pruning the assignment tree can be dramatic.

2.2 Conjunctive Normal Form

The DPLL procedure requires formulae in conjunction normal form (CNF).
To determine the satisfiability of an arbitrary formula, a translation to con-
junctive normal form is necessary. In this section we define CNF, present
some translations for arbitrary formulae to CNF and discuss how formula
simplification works in CNF.

Definition 2.2.1. Conjunctive Normal Form (CNF)

e A literal is a propositional variable v or its negation —w.

e A clause is a disjunction of literals. Moreover a clause must contain no
duplicate literals and must not contain both a variable and its negation.

e A propositional formula is in conjunctive normal form if it is a con-
junction of clauses.

DPLL thus operates over formulae of the form A;;(V/;c;, ;) where each
literal [; is a propositional variable or its negation, 7 indexes clauses and each

7 € J; indexes disjuncts within clause i.

12

This form allows the DPLL algorithm to easily simplify a formula under
an assignment. If a variable x maps to true, then any clause ...V z V...
becomes solved, and any clause [; V...V—-z V...V, simplifies to [; V... V,.
Additionally, a clause with no disjuncts indicates an unsatisfiable assignment
and a clause with exactly one disjunct z or —z (also called a wunit clause)
indicates a deducible assignment for z. Finally, if all the clauses are solved
under a partial assignment, then the formula is clearly satisfiable under any
extension of that assignment.

The procedure transitively deduces assignments in unit clauses. This
process, called unit propogation was introduced in [10]. Most importantly,
unit propogation serves as lookahead in the search of the assignment space.
The search space is reduced whenever an assignment x or —x is deduced via
a unit clause, simply because there is no need to guess the truth value of x.

An important side-effect of unit propagation is the introduction of a con-
sistency invariant to the solution process. Since the solver does not guess
the truth value of a variable unless there are no unit clauses, it is guaranteed
that at every point immediately prior to guessing a variable, the problem is
1-consistent. In other words, the partial assignment prior to a decision can
always be extended to include any one unassigned variable with the guar-
antee that the resulting assignment will not produce an empty clause. We
call this property decision time 1-consistency. Some extensions of DPLL lose
this property and consequently do not implement techniques which rely on
it.

2.2.1 Simple Translation

One can translate an arbitrary propositional formula into CNF using stan-
dard Boolean equivalences in two phases. First the negation operator is
pushed down to subformulae:

~(PAY) — —¢pV (2.1)
“(oVY) — oA

Second, as long as there is a disjunct over a conjunct the following transfor-
mation is applied:

13

OV (W AY) = (pVY)A(6V)

The major drawback of this translation is that it can yield an exponential
formula. Consider formulae of the form \/(_,,(z; Ay;). Translation of these
formulae by simple Boolean equivalences yields

/\ ¢ Where ¢, = \/xZ \% \/yZ

which is clearly exponential in the size of the original. A more compact
translation is needed.

2.2.2 Translations with extra variables

Numerous efficient translations to conjunctive normal form exist, such as
those of Tseitin [33] or Wilson [34], that make use of extra variable. All of
them are based on the idea of adding variables that are equivalent to subfor-
mulae of the formula to be translated. Here we present a minor variation of
these translations.

As before, we first push the negation operator down to the propositional
variables and eliminate double negations using the mapping as presented in
equation 2.1. Second, we translate any disjunct ¢ V v that is not already in
the form of a clause. To do so, we recursively build an equisatisfiable formula
CZ A Cy* constructed with the aid of a new variable z. We first translate ¢
to a set of clauses C,, then likewise translate ¢ to a set of clauses Cy. We
then append x as a disjunct to each clause in C,,, resulting in a set of clauses
(7, and similarly we append - as a disjunct to each clause in Cy, resulting
in Cy". Now if ¢ is satisfiable, C, is satisfiable and so is C. Moreover, we
can set x — false without affecting the satisfiability of C'Z, but satisfying
C,". The case of ¢ being satisfiable follows symmetrically.

If we consider what happens if neither ¢ nor v are satisfiable, then under
any assignment over ¢, at least one clause in C, will not be satisfied. This
however implies z +— true in (7. Similarly, if ¢ is not satisfiable then
under any assignment over 1 atleast one clause in Cy, is not satisfied. Hence
under any assignment for ¢, C;” implies = +— false. Thus any assignment
satisfying neither ¢ nor ¢) will imply both z + true and x +— false, making

14

the resulting translation unsatisfiable as well. We can then translate any ¢V
that is not a clause to CZ A €y and the resulting formula is equisatisfiable.

This translation is slightly more compact than Wilson’s [34] and more
compact than Tseitin’s [33]. For every disjunct of size n, it uses at most
n — 1 variables and only adds clauses via conjunction. Additionally, we
further compact the translation as follows. Let D be a set of formula, and
Dy ={d € D | dis aliteral }. We can rearrange generalized disjuncts \/ D
into the form (\/ D;) vV (\/(D \ D;)). In this form, \/ D; will be translated
to a single clause and only |D \ D;| new variables are introduced. This
last technique can greatly reduce the number of variables introduced in the
translation.

2.3 Variable Ordering Heuristics

An important component of the performance of a DPLL based procedure is
the order which is given to the variables in a formula. Since most problems
will be satisfiable or provably unsatisfiable based on a subset of the variables,
it would be advantageous to consider these variables independently of the
rest and hence to process them first. Unfortunately, identifying a minimal
set of variables for proving or disproving satisfiability is at least as hard as
determining satisfiability. Hence heuristics are used to determine the most
important variables and these variables are considered first in the assignment
search.

2.3.1 MODMs Heuristics

One common class of heuristics is the MOMs heuristic (Maximum Occur-
rences in Minimum length Clauses) [25]. The intuition behind MOMs heuris-
tics is to branch on the most constrained variables, and to determine a degree
of constainedness by occurrence in small clauses. There are many variations
on MOMs based heuristics and this class of heuristic is very often used in
DPLL solvers. In simple form, this heuristic maintains a rank for each vari-
able based on the tuple (m.(v), ct(v)) where m.(v) is the size of the minimum
sized clause of a variable v and ¢t is the number of occurrences of a variable
within clauses of size (m.(v)). A notable enhanced variation by Jeroslow and
Wang [16] ranks each variable v with

/r(,U) = ECEC’UQ_IC‘

15

Where C),, is the set of clauses containing v.
The simpler MOMSs heuristics can be efficiently maintained during the
solving process but tend to suffer from overemphasis on short clauses.

2.3.2 Literal Counting Heuristics

The maintenance of heuristics based on clause size can become unduly ex-
pensive during the solving process. A more light weight approach is simply
to maintain a count of the clauses in which a variable or literal occur. In
this framework the truth value of a variable may be chosen at random or
determined based on the phase with maximum count.

An important class of literal counting heuristics are those that

1. Only increase variables or literals scores.
2. Periodically divide all scores by a constant factor.

These heuristics are very light weight and can be effective when the condition
for increasing a variables’ score reflects the difficulty of finding a satisfying as-
signment involving the variable. Two of the most competitive current solvers
use this approach, calling it VSID (Variable State Independent Decay). In
23], the condition for increasing scores of a literal is its presence in a learned
clause. In [14], the condition is generalized to involvement in a proof of
unsatisfiability under a given assignment.

2.3.3 Clause Based Heuristics

A completely different heuristic introduced in [14] enjoys a good deal of
success in SAT solvers which learn clauses. The idea is to keep learned
clauses in a stack, and to choose variables on which to branch from the
most recently learned clause which is not satisfied. When there are multiple
variables to choose from, counting based heuristics described above are used
as a backdrop. This form of heuristic tends to pick variables which are more
strongly interrelated under the current assignment and allows the solver to
focus on hard subproblems first.

16

2.4 Efficient Constraint Propogation

The recursive process of keeping track of unit clauses and simplifying based
on their assignments has been observed by Zhang to occupy the majority
of DPLL based solvers’ time [37]. This constraint propogation suffers from
two bottlenecks. First, the clause simplification can involve a scan of the
variables in any clause containing the negation of the last assignment. The
purpose of this scan is determine whether or not the clause has become unit
or empty as a result. The second bottleneck arises from backtracking, during
which the status of each clause needs to be determined. In both cases, a
naive implementation will scan a clause in order to maintain clause status.
Note that there is no bottleneck if a clause is solved by an assignment, since
no scan of the clause is necessary.

In this section, we present the method dubbed two literal watching, orig-
inating from [37]. The effect of the method is twofold:

1. Backtracking can be performed without any work involving the clauses
in a problem.

2. Clause simplification is unlikely to require a scan.

The central idea of this method is to keep track of two distinguished or
“watched” literals in a clause, maintaining for as long as possible the invariant
that the variables associated with the literals are unassigned. With this
invariant, it is easy to see that a clause is unit when exactly one of the
two watched literals is unassigned and empty when both watched literals are
assigned. Hence the status of clause can be determined in constant time.

Many variations of this technique are in use [23, 14, 17|, often involv-
ing a extra conditions for determining a new watched literal. While these
variations can induce better interaction with variable ordering heuristics,
the major benefits remain the same with or without the extra conditions.
However simple the method, it is difficult to underestimate its benefits in
comparison to more naive implementations.

2.5 Conflict Directed Learning

Learning is in the author’s view the most interesting development in DPLL
based solvers. While there is a long history in constraint programming of

17

Figure 2.2: Two literal watching assignment update requiring a scan of the
clause.

A Clause: l l

w i . i N) < negated literals
\ / \ / \ ’
N N Ny
\/ \/ AV .
/N N N l watched literals
AN /N VR
/ \ / \ / \
/ \ / \ / \
11 12 13 4 15 16 7
After assigning not 12: l l
\
\ 7|\ 7 BN / \ /
\ ’ \ ; \ ’ \ /
A4 Ny N4 A
N/ ; \ \/
N \ 2N N\
VRN 7\ AN /7 N\
/ \ 7 \ / \ / \
/ N N K4 \ / \
11 12 13 14 15 16 17

similar procedures of augmenting the set of constraints to make a problem
easier to solve, conflict directed learning is a relatively new phenomenon for
propositional satisfiability solving. The intuition behind conflict directed
learning is simple: “to learn from mistakes”. Whenever the solver finds an
assignment that violates a constraint, a.k.a. a conflict, it figures out a succint
and sufficient cause of the conflict, which comes in the form of a condition ¢(z)
over some of the variables in the problem. It so happens that the negation
of this condition is invariably a single clause and can be learned simply by
adding —¢(Z) to the set of clauses to be satisfied. This in turn reduces the
space the of assignments that the solver must explore, and thus accelerates
the solution process.

Described at this high level, learning makes a lot of sense. However, there
are many different criteria for determinig a “succinct and sufficient cause of
a conflict” and it is not well-understood why some criteria work better than
others. In this section we present the mechanisms behind conflict directed
learning and discuss briefly the various ways of determing the cause of a
conflict.

18

2.5.1 Implication Graph

The analysis of a conflict begins by the construction of an implication graph.
The graph is built by undoing the constraint propogation, starting at the
place of conflict, which is an empty clause. The graph is built with vertices
consisting of assigned variables in the form of literals. Whenever a literal was
deduced because it was the last literal in a unit clause, an edge is added from
the negation of the other literals in the clause to the deduced literal. For
example, under the assignment {z +— false,y +— true}, the clause zV-yVz
would produce the implication graph

(V ={~zy,2}, E={{-z,2),(y,2)})

Implications are followed backwards from the literals in the empty clause
until guessed literals are found. Since guessed literals are not deduced, no
implications may be followed from guessed literals.

Example 2.5.1. Suppose a formula contains the clauses below. The vari-
ables x1, x5 and x3 are guessed. The variables y;_g are deduced. The clause
in the upper left is an empty clause. The corresponding implication graph is
given in figure 2.3.

Y1V Ty Voys ys vV oys Vys oy Vs Vs
WYa VY VY eV yr Vys —xpVxa Vye
YV Ys Vya a2V oagVys —xpVoxsViyr

2.5.2 The Various Cuts

A cut in the implication graph is a set of edges separating the negations of
guessed literals from the point of conflict. Each cut C results in a learned
clause consisting of the negations of the literals from which there is an edge
in C'. In the figure 2.3, the cut resulting in the learned clause —xgV -7V~
is indicated. There are many different possible cuts of an implication graph,
and different cuts have been defined and studied experimentally. It is not
well understood why some cuts perform better than others.

One of the first cuts used was the one consisting of all the edges emanating
from negations of guessed literals. This cut is called a decision cut because

19

Figure 2.3: Implication graph of a conflict.
Y6 V Y7 V Y8

Yo

T1

: ?

\/

T2 Y7

Ya F yl\&L
7

" Y2
/ y5 <

Ys (/ Ys

xZ -y

(

it learns clauses involving decision variables. This cut was first introduced in
[4]. Perhaps the most often used cut is called a first unique implication point
(1UIP) cut [28]. To describe it, we introduce a few more terms. The decision
level of an assigned literal [is the number of guessed literals at the time of
the assignment of [. The literal of a decision level d is the dth guessed literal.
A literal [in a constraint graph is called a unique implication point if every
path from the literal of the decision level of [to the point of conflict passes
through [. Clearly the literal of every decision level is a unique implication
point. The 1UIP cut of of an implication graph is the cut generated by the
unique implication point closest to the place of conflict.

Example 2.5.2. We follow a modification of example 2.5.1. The variables
x1 and x9 are guessed and the rest are deduced. The clause in the upper left
is an empty clause. The corresponding implication graph with the 1UIP cut
is given in the figure 2.4. The decision cut is —x; V —xs.

Y1V Y2 VoY sV ys Vys o yr Vs Vs
“YaV Y VY1 eV Y7 VyYs x1V Ys
YaV Ys Vya Vo Vyg X1V Ty V oYy

Y9 V Ys

The 1UIP cut works much better in practice than the decision cut. Some
have suggested that this is because the decision cut constrains variables which

20

Figure 2.4: Implication graph of a conflict with 1UIP cut.

-1 \/ —|y9

/yﬁ \
ya[2 \,. 1[2]
22[2] / \ ! \J_

\3[/ \y / \ﬁ -~
9[2 \ /5 \ /y1

ys|

are already somewhat constrained by backtracking, whereas the 1UIP cut
tries to involve non decision variables. Multiple variations have been studied.
For example, the zChaff solver [23] contains code to learn all uip cuts, find
the minimum cut, etc. None of these other methods have performed well
enough to receive published consideration as a competitive learning scheme.

2.5.3 Non Chronological Backtracking

After learning a clause which describes the reason for a conflict, the solver
must backtrack. The learned clause gives additional information which allows
the solver to backtrack closer to the root of the search tree than otherwise.
In particular, the solver can backtrack to the deepest point in the search tree
that

1. includes a literal in the learned clause
2. is less deep than the last decision leading to the conflict.

Such non chronological backtracking helps to keep the solver close to the
root of the search tree. This technique also interacts with the cut used to
learn a clause. In particular, some cuts will always produce clauses which
will be unit after backtracking, so the solver can continue with its constraint
propogation before guessing another variable. The 1UIP and decisions cut
have this property.

21

2.6 Conclusion

We have presented the DPLL procedure with an emphasis on well accepted
modern optimizations and heuristics. This procedure provides the basis of
chapter 3, in which we present a generic DPLL framework which can handle
arbitrary constraints in addition to binary propositional variables.

22

Chapter 3

Parametric DPLL

In this chapter we present the structure and algorithms involved in a para-
metric DPLL based satisfiability solver for a blend of propositional variables
and atoms interpreted under a given theory. In order to accomplish this, we
will first present a few more implementation details for DPLL than were pre-
sented in chapter 2. We will then present an interface for an arbitrary theory
to be plugged into DPLL based on work in [32, 12]. Finally, we will review
the necessary changes to the DPLL procedure to incorporate a pluggable
theory.

3.1 DPLL Implementation

A modern DPLL solver does not use the recursive implementation presented
in chapter 2. In the recursive implementation, there is an implicit stack of
truth assignments and an implicit way of exhaustively traversing the search
tree. In a modern implementation, this stack is maintained explicitly and,
due to learning, there is no need to explicitly ensure an exhaustive traversal of
the search tree. Below is pseudocode for the overall non recursive algorithm.

while(decide()):
while(—simplify()):
if (—resolveConflict):
return not SAT
return SAT

The function decide finds an unassigned literal with highest priority

23

according to the variable ordering heuristic. It pushes the literal on a stack of
decisions. If there are no more literals to assign, it returns false, indicating
the problem is satisfiable.

The function simplify maintains a queue of implications. Initially, it
takes the most recently assigned literal and pushes it on the queue. It then
pops the assigned literal from the queue and finds unit or empty clauses in
which the negation of the literal appears. For any unit clause it finds, it
pushes the implied literal onto the queue together with a pointer to the unit
clause, and pushes the literal onto a stack of assigned variables associated
with the decision variable. If it encounters an empty clause, it empties the
queue and then returns false. If it does not encounter an empty clause it
simply continues, ultimately returning true when there are no more impli-
cations in the queue. The function resolveConflict starts with the empty
clause and builds the implication graph as described in chapter 2. It learns a
new clause based on the implication graph, adds the clause to set of clauses
to be solved, and then backtracks, popping elements from the decision stack
until it finds an unexhausted literal. If there is no such literal, it cannot
backtrack, so it returns false indicating the problem is not satisfiable.

Other major data structures not previously mentioned include the clause
database, the priority queue holding literals at their heuristic priority, a struc-
ture for efficiently relating literals with their negations, with their respective
variables, with the clauses implying them, etc.

3.2 A Generic Theory Interface

In this section we present an interface between an interpreter for terms in a
theory and a generic DPLL procedure. This presentation closely follows that
given in [12]. The only differences is that the interface is here widened a little
bit to allow for more flexibility in the implementation of an interpreter for a
theory. Where there are differences, we give a justification for the additional
options given to the theory.

In short, a theory interpreter should

1. Provide a means to interpret an atom in the theory.
The DPLL procedure will ask the theory to interpret the atom and
indicate whether the resulting interpretation is consistent. This may
occur as a decision point or as a deduction. The DPLL procedure will
indicate whether the interpretation request is the result of a decision

24

or a deduction so that the theory may use this information to more
efficiently backtrack. Whenever this is done, the DPLL procedure will
pass a queue of implied literals to the theory interpreter so that the
interpreter may add implications to the queue.

2. Provide a list of implied atoms in the theory under a given
assignment.
At the end of unit propogation, before returning from the simplifica-
tion procedure, the DPLL procedure will ask the theory for a set of
atoms implied under the current assignment. The theory implementa-
tion thus has the option of doing implications in a fine grained manner
via the queue during the interpretation of an atom or in batch via this
communication point.

3. Provide explanations for literals implied by the interpretation.
If an implied literal contributes to the derivation of a conflict, then the
conflict analysis mechanism may ask the implication for a set of reasons
for the literals’ assignment. This may occur long after the literal is first
assigned, but never after the literal is unassigned. ! The reasons for an
implication must be taken from the set of assigned atoms at the time
the implication was made.

4. Provide a means to backtrack.

The DPLL procedure will communicate backtracking to the theory im-
plementation in two ways. First, every assigned literal which has an
interpretation in the the theory will be unassigned, in the reverse or-
der of assignment. Each unassignment is communicated to the theory.
Second, the DPLL procedure will indicate to the theory the decision
level to which it backtracks, after it is done backtracking. The latter
point of communication may allow for more efficient batch backtrack-
ing while the former may be easier to implement since there would be
no need to keep track of decision levels.

3.3 Some Changes to DPLL

In this section we outline some changes to the dpll procedure that accomodate
such a theory.

'For 1UIP, the duration is further limited to the current decision level.

25

Figure 3.1: DPLL modified to accept decisions inconsistencies.

while (true):
stat = decide()
if(stat = OK)
if (—propogate()) return not SAT
else if(stat = INCONSISTENT):
if (—resolveDecisionConflict):
return not SAT
if (—propogate()) return not SAT
else
return SAT

def propogate():
while(—simplify()):
if (—resolveConflict):
return not SAT
return OK

3.3.1 Decision Time Inconsistency

When the literals represent a term in a theory, more work needs to be done
in a DPLL based solver. In particular, assignments to an atom a may negate
atoms other than —a even if not otherwise related in a clause. Hence when
the assignment resulting from a decision or an implication negates an atom
that is already assigned, an inconsistency may arise. In the propositional
case, an inconsistency may only arise from an implication, since their are no
unit clauses present whenever a decision is made. In addition, the treatment
of inconsistencies resulting from decisions is different than the treatment of
inconsistencies arising from implications. In particular, in the former case,
there is no need to do 1UIP learning, since the negation of the inconsistency
is already 1UIP. Regarding control flow, after the resolution of a conflict, the
solver immediately continues simplifying since the associated learned clause
may be unit after backtracking 2. This property should hold for decision
induced inconsistencies as well. A modification of DPLL for decision induced
inconsistencies implementing these features is outlined in figure 3.1.

%In fact the learned clause is always unit after backtracking in a decisions or 1UIP cut

26

3.3.2 Pure Literals

A common simplification rule in SAT solvers is the pure literal rule, which
assigns any literals whose negations do not occur in the CNF formula. This
rule is not in general valid in the presence of a theory [32, 3, 12]. However,
it can be applied to literals which are not interpreted by a theory.

3.3.3 Constraint Propogation

In the propositional case, constraint propogation consists of finding unit
clauses which result from truth assignments. With the introduction of a the-
ory which interprets the literals, each assignment may negate other atoms
and so may lead to more unit clauses or earlier detection of conflicts. If more
unit clauses are identified, then the Boolean constraint propogation should
continue. It is then clear that constraint propogation should alternate be-
tween Boolean constraint propogation and constraint propogation specific to
a theory. A remaining question is how frequently the alternation occurs. It is
entirely possible to perform theory specific constraint propogation on every
assignment to a term in the theory, or equally possible to alternate more
coarsely, finishing all the Boolean propogation before starting theory specific
propogation and vice versa. In both cases, the same set of implications will
be made, only in a different order.

In the former case the theory in question may benefit from incremental
implications due to the availability of a fast algorithm for managing incre-
mental differences to the interpretation. In the latter case, the theory may
do less overall work because terms which are implied by unit propogation
and by the theory’s interpretation of the truth assignment will be handled
by the unit propogation. However, in this batch form some optimizations
will not be possible. For example, the ZChaff solver [23] minimizes the size
of the clause which implies a given literal by choosing a clause of smallest size
amongst all that imply the literal. This is done by keeping track of multiply
implied literals and would not be applicable if the theory implementation
only informed DPLL of the implication of unassigned literals.

3.4 Conclusion

We have presented a generic interface for satisfiability modulo a theory, given
initially in [12], which in turn was derived from [32]. Our presentation differs

27

from that in [12] in that we provide a wider interface which allows for a
greater deal of flexibility in the implementation of a theory interpreter. We
have discussed some of the consequences of making use of the additional
flexibility.

28

Chapter 4

Difference Constraints

In this chapter we present basic properties of difference constraints taken
individually and in Boolean combinations.

Definition 4.0.1. A difference constraintis a formula taking the form z—y <
c or x —y < c¢ for numeric variables x and y, and constants c.

Notation 4.0.1. Given a Boolean combination of difference constraints and
propositional variables ¢, we refer to the set of difference constraints con-
tained in ¢ as D,. We refer to the truth value of a difference constraint
r—y < c by d;,. We refer to the formula which results from replacing
every difference constraint z —y < ¢ in ¢ by a new propositional variable
d;,, representing the truth value of x —y < ¢ as the Boolean abstraction of
v, written a(p). Given an assignment A to the truth values of difference
constraints in ¢, we refer to the system of constraints induced by A as the
system of difference constraints given by {z —y < c | A(d;,) = true}.

4.1 Conjunctions and Constraint Graphs

Below is a system of difference constraints in matrix form.

To —1 < ¢
+r1 =T < o
+r2 —T3 < ¢
+xn—2 —Tp—1 S Cn—1
+xn—1 —Tp S Cp,

29

In this form, it is easy to see that if all the equations are added together,
one ends up with zyp — z,, < X7 ;¢;. This is the fundamental property of
systems of difference constraints, namely transitivity. In this example, it is
easy to see that if vy = x,, and X7 ,¢; < 0, we end up with the contradiction
o — xg < ¢ where ¢ is negative. We will soon show that if there are no such
cycles, a system of difference constraints is satisfiable.

More generally, systems of difference constraints are matrices in which
every coefficient is taken from {—1,0, 1} and in which every constraint (row)
has at exactly one coefficient with value 1 and exactly one coefficient with
value —1. This restricted form linear constraints has a convenient graphical
representation. Given a system of difference constraints such as above, we
create its constraint graph by representing every variable as a vertex, and
constraint x — y < ¢ by a c-weighted edge from z to y. In this graph the
weight of a path from x(to x,, corresponds to adding up the constraints in
the path just as we did in matrix form above. Thus every path in the graph
from x to y represents an implied constraint x — y < ¢ where c is the weight
of the path. Since z —y < w implies x — y < w’ for any w’ > w, the shortest
path between any two two vertices in the graph corresponds to the strongest
constraint between the corresponding numeric variables.

Notation 4.1.1. The graphical representation is sufficiently faithful that
we often use the term “variables” and “vertices” interchangeably and also
interchange the terms “edges” and “constraints”. We even interchange the
terms constraint graph and system of difference constraints. Furthermore,
given an assignment A to the truth values of difference constraints, we de-
note the constraint graph of the system of constraints induced by A as G 4.
Similarly, we say G4 is satisfiable if the system of constraints induced by .4
is satisfiable.

The analogy between the graphical representation and systems of differ-
ence constraints applies between potential functions and satisfying assign-
ments, but with an interesting twist. A potential function is a function
p:V — D, where D is the appropriate numeric domain. A potential function
p must satisfy

p(u) + W > p(v)

30

for every edge (u,v) with weight W,,,. With this property we can derive that

p(u) + Wy > p(v)

—p(u) =Wy < —p(v)
—p(u) < Wy + —p(v)

—p(u) — —p(v) < Wiy

Hence, given a potential function 7 of a constraint graph, the function —m =
vi—d <= w(v) = —d is a satisfying assignment of the corresponding
system of difference constraints. We thus have that a system of difference
constraints is satisfiable if and only if there exists a potential function in the
corresponding constraint graph.

Given a vertex s which can reach every vertex in V', the shortest paths
distances from s to every vertex in V is a potential function. To see why,
consider any shortest path distance function § : V' — D which is not a
potential function. Then there is an edge (u, v) such that é(u)+ Wy, < 6(v).
If 6 describes the shortest path distances from s, then there exists a shorter
path from s to v, namely the shortest path from s to u followed by the edge
(u,v), a contradiction. Hence, given a constraint graph G = (V, E) and a
vertex s which reaches all vertices in V/, if the shortest paths from s to every
v € V are well defined, then there exists a satisfying assignment for the
system of difference constraints corresponding to G.

If the shortest paths from s are not well defined, then there exists a vertex
v such that for any path from s to v, there exists a shorter path from s to v.
Hence there is an infinite sequence of paths from s to v py, pa, p3, ... with the
property that w(p;) > w(p2) > w(ps) > As every path from s to v with
weight w implies a constraint s — v < w, for any assignment A : V. — D,
there exists an implied constraint s — v < w such that A(s) — A(v) > w.
Hence the system of difference constraints is not satisfiable if the shortests
paths are not well defined. Taken together with the above result, we have
that a system of difference constraints is satisfiable if and only if the shortest
paths are well defined.

For any vertex s reaching every vertex in V| the shortests paths are well
defined if and only if there does not exist a negative cycle in G. To see why,
consider the set of shortest simple paths from s to every v € V. If there
is no negative cycle, then the shortest simple paths are shortests paths. If
there is a negative cycle ¢, then let v be a vertex on the negative cycle. A
shorter path than the shortest simple path from s to v may be obtained by

31

concatenating the shortest simple path from s to v with the negative cycle
involving v, starting from v. More generally, let p; be the shortest simple
path from s to v concatenated with i traversals of the negative cycle. Then
w(p;) < w(p;) whenever ¢ > j. So the sequence po, p1, p2, ... is an infinite
sequence of paths with descending weights. Hence the shortests paths from
s are not well defined.

In summary, we have that

1. A system of difference constraints is satisfiable if and only if there exists
a potential function in the corresponding constraint graph.

2. A system of difference constraints is satisfiable if and only if the short-
ests paths from any vertex s reaching every vertex in its constraint
graph are well defined.

3. The shortests paths from any vertex s reaching every vertex in a con-
straint graph are well defined if and only if the graph contains no neg-
ative cycle.

which leads immediately to the following

Proposition 4.1.1. A system of difference constraints is satisfiable if and
only if its constraint graph contains no negative cycles.

4.1.1 Negative Cycle Detection

In this section we present negative cycle detection algorithms. In the broader
context of Boolean combinations of difference constraints, the problem of
negative cycle detection is very important. It will be necessary to determine
the existence of lack thereof of a negative cycle in many constraint graphs,
in the worst case exponentially many times. Consequently, a procedure for
negative cycle detection often dominates the running time of DPLL with
difference constraints, and so we wish to perform this detection procedure as
efficiently as possible.

Negative cycle detection for a constraint graph G = (V, E) is generally
accomplished by augmenting G’ with a new source vertex s, and adding edges
{(s,v) | v € V} with weight 0. In the augmented graph, we solve the single
source shortest path (SSSP) problem, which is to say we find the shortest
path from s to each vertex v € V. The SSSP must fail to find a shortest
path if there is a negative cycle.

32

There are many different SSSP algorithms, but the most widely used
variants are based on edge relaxations, in which a conservative estimate of
the shortest path distances m : V' — D is refined by repeatedly taking any
edge (u,v) with weight W, such that 7(v) > 7(u) + W, and relaxing the
edge by setting m(v) = m(u) + Wy,. Once this occurs, it may propogate,
creating a circumstance in which v has an edge (v, w) which may be relaxed.
If there is no negative cycle, the total number of edge relaxations required
to find the shortest paths distances 7* is |V| - | E, since no single relaxation
can propogate to more than |V| vertices.

The common Bellman-Ford ford algorithm iterates over all the edges |V/|
times, relaxing any edge (u,v) such that m(v) > m(u) + W,,. Finally, one
further pass over the edges is made to check to see if any more relaxations
are possible. If an edge is relaxable, then there is a negative cycle. This
algorithm always runs in the worse case time |V|- |E|. The problem with
this algorithm is that although it is possible to detect a negative cycle well
before completion, no attempt to do so is made.

A variant of the algorithm above is the Bellman-Ford-Moore algorithm,
which uses the push-relabel method. With this method, a queue is main-
tained containing all the vertices which have been relabelled with a new
distance. One vertex v at a time is removed from the queue and relaxations
are performed on qualified outgoing edges (v, w). Fach such w is then pushed
onto the queue. This algorithm does not terminate when there is a negative
cycle. However, one can check for a negative cycle if the shortest paths tree
is maintained as well as the distances. A check simply involves following the
parent of a vertex in the shortest paths tree until either the root is found or
the some vertex is encountered twice. This operation takes O(|V|) time. If
it is performed every |V| times a vertex is remove from the queue, the check
becomes amortized over the queue removals and only costs a constant factor
of extra run time. This algorithm does better than the basic Bellman-Ford
algorithm at negative cycle detection, but still is unable to identify negative
cycles exactly when they occur. Moreover, it was shown in [6] that cycles
can appear and then later disappear from the shortest path tree, making it
possible for this algorithm to run long beyond the appearance of the first
negative cycle.

There are two SSSP algorithms which identify negative cycles immedi-
ately, and they are in some sense duals of each other. Both maintain a queue
just as in the push-relabel method. The first is due to Tarjan [31]. This
algorithm maintains the shortest path tree, and whenever the distance to

33

Figure 4.1: Pseudocode for Bellman-Ford-Moore Algorithm with negative
cycle detection.

n:=0
Q:={s}
while Q # 0:
u:=pop(Q)
n:=n+ 1
if n mod |V| = 0 then cycleCheck(u)
for each edge (u,v) with weight W,,:
if 6(v) < 0(u) + Wy, then
d(v):=6(u) + Wy,
parent(v) :=u
push(v, Q)

vertex v is updated via an edge (u,v), it disassembles the subtree rooted at
v, removing the vertices in the subtree from the queue. While disassembling
the subtree, a check for a negative cycle can be done simply by whether u
is in the subtree rooted at v. The subtree disassembly is amortized over the
construction of the shortest path tree: there can be only as many vertices
visited in the disassembly as there are vertices added to the tree. In this way,
immediate negative cycle detection is possible without affecting the overall
V| - | E| runtime.

A dual of this algorithm is due to Goldberg and Radzik [13]. This algo-
rithm performs depth first search on each vertex v with an updated distance.
The depth first search propogates the distance updates to any vertex reach-
able from v in the admissible subgraph '. With this algorithm, the queue
is kept full, whereas with the subtree disassembly method, the queue is re-
stricted to most recently updated vertices. A cycle in the admissible subgraph
with a relaxable edge is a negative cycle and is easily detected with depth first
search. This method also offers immediate negative cycle detection, and in
some sense is better than the subtree disassembly method because it checks
for cycles in the whole admissible subgraph.

An experimental analysis of negative cycle detection algorithms was given

!The admissible subgraph is the subgraph consisting of all edges (u,v) satisfying
distance(v) < distance(u) + Wy,

34

Figure 4.2: Pseudocode for Tarjan’s subtree disassembly algorithm.

01}
while Q # 0:
u:=pop(Q)
for each edge (u,v) with weight W,,:
if 0(v) < 6(u) + Wy, then
for every w a descendent of v in the shortest path tree:
detach w from the shortest path tree
remove w from Q)
if w = u then there is a negative cycle
d(v):=6(u) + Wy,
parent(v) :=u
push(v, Q)

Figure 4.3: Pseudocode for the Goldberg-Radzik algorithm.

Q:={s}

while Q # 0:
u:=pop(Q)
dfsScan(u, Q)

def dfsScan(u, Q)
visiting(u):=true
for cach edge (u,v) with weight W,,:
if 6(v) < d(u) + Wy, then
0(v):=6(u) + Wy,
parent(v) :=u
push(v, Q)
if visiting(v) then there is a negative cycle
if 6(v) < d(u) + Wy, and v is not yet scanned then
dfsScan(v,Q)
visiting(u):=false

35

in [6]. On the whole, the Goldberg-Radzik algorithm and Tarjan’s subtree
disassembly method proved most efficient and robust. Tarjan’s subtree disas-
sembly method was often slightly faster than the Goldberg-Radzik algorithm,
but by a small margin and there were some cases where the Goldberg-Radzik
algorithm outperformed the subtree disassembly method by a wider margin.

4.1.2 Incremental Negative Cycle Detection

When an edge (u,v) is added to a constraint graph G with a potential func-
tion 9§, there is a faster way to determine whether the resulting graph G’
contains a negative cycle than running any of the above algorithms on G'.
In this section, we present such an algorithm based largely on ideas given in
[11]. We assume that for G’ we have computed a shortests paths tree 7 and
a potential function §. Moreover, we assume the weight of (u,v), denoted
Wy, is such that 6(u) + Wy, < d(v). If this is not the case, then ¢ and 7
are valid for G’ since 9 is a potential function for G’ and 7 is consistent with
0. We wish to compute ¢’ and 7/, the distance function and a shortest paths
tree for G'.

To perform the dynamic update, we will maintain a priority queue over
the vertices in a Fibonacci heap with priorities A. We initialize the priority
queue with A(v) = 0(v) — (6(u) + Wy,) and A(w) = 0 for all w # v. We
will initialize the new shortests path tree with 7’(v) = v and 7’'(w) = 7w(w)
if w # v. We first scan the descendents d, of v in the shortests path tree
7’ to see if u is a descendant, in which case there is a negative cycle. As is
done in Tarjan’s subtree disassembly algorithm, we disassemble the subtree
rooted at v as this is done. We then pop vertices from the priority queue,
one at a time, and scan its outgoing edges as shown in figure 4.4.

The key idea behind this scheme is that A(v) measures the maximum
change in potential via all edges (v, w), since §(v) is a valid potential function.
In other words, whenever v maximizes A with priority p,, there does not
exist an edge (u,v) such that (6(u) — p,) + Wy < (v) — py,, otherwise
A(u) > A(v) or § is not a valid potential function. Hence the single source
shortest path distance ¢’(v) = d(v) — p, is minimal. The algorithm runs in
O(|V]log |V |+ |E|) time. Initiallization is O(|V]), each pop of the priority
queue is O(log |V|) and there are O(|V]) pops. In addition, every edge E
is visited once. The subtree disassembly is amortized over the construction
of the tree as in Tarjan’s subtree disassembly algorithm. Finally, with a
Fibonacci heap, the increasePriority function takes constant time.

36

Figure 4.4: Pseudocode for incremental negative cycle detection.

while @ # 0:
(u, d):=pop(Q)
8 (u):=6(u) —d
for each edge (u,v) with weight W,,:
if v € () with priority p, then
if (0(v) — py) < 0'(u) + Wy, then
m'(v) ==u
for every w in the subtree rooted at v:
detach w from the shortest path tree if w # v
if w = u then there is a negative cycle
increasePriority (v, Q,d(v) — (8'(u) + W)

A subtle difference between Tarjan’s subtree disassembly algorithm and
this one is that the check for a negative cycle must include the root of the
subtree. Other nuances include whether to initialize the queue with the entire
set of vertices or with the target of the new edge. In the latter case, a check
for the presence of a vertex in the queue can be done prior to increasing its
priority. If the vertex is not in the queue, then it is inserted, if it is in the
queue, then its priority is increased. This variation can reduce the overhead
of popping elements from the queue, since it is kept smaller. In addition, it
allows for a sub O(|V|) lower bound, since no initialization is necessary.

4.2 Real and Integer Domains

When variables are taken over the integers, there is no need for for both
strict (<) and non strict (<) constraints. One can simply express x —y < ¢
as r —y < ¢ — 1. For dense numeric domains, this is of course no longer
the case. However, it is notationally cumbersome to unilaterally make the
distinction between strict and non strict constraints, and we have dropped
the distinction at times ? Here we provide a justification of this notation
and at the same time present a means to encode dense domain systems of
difference constraints as shortest paths problems.

2For example, when defining the constraint graph for a system of difference constraints.

37

Recall that we showed that systems of difference constraints are satisfiable
if and only if shortest paths are well defined in the corresponding constraint
graph. We will now use this equivalence in reverse. In particular, we’ll show
how to define shortest paths problems where the weights are in fact so called
bounds or intervals of the form (—oo, ¢) and (—oo, ¢|. We will refer to bounds
such as these as i or i’. We will also refer to the upper bound of the interval i
as ¢;. The shortests paths problems are are definable and computable by two
operations min and +. We define these operations over bounds as follows

Li+i={z+y|xzeiyeil.
2. min(i,i) =in7i.

With these definitions, shortests paths can be computed when the edges are
weighted with bounds. Now if we rewrite x —y < cas z —y € (—o0, (]
and x —y < cas x —y € (—o0,c), we preserve the necessary properties for
shortests paths and difference constraints. In particular, v —y € iAy—z € 1
implies x — z € i+1/, and every constraint x —y € i, explicit or implied, must
be satisfied by the definition of min. In this context, we say the weight i of
a path from z to y is negative if i = (—00,0) or ¢; is negative.

Thus when we previously defined constraint graphs by taking every con-
straint x — y < ¢ as a c-weighted edge from z to y, we implicitly assumed
that all the constraints were non strict, and this assumption is only valid
for integer variables. For real or rational variables, we rather take any con-
straint — y € i as an i-weighted edge between x and y. Similarly, when
we defined the notation dj, for the truth value of a difference constraint
r—y < ¢, we neglected to consider the possibility of strict constraints. If the
variables are over a dense domain, we would instead write dj,, for the truth
value of the constraint x — y € i. Instead of propogating these notational
variants throughout this thesis, we will instead assume that z — y < ¢ refers
to just that for integer domained problems and instead refers to a constraint
x — y € c for some bound c if the variables are taken over a dense domain.

The obvious data structure for bounds is a pair (s, ¢) where s is a Boolean
variable denoting the strictness of the constraint and ¢ is a number. In this
form, we define (s,c) + (s, ¢) = (s V&, c+) and min((s, c), (¢, ¢)) = (s, ¢)
ife<d, (s,¢)ifd <c,and (sV s, c)if c=¢.

This presentation of bounds based shortests paths is a minor simplifica-
tion of the method used in difference bound matrices used for example in tools

38

such as Kronos [36] and Uppaal [9], where bounds are extended to include
the interval (—oo, 00).

4.3 Diffference Constraints in CNF

Conjunctions of difference constraints are well understood and handled effi-
ciently with relatively ease. In this section we present some basic properties
of difference constraints in conjunctive normal form, defined in chapter 2 and
discussed there for the case of propositional formulae.

4.3.1 Negation Closure

Since ~(z —y < ¢) is equivalent to y —x < —¢, and —(x —y < ¢) is equivalent
to y —x < —c, the set of all difference constraints are closed under negation.
Thus any CNF formula containing difference constraints may be written as
a CNF formula containing only positive difference constraints.

4.3.2 Satisfying Partial Assignments

Another notable departure from the propositional case is that for a proposi-
tional formula, if a partial assignment solves all the clauses, the assignment
can be extended to the unassigned propositional variables in any which way
and the resulting assignment is a satisfying one. With difference constraints,
this is no longer the case. But we do have a weaker property. In partic-
ular, if a satisfiable conjunction of difference constraints covers the clauses
in a CNF formula, then the formula is satisfiable. In fact, a satisfying as-
signment may be constructed as follows. Let GG be the constraint graph of
the satisfiable conjunction of constraints covering all the clauses. Since G
is satisfiable, it contains no negative cycles. Let x — y < ¢ be a difference
constraint whose truth value is not known, i.e. it is not in the satisfiable
conjunction of difference constraints. Then either the constraint z —y < ¢
ory—x < —c = ~(x —y < ¢) can be added to G without introducing a
negative cycle. Otherwise, there would be a path p,, from y to z in G with
weight w(p,,) < —c and a path p,, from z to y with weight w(p,,) < ¢, and
hence G would have a negative cycle, a contradiction.

Using this property, we now give a constructive argument. Given a
Boolean combination of difference constraints ¢ in CNF and a partial truth

39

assignment 4 over the difference constraints D,,, we have the following prop-
erty. If G4 contains no negative cycles, then we can extend A to include
a truth value for an arbitrary difference constraint x — y < ¢, resulting in
an assignment A’ such that GG contains no negative cycle. We simply let
A= AU {d;, — true} in case adding — y < ¢ to G4 does not induce a
negative cycle, and let A" = AU {d;, — false} otherwise. In this way, A
may be extended until it is total. We call the resulting total truth assignment
A*. Given A*, a satisfying assignment over the numeric variables in ¢ may
be derived by finding a potential function 7 for G 4+, or equivalently solving
the augmented SSSP problem for G 4.

4.4 Conclusion

We have presented basic properties of Boolean combinations of difference con-
straints. Conjunctions of difference constraints are characterized by shortests
paths in the corresponding constraint graph. A satisfying assignment for a
system of difference constraints may be obtained by finding a potential func-
tion for the constraint graph. Difference constraints are closed under nega-
tion. Although satisfiablity of a Boolean combination of difference constraints
is determinable by satisfying all the clauses, a partial truth assignment satis-
fying all the clauses is not so easily extendible as in the case for propositional
logic. Nevertheless, a satisfying assignment can be readily constructed once
all the clauses are satisfied.

40

Chapter 5

Model Based Interpretation

In this chapter we present an incremental model based implementation of a
theory interpreter for the theory of difference constraints in the context of a
generic DPLL solver as presented in chapter 3.

5.1 Overview

We first briefly recall the interface for a theory introduced and discussed in
section 3.2. In short, an interpreter for a theory should support extension
by interpretation of a single atom, backtracking, constraint propogation, and
explanation of implied constraints.

The guiding principle we will use is a model based approach. In particular,
we will maintain one model for each set of interpreted difference constraints.
Each model consists of an assignment to the numeric variables which satisfies
the set of interpreted difference constraints. The main motivations for using
a model based approach are that

1. Tt uses less storage than previous approaches such as [19], which store
one adjacency matrix representation of the constraint graph for each
assignment.

2. It supports incremental extension that is far more efficient than the
non incremental counterparts.

3. It provides a basis on which constraint propogation may be imple-
mented efficiently.

41

5.2 Architecture

Globally speaking, the theory interface is driven by DPLL which maintains
a stack of assigned literals, some of which may be difference constraints. The
theory interface is asked to interpret difference constraints in the same order
as they appear in the literal stack. Thus the difference constraints implicitly
form a stack as well. In turn, each point in the stack of difference constraints
induces a constraint graph consisting of all the constraints at that point or
at a lower point in the stack. In this way, each point in the stack of difference
constraints defines a constraint graph which is a subgraph of the constraint
graph associated with any higher point in the stack.

We will maintain instead a stack of models. The first model M, will satisfy
the first difference constraint ¢y and any subsequent interpreted difference
constraints ¢y ...c, which happen to be satisfied by M, will not generate a
new model. However, as soon as a difference constraint c is interpreted which
is not satisfied by the model at the top of the model stack, a new model will
be generated and pushed onto the model stack.

5.2.1 Stack Threaded Constraint Graphs

In general, we will often work with the constraint graph induced by some
point in the model stack. This point will often, but not always, be the top
of the stack. To support efficient extension, backtracking, and extraction of
a constraint graph from an arbitrary point in the stack, we will thread the
constraint graph through the model stack. In this section we detail how this
is accomplished.

Each model M contains an assignment to the numeric variables present
in its interpreted difference constraints My. The numeric variables are asso-
ciated in one to one correspondence with the vertices of the constraint graph
induced by Mq. We associate with each vertex a pointer into an adjacency
list representation of the edges from the top of the stack.

As an example, we consider the case where the model stack is (Mg, M),
the stack of interpreted constraints associated with M; coming from a vertex
xis MY = ((z —yo < ¢o), (x —y1 < 1), (x — y2 < ¢3)), and the stack of
constraints associated with My coming from x is M = ((x — yo < ¢), (z —
y1 < c1)). We keep the edge stack in a linked list of edges projected onto the
positive variable in the constraint. The list as a whole is an adjacency list
for the vertex associated with z in the model at the top of the stack. If we

42

associate a pointer to the list cell containing (z —y; < ¢;) with z in My, then
we have direct access to an adjacency list representation of the constraint
graph for x in My as well. In this fashion, an adjacency list representation
of the edges in the constraint graph associated with a given model can be
accessed from the model directly as an edge adjacency list with zero copying
of the constraints.

To complete the threading of the constraint graph through the stack,
we will not follow the convention that edges store direct reference to their
vertices. Instead, each edge will keep an index to its source and target vertices
which is valid in all models. Thus in the context of a given model, one may
retrieve the vertices associated with an edge efficiently. An arbitrary static
ordering of the vertices shared by all the models can be used to provide an
index which allows constant time access.

5.2.2 Uninterpreted Constraint Graph

In addition to the interpreted constraints, the uninterpreted constraints form
a pool of constraints which might be candidates for implication and from
which the DPLL procedure may select a truth value on which to branch. It
turns out that a graphical treatment of these constraints also facilitates the
inference process. Thus we will maintain a dual graph, consisting of vertices
corresponding to all the numeric variables in the difference constraints and
edges corresponding to all the uninterpreted difference constraints. We call
this graph the uninterpreted constraint graph.

5.3 Interpretation and Backtracking

The interpretation of a new difference constraint consists of two cases. First
if a new constraint is satisfied by the current model at the top of the model
stack, then we simply add the constraint to the model as described above.
If the new constraint is not satisfied by the current model, a new model is
created or detection of unsatisfiability of the currently interpreted constraints
with the new constraint is accomplished with a straightforward application of
the incremental negative cycle detection algorithm presented in section 4.1.2.
This algorithm requires that we store with each model the shortest path tree
in the form of parent pointers together with a doubly linked list containing
the vertices of the tree in a preorder traversal, as well as the degree of a

43

vertex in the shortest path tree.

Backtracking can be accomplished simply by removing edges from the
stack threaded graph and putting them in the pool of unassigned constraints.
If the removed edge is the one which triggered the generation of a new model,
then we pop the model from the model stack. Since the unassignments
happen in reverse order of the assignments, there is no need to keep track of
decision levels in the interpretation stack and we are guaranteed to always
remove constraints from the top of the constraint stack associated with its
positive variable.

5.4 Constraint Propogation

In section 4.1, we established the characterization of systems of difference
constraints by shortests paths in constraint graphs. It follows immediately
from that discussion that an unassigned constraint — y < ¢ is implied by a
set of interpreted constraints if and only if the shortest path from z to y in
the constraint graph associated with the interpreted constraints has weight
less than or equal to ¢. However, computing the shortest paths for all the
uninterpreted constraints for every assignment is prohibitively expensive. In
this section we present a semi-lazy constraint propogation method whose goal
is to minimize the overhead of numeric constraint propogation.

5.4.1 Round Robin Constraint Propogation

In a standard DPLL implementation, Boolean constraint propogation (BCP)
maintains a queue of implied literals. Some literals in the queue may be
implied multiple times, and the queue may not be empty when a conflict is
found. From these two properties of the constraint propogation it follows
that as long as some implication is queued for BCP to process, there is no
need to find more numerical implications. In fact if work is done to find
numerical implications, it may simply be wasted effort.

An alternative is to perform numerical constraint propogation incremen-
tally, sending only a few implications for BCP at a time. Note that it is
possible to do this without any loss of completeness in the constraint pro-
pogation, so long as the procedure always checks with the theory interpreter
for more implications before deferring to a guess. However, in order to im-
plement this alternative it is necessary to be able to stop and restart the

44

process of finding implied difference constraints while the underlying model
is changing. This is because BCP may imply a constraint which changes the
model at any time.

Example 5.4.1. Suppose that a problem contains the clauses

(z —w < 2)

(y — = < 10)

(y—r<-2) vV (y—2<9)
(x—2<9) VvV (z—w<0)
(z—y<—=8) VvV (w—z<-1)
(w—y < —=12) V

Suppose that the model at the top of the model stack has interpreted
(z—w<2), (y—2<10), (r—2<9) and (2 —y < —8), and moreover that
we queue implications of the form (zr—_ < _). Since (r—2z < 9)A(z—y < —8)
implies that (r—y < 1), (y—z < —2) is falsified. Then (y—2z < 9) is in a unit
clause and so becomes interpreted. Suppose that we then queue implications
of the form (y — - < _). Since (z —w < 2)A(y—2z < 9) implies (y —w < 11),
(w—y < —12) becomes falsified. Note that prior to the first unit propogation,
we knew that (y — z < 10) but afterwards there is a tighter bound on y — 2
and this tighter bound falsified (w —y < —12).

To implement this kind of constraint propogation for both complete and
incomplete propogation, we use a variant of Johnson’s all pairs shortest path
algorithm [7]. The algorithm normally works in two stages, the first stage
runs an augmented SSSP algorithm, some of which are described in chapter
4, and establishes a potential function. The second stage uses the potential
function to run one instance of Dijkstra’s algorithm per vertex on a modified
graph with positive edge weights in which shortests paths are preserved!.
In our case, since we maintain a stack of models incrementally, and models
which satisfy the interpreted constraints also define potential functions, we
can proceed directly with the second step.

The second step conveniently partitions the shortests paths into those
originating from one vertex, or variable in a difference constraint, at a time.

!Given a potential function 7 on a graph with weighted edges G = (V, E, W), the graph
G = (V,E,W') with W/(z,y) = m(z) + W(x,y) — 7(y) has positive edge weights and the
same set of shortests paths as G. In particular, the weight of a path from (vov; ...v,) in
G’ is Xy (vy) + W(vi, vi41) — 7(vig1), or equivalently 7(vg) — 7(vp) + X W (05, viq1)-

45

Thus we can easily process implications one variable at a time. In addition,
we can continue to process different variables even when the underlying model
changes, since the second step only requires that some potential function is
established, and doesn’t rely on the particular value of the potential function.

In both complete and incomplete forms of propogation, we will process the
variables with Dijkstra’s algorithm in a round-robin manner. In particular,
we'll keep a list of candidate variables x which may occur in some implied
constraint * — y < c¢. Whenever the coarse grained constraint propogation
occurs we go through the list running Dijkstra’s algorithm, treating each
variable as the source vertex from which shortests paths are computed. This
continues until either there is an implied constraint or no more variables
remain. If there is an implied constraint, we remember the location in the list
and let some BCP occur, possibly removing and adding candidate variables
from the list. Once BCP is done, we resume processing the variables from
the place we left off. The only differences between complete propogation
and incomplete propogation are in the management of the candidate list
and in how many variables in the list are processed in search of an implied
constraint.

5.4.2 Complete Propogation

For complete propogation, we need to establish for every uninterpreted con-
straint x — y < ¢ whether or not there is path in the topmost interpreted
constraint graph with weight less than or equal to c. If there is a such a path,
the constraint is implied, otherwise the constraint is not implied. To accom-
plish this, we maintain in the candidate list all the variables x for which the
following conditions hold:

1. The corresponding vertex in the uninterpreted constraint graph has
positive degree.

2. The corresponding vertex in the interpreted constraint graph has pos-
itive degree.

3. Given the potential function 7 associated with the current model, there
exists a constraint = — y < ¢ with ¢ > 7(y) — 7(z).

The list maintenance is done lazily over the complete set of variables: each
variable is tested for these three conditions until a variable satisfying the

46

conditions is found. If a variable does satisfy these conditions, Dijkstra’s
algorithm is run in search of implied constraints. If the variable z does
not satisfy these conditions, then there can be no implied constraint z —
y < c. In particular, if z violates conditions 1 or 2, then either there are
no uninterpreted constraints which might be implied or there is no path
originating from x in the interpreted constraint graph which might imply
some uninterpreted constraint. If the third condition is violated, then there
are no constraints * — y < ¢ such that ¢ > n(y) — 7(z). In this case, there
cannot be a path from x to y with weight less than or equal to ¢ since 7 is a
valid potential function. Finally to ensure completeness, every variable may
be checked in search of an implied constraint.

5.4.3 Incomplete Propogation

In the case of incomplete propogation, the choice of which variables are in-
cluded in the search for an implied constraints becomes important: we’d like
to include variables x which will likely lead to implied constraints x — y < c.
We present here a heuristic for identifying such variables based on the evo-
lution of models as the model stack grows. We begin with the observation
that the potential function m associated with a model acts as an approximate
measure of the shortest path distances in that there is no path from z to y
shorter than 7(y) — m(z). Now as the model stack grows, the value of the
potential function for some vertices decrease and no values increase. Given
the set of vertices V'~ whose potential decreases when a new model is gen-
erated and its pre-image pre(V ~) in the uninterpreted constraint graph, the
the estimated distance originating from any vertex in the pre-image pre(V ™)
to any vertex in V'~ may decrease, and will certainly decrease for vertices
v e pre(V7)\ V7. We will focus on vertices taken from pre(V).

Note that the set pre(V~) does not necessarily contain every variable from
which implications may be found, since the addition of a constraint z —y < ¢
to a model M may reduce the length of many paths without reducing the
length of any path in the shortest path tree. However, potential functions do
estimate shortest path distances between arbitrary vertices in the sense that
they place a lower bound on such paths.

To implement this strategy, we add a hook function to the incremental
negative cycle detection algorithm. Whenever an edge is relaxed, reducing
the potential of some vertex, we mark the vertex and add it to a queue
if it was not already marked. Upon constraint propogation, we unmark

47

the marked vertices, find their pre-image in the uninterpreted constraint
graph, and add these variables to the candidate list if they are not already
there. The candidate list is then filtered by the same conditions used in
complete propogation, described above. Since the propogation is incomplete,
a configurable number of variables may be checked in search of an implied
constraint, for both fine and coarse grained propogation. However, variables
are removed from the candidate list as they are checked, making the list
effectively a queue.

5.4.4 Complexity

Constraint propogation depends on the generation of a new model, which
invokes the incremental negative cycle detection algorithm described in 4.
This algorithm runs in O(|V|log |V'|+|E|) time on the interpreted constraint
graph. For incomplete propogation, the hook function in the uninterpreted
constraint graph embedded in this algorithm takes constant time. The pre-
image of affected sets takes O(|V|+|F|) time in the worst case and is propor-
tional to the subgraph induced by the vertices whose potential has changed
in the model generation. Dijkstra’s algorithm is of course O(|V|log|V|+|E|)
when used with a Fibonacci heap. Our strategy runs Dijkstra’s algorithm
once for every model generation and a configurable number of times when
the BCP queue is empty. In the former case, we get negative cycle detec-
tion and constraint propogation in O(|V|log|V| + |E|) time in the size of
the interpreted constraint graph. In the later case, the complexity does not
change if the paramater is small enough in comparison |V, but complete
propogation takes O(|V|(|V]log|V| + |E|)) time since every vertex must be
processed.

5.5 Conclusion

We have presented an incremental, model based implementation of a the-
ory interpreter for determining the satisfiability of a Boolean combination
of difference constraints. We presented a round robbin approach to con-
straint propogation for the theory of difference constraints, which can be
implemented for complete or incomplete propogation and allows for negative
cycle detection together with a substantial amount of incomplete inference
in O(|V|log|V|+ |E|) time. This is a substantial improvement over the oft

48

used method of a single source shortest path algorithms for negative cycle
detection without inference, which takes O(|V||E|) time. It also provides an
alternative to methods that use Floyd and Warshall’s O(|V|?) all pairs short-
ests paths or its O(|V']?) incremental variation for constraint propogation. In
particular, the model based approach presented utilizes far less space and has
better asymptotic time bounds for sparse graphs.

49

Chapter 6

Experiments

In this chapter we present the results of some experiments.

6.1 Job Shop Scheduling

Job shop scheduling problems present a class problems which strongly ex-
ercise the constraint propogation for difference constraints and at the same
time offer an easily generated spectrum in the degree of constrainedness,
ranging from the far from satisfiable to the very easily satisfiable. Although
the problems are highly disjunctive, the constrainedness is almost entirely nu-
merical. For this reason, we examine job problems with respect to different
configurations for numerical constraint propogation.

6.1.1 Problem Description

The classical problem of job shop scheduling can be solved with the aid of a
satisfiability solver for difference logic. A job shop problem consists of a set
of jobs J and a set of machines M. Each job is a sequence of pairs (m,d)
with m € M and d € R. Each pair denotes a task ¢, indicating that machine
m is used exclusively for a total of d time units. The makespan of a schedule
is the total time to complete all the jobs. The scheduling problem is to find
a schedule for the optimal makespan of the problem.

To model a job shop problem with a Boolean combination of difference
constraints, we create a variable e indicating the earliest time at which any
task may start and a variable s(t) for each task ¢ in the problem, indicating

50

the time at which ¢ starts. We then encode the ordering constraints of each
job j with s(t;41) — s(t;) > d(t;) where t; indicates the ith task in j and
d(t) indicates the duration associated with the task. For the first task of
each job, we encode that it must start after e with s(t;) —e > 0. These
constraints may readily be translated to proper difference constraints with
the equivalence © —y > ¢ «+» y — z < —c. We call the conjunction of these
constraint for each job S.

We then encode exclusive access to a given machine m at a time as follows.
Let T'(m) be the set of tasks using machine m. For each pair of tasks ¢, ¢’
taken from T'(m), we require that

(s(t) = s(t') = d(t)) V (s(t') — s(t) = d(t))

indicating that only one task in 7'(m) can be executed at a time. We refer
to the conjunction of all such disjuncts as X. These constraints can readily
be translated to proper difference constraints as before.

Finally, we encode a given makespan D as follows. For the last task ¢; of
each job j, we encode finishing within the makespan as

s(tj) —e < D —d(t;)

We refer to the conjunction of these formulas as F'.

It is clear that S A X A F' is satisfiable if and only if there is a schedule
of length D for the problem. To find an optimal schedule, we can perform
binary search over an appropriate interval for D. At each point in the search,
a SAT problem for difference constraints will direct the search to a longer or
shorter value for D.

6.1.2 Experimental Analysis

We performed experiments on two job shop scheduling problems taken from a
suite of operations research benchmark problems [15] for which the optimum
is known. For each problem, we give run times for several individual SAT
instances where D varies around and including the optimum. In addition, we
replicate these experiments under different configurations of our prototype
implementation. In particular, we run the experiments without constraint
propogation, and with both incomplete and complete constraint propogation
as described in chapter 5. Each experiment was run on a Dell laptop with
a 3 Gigahertz P4 processor and a gigabyte of RAM. For these experiments,

o1

all problems occupied less than 128 megs of RAM and it is clear that CPU
is the bottleneck.

For each SAT problem we give the number of decisions (guessed literals),
the total run time !, the number of times an implied difference constraint
was found by numerical constraint propogation, and the result.

The first problem, FT06, is handled easily by our prototype solver. Nonethe-
less, it is evident that more work is required around the optimum. The solver
without constraint propogation makes many more decisions than those with
constraint propogation. While those with constraint propogation run a bit
faster, the difference is negligable. However, these problems do not exercise
the DPLL procedure enough for differences in configuration to become clear.

The second problem, ABZ5 [1], is a 10 job, 10 machine problem. To
our knowledge, this problem has never before been solved by means of SAT,
although efforts have been made [19, 8]. In this problem, the increased diffi-
culty around the optimum is more evident. The role of numerical constraint
propogation is also more evident.

Comparing the configurations without constraint propogation and with
incomplete constraint propogation, we find that the incomplete constraint
propogation is unilaterally faster, and that the difference between it and the
configuration without propogation becomes markedly more pronounced on
the harder problems closer to the optimum.

On the other hand, in this problem it becomes clear that our method
for complete propogation is inferior to our method for incomplete propoga-
tion and even sometimes inferior to our method without propogation. With
complete propogation, the rate at which the solver makes decision decreases
drastically while the average number of implications the solver makes per
decision is often only slightly greater than that for incomplete propogation,
and sometimes even less. The fact that complete propogation can produce
fewer implications per decision than incomplete propogation is counterin-
tuitive, but differing sets of implications lead to different sets of decisions
making this phenomenon entirely possible.

Despite the fact that these problems are more difficult at the optimum,
they do not display a clear curve indicating the run time as a function of

'We report run times of the DPLL procedure, rather than the total program run time
which would also including parsing and CNF translation, as well as initialization of a
JVM (The prototype is in Java). These later components occupied negligable amount of
wall clock time in all cases: the DPLL run time is always with in .2 seconds of the total
program run time.

52

Figure 6.1: FT0O6 without numerical constraint propogation.

makespan | Time (Seconds) | Decisions | Implications | Result
50 0.08 98 0 unsat
51 0.05 157 0 unsat
52 0.11 659 0 unsat
53 0.13 1341 0 unsat
o4 0.11 1629 0 unsat
55 0.21 3257 0 sat
56 0.23 3326 0 sat
57 0.12 2171 0 sat
58 0.13 2608 0 sat
59 0.03 485 0 sat
60 0.04 662 0 sat

distance from the optimum. In general, SAT solvers’ time can vary wildly as a
result of variable ordering and also the order in which constraint propogation
proceeds. This high variance makes analysis of the results more difficult as
one can only make conclusions based on tendencies in the results which can
easily be obfuscated by deviations in performance arising from heuristics or

lack of thorough testing.

53

Figure 6.2: FT06 with incomplete numerical constraint propogation.

makespan | Time (Seconds) | Decisions | Implications | Result
50 0.04 0 o4 unsat
51 0.05 14 98 unsat
52 0.04 28 139 unsat
23 0.08 34 225 unsat
o4 0.25 193 1287 unsat
55 0.04 100 49 sat
56 0.21 310 1613 sat
57 0.03 95 289 sat
58 0.02 46 168 sat
59 0.01 60 108 sat
60 0.03 107 52 sat

Figure 6.3: FT06 with complete numerical constraint propogation.

makespan | Time (Seconds) | Decisions | Implications | Result
20 0.05 0 80 unsat
51 0.06 2 94 unsat
52 0.06 3 109 unsat
53 0.08 7 156 unsat
54 0.26 28 381 unsat
55 0.12 30 205 sat
56 0.06 12 178 sat
57 0.05 10 118 sat
58 0.05 12 113 sat
59 0.05 15 114 sat
60 0.05 17 116 sat

o4

Figure 6.4: ABZ5 with no numerical constraint propogation.

makespan | Time (Seconds) | Decisions | Implications | Result
900 0.03 69 0 unsat
1000 0.75 2040 0 unsat
1100 6.43 23328 0 unsat
1150 88.44 96590 0 unsat
1200 550.58 305078 0 unsat
1232 >1000.00 474697 0 -
1233 >1000.00 329344 0 -
1234 >1000.00 480566 0 -
1235 510.67 318778 0 sat
1250 421.38 306402 0 sat
1300 229.01 218456 0 sat
1350 191.29 234492 0 sat
1400 40.68 72015 0 sat

Figure 6.5: ABZ5 with incomplete numerical constraint propogation.

makespan | Time (Seconds) | Decisions | Implications | Result
900 0.01 0 89 unsat
1000 0.27 30 594 unsat
1100 1.99 540 6932 unsat
1150 4.23 1294 875 unsat
1200 80.34 16471 11983 unsat
1232 300.67 44738 31297 unsat
1233 378.24 49883 35408 unsat
1234 120.80 17041 11633 sat
1235 110.16 16015 10970 sat
1250 154.27 22334 15211 sat
1300 21.04 3757 2435 sat
1350 4.86 990 12538 sat
1400 3.56 1342 347 sat

95

Figure 6.6: ABZ5 with complete numerical constraint propogation.

‘ makespan ‘ Time (Seconds) ‘ Decisions ‘ Implications ‘ Result ‘

900 0.03 0 652 unsat
1000 1.52 16 816 unsat
1100 9.63 99 6609 unsat
1150 46.50 517 31551 unsat
1200 562.73 3603 992 unsat
1232 >1000 6410 1846 -
1233 >1000 5810 1730 -
1234 >1000 6035 1984 -
1235 >1000 5755 1788 -
1250 335.33 1946 524 sat
1300 37.35 318 9243 sat
1350 12.95 130 2241 sat
1400 2.00 40 672 sat

6.2 Bounded Model Checking of Timed Au-
tomata

Bounded Model Checking (BMC) is the process of model checking a transi-
tion system unwound to some finite bound. For a given bound, the process
may not be complete; however, a bug may be found. In this way, BMC can
be used to find bugs in systems which cannot otherwise be verified. BMC has
enjoyed some industrial success for discrete transition systems. As a result,
BMC for timed and hybrid systems has been the object of much research
24, 29, 35]. In this section we will present some experiments implementing
bounded model checking for a class of timed automata [2].

6.2.1 Definitions

In this section we give the formal definitions required to describe a problem
on circuit timing analysis.

Definition 6.2.1. Timed Automaton
Let C be a set of variables ranging over integers, also called clocks. Let L(C')

56

be the set of constraints of the form x < ¢, x > ¢ for x € ¢ and ¢ € Z,
closed under conjunction. For our purposes, a timed automaton is a tuple
A=(Q,S,T,C) where @ is a finite set of states, S : Q — L(C) maps states
to staying conditions, and T C Q x Q x 25(©) x 2¢ is a finite discrete transition
relation.

A state of a timed automaton A4 is a pair (¢,v) where ¢ € @ and
v: C — Z is a valuation of the clock variables. A discrete transition
(q¢,¢',9,7) € T represents a transition from (g, v) to (¢',v") where v(C) |= ¢
and v'(c) = v(c) whenever ¢ € r and v'(c) = 0 otherwise. We sometimes
write r(v) for v’ defined in this way.

Definition 6.2.2. Run

A run of a timed automaton A is a sequence of states ((qo, v0), (q1,v1),-..)
such that for every i, v;(C) = S(g;), and such that every pair of adjacent
states (qi, v;)(gi+1, Vis1), one of the following holds.

1. There is a (¢;, ¢is1,9,7) € T such that v;(C) = g and v; = r(v;).
2. There is a t > 0 such that v;1(C) =t-v;(C) and ¢; = ;1.

We call condition 1 a discrete transition and condition 2 a time transition.
We say a run is minimal if it alternates between discrete and time transitions.

Definition 6.2.3. Product Timed Automaton
The product of timed automata A; = (Q;, S;, T;, C;) for i € I is (Q, S, T,C)

where

Q = HiEIQi
S@ = /\Sia)
i€l

T = {({a}h g} {9} {r}) [i € L and (q;, ;, gi,r:) € T, for every i € I}

c = |Ja

el

Definition 6.2.4. Unwinding
The k-unwinding of a timed automaton A is the set of all minimal runs of
length k.

o7

6.2.2 Circuit Timing Analysis

Following [20] We consider a circuit to be an acyclic network of gates (V, E, F, I
in which each gate g € V' computes a boolean function F(g) over its inputs
In(g) = {v €V | (v,g9) € E}. In this way, every gate without any inputs
acts as a variable or input to the circuit as a whole. We are interested in
analysing the timed behavior of a circuit given some change in its inputs.
In particular, we consider that each gate g will take some time to propogate
a change in its inputs to its output and that moreover this time must fall
within a specified interval I(g) = [l,, u,4]. Note that in this model, it is pos-
sible that a temporary change in the inputs of some gate may not cause the
gate to propogate the change to its output.

To model the possible behaviors of a such a circuit, we will treat each
gate as a single timed automaton with one clock. Such an automaton is
pictured in figure 6.7. For the sake of explication, suppose the automaton
in the figure represents a gate g. The states of the automaton consist of
tuples (stable,y) where stable is a bit indicating whether the automaton
has propogated its inputs to its output y. A transition from a stable state to
an unstable state represents the situation in which the input changes from
In(g) to In'(g) such that F(g)(In(g)) # F(g)(In'(g)). At the moment this
event occurs, the gate’s clock x is reset to zero and the automaton switches
to an unstable state. The automaton can only remain in an unstable state
for at most u, time. In addition, as long as 0 <z < ug, the input to the gate
may change again to In”(g) such that F'(g)(In"(g)) = F(g)(In(g)). If this
occurs while the automaton is an unstable state, the automaton will regret
to its previous state. This action is represented in the figure by the two
horizontal transitions labelled with constraints x < w. On the other hand, if
the automaton does not regret, a transition to a stable state will occur. This
transition represents the event that g has propogated its input to its output
and is represented in the figure by the two vertical transitions.

To construct a single timed automaton representing an entire circuit, we
will first augment the staying conditions for each state in the automata for a
gate g with the Boolean function F'(g). Then we take the product automaton
of all the gates in the circuit. The required synchronization of the product
naturally follows by variable sharing between the automata in the staying
conditions.

To perform BMC on such an automaton, we will unwind the automaton to
some bounded depth and encode the set of paths in the unwound automaton

58

Figure 6.7: Timed automaton for a gate.

into a formula consisting of a Boolean combination of difference constraints
and propositional variables. With such a formula ¢ in hand, we can then
hunt for a violation of a property P over the runs by checking the satisfiability
of the formula ¢ A - P.

6.2.3 Coding the BMC problem

Following [24], we encode the k& unwinding of the product automaton over a

set of gates G as
A AV et

0<i<k geG teT,

where T is the set of transitions defined for gate g.

We describe how to define transitions ¢(t,) for the automaton associated
with gate g. We will index the variables stable and y by the unwinding
depth. For notational convenience, we write s* (i) for —stable; A stable;,,
s (i) as stable;A—stable; 1, and s~ (i) for stable; <> stable; ;. We write
y=(i) for y; « y;,1 and y7 (i) for y; = y;,1. We also write Fj(g) for F(g) with
all variables replaced with their respective indexed counterparts z;. Finally
we write f=(i) for Fi(g) < Fi1(g), and similarly f#(i) for Fi(g) # Fiy1(g)-
Letting x be the clock associated with automaton for gate g, we can now
define the transitions:

e Excite Transition:

59

sT(D)ANY= A fP(I) Az =0
e Regret Transition:
ST ANYT A FE) A wy <ug Awig =
e Stabilize Transition:
ST NYT A FT() Ay <ug Awg > 1y Awpy =
e Time Transition:
SSOOANY=AfTO)ANTFI>0. 249 =1+ a5

In order to encode this formula as a Boolean combination of propositional
variables and difference constraints, we need to express all the timing con-
straints as difference constraints. This is accomplished by introducing a
sequence of variables gg, g1, . . . gx reflecting the values of a global clock which
is never reset. For clock resets, we require x; = ¢; instead of x; = 0. For
all other transitions, we require x; = x;,;. To manage the global clock,
we add the constraint g; = ¢;.1 for discrete transitions and g; < g;41 for
time transitions. Under this scheme, the value of a local clock = at unwind-
ing depth 7 is g; — z;. Hence all temporal staying conditions and transition
guards are expressed as ¢; — x; < u or g; — x; > l. Finally, using the equiv-
alences r =y rx—y<0ANy—x<0,z—y>c—y—x < —c, and
r <y y—x <0, we can express every timing constraint as a conjunction
of difference constraints.

6.2.4 Experiments

The problem we address for circuit timing analysis is that of maximum sta-
bilization time. In particular, given a circuit (V, E, F,I), we wish to find
the maximum time required for the circuit to go from any state in which all
the outputs are stable to any other state in which all the outputs are stable.
We assume the inputs to the circuit start in one state and then immediately
change to some other value which is fixed indefinitely, however the particular
values of the inputs are not assumed. The query “is there a minimal run of
length £ which leaves some circuit output in an unstable state after d time

60

Figure 6.8: A 3-bit adder.

T2 Y2 1 Y1 To Yo

L J L J L J L J

’

<*+— MAJ || XOR [*T71MAJ3 || XOR AND || XOR

units” is coded as a o A g > d A (\/,o —stable}) where ¢ is a Boolean
combination of difference constraints describing the runs of length k& as de-
scribed above, and stable] describes the stability of gate v at step k. If k
is long enough to propogate some input to some output, and the answer is
satisfiable, then the maximum stabilization time exceeds d. Similarly, if k is
sufficiently long and the answer is unsatisfiable, then d is an upper bound on
the maximum stabilization.

We ran such queries on n-bit adders, each of which takes 2n input bits
(Z,y) and adds them together to form n outputs. The bit adders are com-
prised of one half-adder and n — 1 full-adders. Both half adders and full
adders contain 2 gates, one of which determines an output bit and the other
of which determines a carry bit. Full adders take as input three bits one
taken from z another from ¢, and the third from the carry bit of the previ-
ous adder. Half adders take two bits taken from z and y as input. Figure
6.8 shows a 3-bit adder.

6.2.5 Analysis

Figure 6.9 gives a table of execution times for various values of n, k, and
d. The results indicate that the method is less scalable in the depth of the
unwinding than in the size of the circuit. Even so, the size of the largest
circuit we treated is miniscule by industrial standards, only 20 gates. On the

61

Figure 6.9: Maximum stabilization query results.

NBits | Unwinding (k) | Duration | nvars/bvars/clauses | Time (Secs) | Result
2 8 12 45/740,/2048 0.78 sat

2 8 13 45/740,/2048 0.54 unsat
3 12 18 91/1722/4943 7.09 sat

3 12 19 91/1722/4943 6.50 unsat
4 16 24 153/3112/9086 64.32 sat

4 16 25 153/3112/9086 39.90 unsat
) 20 30 231/4910/14477 305.62 sat

) 20 31 231/4910/14477 406.82 unsat
6 10 30 143/3095/8831 27.86 sat

6 10 31 143/3095/8831 61.47 unsat
7 10 30 165/3565/10400 128.68 sat

7 10 31 165/3565/10400 14.09 unsat
8 10 30 187/4005/11969 | 143.76 sat

8 10 31 187/4095/11969 119.82 unsat
9 10 30 209/4625/13538 124.81 sat

9 10 31 209/4625/13538 20.85 unsat
10 10 30 231/5155/15107 688.70 sat
10 10 31 231/5155/15107 211.67 unsat
10 12 36 273/5918 /15588 929.10 sat
10 12 37 273/5918 /15588 186.36 unsat
0 |14 12 315/6871/18169 | 2063.75 sat
10 14 43 315/6871/18169 794.45 unsat

62

other hand, it is good to see the solver can figure out which of the 2%° pairs

of inputs lead to long paths. Additionally, we see in the last four queries
that as k grows, the stabilization time can grow as well. In our example, we
gave each gate a lower bound of 4 time units and an upper bound of 6 time
units, thus including regret transitions in the search for a longest path. If
each gate never regrets, then the unfolding depth can allow for two discrete
transitions and atleast one time transition for a single gate to propogate input
to output. When gates are chained together, the stabilization of one gate will
simultaneously coincide with the excitation of the next gate, thus allowing
for the propogation through chains of length n within 2n steps. With regret
transitions, the longest path in the automaton can grow much longer. In this
toy bit adder example, regrets never play a role in the longest path.

It is in addition clear that the solver finds it more difficult to find satisfying
assignments than it does to prove the unsatisfiability of a formula. This is in
contrast to the job shop problems, where the unsatisfiable problems tended to
take a bit longer. In an effort to find the cause of this phenomenon, we tried
many of the same problems in table 6.9, with all input values fixed and delays
deterministic. The runtimes for this easier problem were not in general very
different from the problem presented here. As a result, we believe that the
coding of the BMC problem for timed automata has room for improvement.

63

Chapter 7

Conclusion

Difference constraints form an interesting class of formula for study within the
framework of satisfiability checking. While they admit much more efficient
algorithms for satisfiability and inference than general linear constraints, em-
bedding these algorithms within the DPLL procedure remains a delicate mat-
ter. We have presented a novel method of doing just that which appears to
work relatively well in practice.

Several other methods for this problem have been proposed and used
(30, 22, 27, 29, 35, 19]. Our method is unique in that it uses a model based
approach and is one of the few methods which incorporate numerical con-
straint propogation into the DPLL procedure. The model based approach
in turn allows for efficient constraint propogation in sparse systems of differ-
ence constraints, which is the norm in all the problems we have encountered.
In addition, the model based approach supports incomplete numerical con-
straint propogation by providing a basis for an effective heuristic for choosing
numeric variables which are candidates for constraint propogation. As a re-
sult, significant amounts of constraint propogation occur without increasing
the asymptotic run time of the theory interpreter beyond what is required
to detect inconsistent sets of assignments incrementally.

In the future, we would like to explore methods of combining different
theories into the DPLL procedure. This is in particular motivated by the
circuit stabilization problems, where the translation to SAT involved many
equalities. If the theory of equalities could be combined effectively with
the theory of difference constraints, such problems may become much more
tractable. In addition, it would be interesting to combine the theory of
difference constraints with more general classes of linear constraints so that

64

problems consisting of many difference constraints and a few general linear
constraints may be more effectively solved. Finally, all the problems that
we treated experimentally are optimization problems formulated in a way
which uses SAT as a subprocedure. It would be worthwhile to treat these
problems in a more unified fashion, perhaps by reusing appropriate learned
clauses accross instances, applying interpolation, or lifting other SAT based
BMC techniques for discrete problems to numerical SAT problems.

65

I hereby declare that this thesis is entirely my own work and that I have
not used any other media than those mentioned in this thesis.
May 13, 2005

66

Bibliography

1]
2]

3]

[4]

J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure
for job shop scheduling. Management Science, 34:391-401, 1988.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126:183-235, 1994.

C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order
formulas by incremental translation into sat. In 14th International Con-

ference on Computer Aided Verification (CAV), 2002.

R. Bayardo and R. Shrag. Using csp look-back techniques to solve real-
worl sat instances. In Proceedings of the 14th National Conference on
Artificial Intelligence, 1997.

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle detection
algorithms. In ESA ’96: Proceedings of the Fourth Annual Furopean
Symposium on Algorithms, pages 349-363, London, UK, 1996. Springer-
Verlag.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001.

Scott Cotton, Oded Maler, Eugene Asarin, and Peter Niebert. Some
progress in satisfiability checking for difference logic. In FORMATS 04,
2004.

67

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Alexandre David, John Hakansson, Kim G. Larsen, and Paul Petter-
son. Minimal dbm substraction. In Paul Petterson and Wang Yi, edi-
tors, Nordic Workshop on Programming Theory, number 2004-041 in I'T
Technical Report of Uppsala University, pages 17-20, October 2004.

M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Cmmunications of the ACM, 5:394-397, 1962.

Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni.
Fully dynamic shortest paths and negative cycles detection on digraphs

with arbitrary arc weights. In Furopean Symposium on Algorithms,
pages 320-331, 1998.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. Dpll(t): Fast decision procedures. In Computer
Aided Verification, 2004.

A. V. Goldberg and T. Radzik. A heuristic improvement of the bellman-
ford algorithm. In Applied Mathematics Letters, 6, 1993.

E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT solver.
In Design Automation and Test in Europe (DATE’02), pages 142149,
2002.

A.S. Jain, J. Pearson, C. Weise, and W. Yi. Deterministic job shop
scheduling: Past, present and future. FEuropean Journal of Operations
Research, 113:390-434, 1999.

Robert G. Jeroslow and Jinchang Wang. Solving propositional satis-
fiability problems. Annals of Mathematics and Artificial Intelligence,
1:167-187, 1990.

J.P.Marques-Silva and K.A. Sakallah. Grasp-a search algorithm for pro-
postional satisfiability. IEFEE Transactions on Computers, 48:506-521,
1999.

Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock
difference diagrams. Nordic Journal of Computing, 6:271-298, 1999.

Moez Mahfoudh. Sur la Vérification de la Satisfaction pour la Logique
des Différences. PhD thesis, Université Joseph Fourier, 2003.

68

[20]

[21]

[22]

[29]

[30]

O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using
timed automata. In CHARME’95, volume LNCS 987, pages 189-205,
1995.

M.Bozzano, R.Bruttomesso, A.Cimatti, T.Junttila, P.v.Rossum,
S.Schulz, and R.Sebastiani. Mathsat: Tight integration of sat and math-

ematical decision procedures. Journal of Automated Reasoning, Special
Issue on SAT, 2005.

Jesper Mpoller and Jakob Lichtenberg. Difference decision diagrams.
Master’s thesis, Department of Information Technology, Technical Uni-
versity of Denmark, Building 344, DK-2800 Lyngby, Denmark, August
1998.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 39" Design
Automation Conference (DAC’01), pages 530-535, 2001.

Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded
Maler, and Navendu Jain. Verification of timed automata via satisfia-
bility checking. In FTRTFT 02, LNCS 2469, pages 225-244. Springer,
2002.

D. Pretolani. Efficiency and stability of hypergraph SAT algorithms. In
Proceedings of the DIMACS Callenge II Workshop, 1993.

S. Seshia and R. Bryant. Deciding quantifier-free presburger formulas
using parameterized solution bounds, 2004.

H. M. Sheini and K. A. Sakallah. A sat-based decision procedure for
mixed logical /integer linear problems. In AIOR, 2005.

J.P. Marques Silva and K. A. Sakallah. GRASP-a search algorithm
for propositional satisfiability. In IEEE Transactions on Computers,
volume 48, pages 506521, 1999.

M. Sorea. Bounded model checking for timed automata. In In Proceed-
ings of MTCS, 2002.

O. Strichman, S.A. Seisha, and R.E. Bryant. Deciding separation for-
mulas with sat. In 1/th International Conference on Computer Aided
Verification (CAV), 2002.

69

[31]

[32]

[33]

[35]

[36]

[37]

R. E. Tarjan. Shortests paths. Technical report, AT&T Bell Laboraties,
1981.

C. Tinelli. A dpll based calculus for ground satisfiability modulo the-
ories. In 8th Furopean Conference on logics in artificial intelligence.,
2002.

G. S. Tseitin. On the complexity of derivations in the propositional cal-
culus. In A. O. Slisenko, editor, Structures in Constructive Mathematics
and Mathematical Logic, Part II, pages 115125, 1968. Translated from
Russian.

J. M. Wilson. Compact normal forms in propositional logic and inte-
ger programming formulations. In Computers and Operation Research,

pages 309-314, 1990.

B. Woznia, A. Zbrzezny, and W. Penczek. Checking reachability prop-
erties for timed automata via sat. Fundamenta Informatica, 55:223-241,
2003.

S. Yovine. Kronos: A verification tool for real time systems. Inter-
national Journal of Software Tools for Technology Transfer, 1:123-133,
1997.

H. Zhang and M. Stickel. An efficient algorithm for unit propogation.
In In Proceedings of the Fourth International Symposium on Artificial
Intelligence and Mathematics, 1996.

70

