
Scheduling with Timed Automata ?

Yasmina Abdeddaı̈m a Eugene Asarin b Oded Maler c,∗

aLIF, Université de Provence, 39, rue F. Joliot Curie, 13453 Marseille, France
bLIAFA, Université Paris 7, 2 place Jussieu, 75251, Paris, France

cVERIMAG, 2 avenue de Vignate, 38610, Gières, France

Abstract

In this work we present timed automata as a natural tool for posing and solving scheduling
problems. We show how efficient shortest path algorithms for timed automata can find opti-
mal schedules for the classical job-shop problem. We then extend these results to synthesize
adaptive scheduling strategies for problems with uncertainty in task durations.

Key words: Scheduling, verification and synthesis, timed automata

1 Introduction

At the most abstract level the problem of scheduling can be defined as follows. A
set P of tasks is to be performed using a bounded set M of available and reusable
resources. Each task is characterized by its duration, by the resources it needs in
order to execute and by precedence relationships it has with other tasks. A conflict
between two or more tasks occurs when their simultaneous demand for some type
of resource exceeds the availability of that resource. A scheduler has to resolve such

? This work was partially supported by European Community Esprit-LTR project 26270
VHS (Verification of Hybrid systems), the AFIRST French-Israeli collaboration project
970MAEFUT5 (Hybrid Models of Industrial Plants) and the European Community projects
IST-2001-35304 AMETIST (Advanced Methods for Timed Systems), and IST-2001-33520
CC (Control and Computation).
∗ Corresponding author

Email addresses: Yasmina.Abdeddaim@cmi.univ-mrs.fr (Yasmina
Abdeddaı̈m), asarin@liafa.jussieu.fr (Eugene Asarin), maler@imag.fr
(Oded Maler).

URLs: www.liafa.jussieu.fr/˜asarin (Eugene Asarin),
www-verimag.imag.fr/˜maler (Oded Maler).

Preprint submitted to Elsevier Science 19 August 2004

conflicts by deciding to which of the competing tasks to give the resource first and
which tasks will have to wait until the resource is released. Different schedules lead
naturally to different orders of task execution and the goal of optimal scheduling is
to find a scheduler such that the behavior it induces is the best according to some
evaluation criterion.

Variations on this problem appear in almost any application domain. The original
motivating application comes from industrial engineering: how to use a finite num-
ber of machines in a factory in order to manufacture different products efficiently.
A smaller scale variation on this problem is the preparation of a meal consisting of
several courses, each has to be prepared according to a recipe while using a finite
number of heat sources, containers and tools. Scheduling of trains (respectively,
airplanes) is done by allocating tracks and junctions (respectively, air corridors and
landing tracks) to different trains or airplanes at different times. Other instances of
scheduling occur while assigning human resources to different tasks in a project.
In computer science and engineering alone, scheduling problems occur at various
levels such as the allocation of CPU time and peripheral devices in a multi-tasking
operating systems, the allocation of registers in a CPU or the allocation of commu-
nication channels in a network.

The diversity of scheduling problems and the fact that they are treated by differ-
ent scientific and engineering communities led to the undesired situation where
similar problems are solved using domain-specific and often ad-hoc methods and
where solutions are re-invented each time without leading to the emergence of a
unified scheduling theory. Perhaps the only discipline which came close to build-
ing an application-independent, mathematical and algorithmic theory of scheduling
is Operation Research where scheduling is formulated as a certain type of a com-
binatorial optimization problem. However, as we argue in this paper, this approach
is not the most natural one for expressing some complex scheduling situations that
occur in real life.

The work reported in this paper is a first step in the development of an alternative
general theory of scheduling inspired by the methodology of verification and based
on the timed automaton model. We feel that much of the success in verification
is due to its use of state-space based dynamic models, such as automata, to rep-
resent the systems to be analyzed (digital circuits and finite-state programs). The
principles of verification as we see them can be summarized as follows:

(1) Each component of the system in question is modeled as an automaton where
the next state is determined as a function of the current state and possible
interactions with states and events of other components.

(2) In these models it is possible to make distinctions between controlled and un-
controlled actions, that is, those initiated by the component and those coming
from its outside environment (in some contexts these are also called distur-
bances).

2

(3) The semantics of the system is defined by the set of all behaviors that it can
generate, namely sequences of states and events that follow the dynamics of
each component and satisfy their interaction constraints.

(4) Each behavior can be evaluated according to whether it satisfies some desired
properties expressed in some formalism for describing sets of sequences.

(5) The whole system is evaluated according to the evaluation of some/all of its
behaviors.

(6) The evaluation can be done in a variety of ways ranging from algorithmic
verification which practically computes all possible behaviors, to deductive
verification which attempts to give “analytic” proofs of some claims about
these behaviors.

In contrast, many approaches to timing related problems, such as those used in Op-
eration Research, AI or Queuing Theory, pay less attention to the explicit modeling
of the system dynamics but rather reduce the scheduling problem into some type
of optimization or constraint satisfaction problem. The choice of problem formu-
lation is, more often then not, driven by the existence of certain known results and
algorithms, rather than by the faithfulness of the model to the phenomenon under
study. 1 Such methods can be extremely successful in solving particular problems
efficiently, but their rigid nature can prevent their reusability. We strongly believe
that if scheduling is to become a more mature discipline, its approach to prob-
lem solving should be based on modeling problems faithfully by a clean semantic
model, and not in terms of the specific technique used to solve them. Such an ap-
proach does not, of course, change the inherent computational complexity of the
problem, but it provides more freedom in choosing the solution method that gives
the best trade-off between its computational complexity and the quality of the so-
lution it provides.

Another advantage of the automaton-based approach is that it enables the user to
formulate, in a very natural fashion, distributed systems comprising of small inter-
acting sub-systems. In other approaches one does not have such an intuitive notion
of communicating sub-systems but rather a very large number of equations and
inequalities in which the dynamical and compositional aspects are less explicit.
Yet another advantage of this dynamic state-space approach is that it provides an
“executable” operational model that interacts well with the actual evolution of the
schedule and hence allows better execution monitoring, interaction with human op-
erators and adaptiveness in general.

In order to adapt the conceptual and algorithmic tools of verification methodology
we need to extend it in several directions. First we have to use a dynamic model
that can express effectively the quantitative timing information associated with the

1 Of course, the phenomenon of “when you have a hammer everything looks like a nail”
is not particular to scheduling and optimization and the present authors might be suffering
from it as well — hopefully with a more generic hammer.

3

duration of tasks (other non-temporal quantitative aspects of scheduling are outside
the scope of this paper). For this purpose we use the timed automaton, an extension
of the automaton operating on the real time domain, which has established itself in
the last decade as the object of choice for modeling and analyzing time-dependent
phenomena. 2 The clocks in the timed automaton encode into the state exactly the
information necessary to determine the future: each clock represents the time that
has elapsed since the occurrence of a certain past event (beginning of the execution
of a task) upon which a future event (the termination of the task) depends.

Secondly we have to extend the way behaviors are typically evaluated in verifica-
tion (correct vs. incorrect) to cover quantitative measures such as the time or cost
associated with each behavior. Finally we have to adapt verification algorithms
which, typically, take the system as given, to become synthesis algorithms, that is,
not using them to evaluate a given schedule but to synthesize an optimal schedule
from a model that includes all possible schedules.

In this paper we start with the classical job-shop scheduling problem studied ex-
tensively during the last decades. This problem is very simple to formulate yet it
exhibits the inherent complexity of scheduling as a problem where the exponen-
tially growing number of discrete choices dominate the rather simple linear algebra
involved. Our first exercise is to show that this problem can be reduced to the prob-
lem of finding shortest paths in timed automata. While developing the algorithm
we have discovered the concept of non-lazy schedules which allows us to restrict
our attention to a finite subset of the non-countable set of possible schedules. The
implementation of the algorithm and of various related heuristics demonstrates ex-
perimentally that no severe performance penalty is associated with the automaton-
based approach.

In the second part of the paper we demonstrate the conceptual merits of our ap-
proach by posing and solving an extension of the job-shop problem in which task
durations admit a bounded uncertainty. After defining the appropriate criterion of
optimality, we develop an algorithm in the dynamic programming style which finds
adaptive scheduling strategies that are optimal in this sense. We believe that these
examples will convince the reader in the viability of our approach.

2 It should be noted that timed automata are not the only possible dynamic model for
timing related behaviors. In principle, this work could as well be phrased in terms of some
variant of timed Petri nets (see a survey of those in (BD91)). It is a matter of taste whether
one prefers to view interaction as communication between automata or via token passing.
Whatever the formalism chosen, the final object to be analyzed is the same regardless of
whether it is a product of automata or a marking graph of a Petri net. The theoretic and
algorithmic results of the current paper (as well as many other results in verification) could
have been derived, in principle, from a PN formulation, but in reality they have not. Whether
this is due to inherent properties of the models or of the communities remains an open
question.

4

The rest of the paper is organized as follows. In Section 2 we introduce the job-shop
scheduling problem. Section 3 presents timed automata and shows how they model
scheduling problems in a most natural way. Section 4 is devoted to the algorithmics
of finding shortest paths in timed automata including the underlying result concern-
ing non-lazy schedules, improved search methods and experimental results. In the
second part we move to scheduling under uncertainty. In Section 5 we discuss the
problem of evaluating the performance of an open systems, describe the problem
of scheduling under bounded temporal uncertainty, show why simple worst-case
reasoning is not interesting for this problem and define the appropriate optimality
criterion. In section 6 this problem is formulated and solved algorithmically using
timed automata and some experimental results are reported. In Section 7 we sketch
a solution of a probabilistic variant of the problem with exponentially distributed
task durations. Finally we survey some related work and suggest further research
directions.

This paper is based on the PhD thesis (A02) and the conference papers (AM01) and
(AAM03).

2 Deterministic Job Shop Scheduling

The job shop problem is one of the most popular problems in scheduling theory. On
one hand it is very simple and intuitive while on the other it is a good representative
of the general domain as it exhibits the difficulty of combinatorial optimization.
The difficulty is both theoretical (even very constrained versions of the problem are
NP-hard) and practical (an instance of the problem with 10 jobs and 10 machines,
proposed in (FT63), remained unsolved for almost 25 years, in spite of the research
effort spent on it).

A job shop problem consists of a finite set J = {J 1, . . . , Jn} of jobs to be processed
on a finite set M = {m1, . . . ,mk} of machines. Each job J i is a finite sequence of
tasks to be executed one after the other, where each task is characterized by a pair
of the form (m, d) with m ∈ M and d ∈ N, indicating the required utilization of
machine m for a fixed time duration d. Each machine can process at most one task
at a time and, due to precedence constraints, at most one task of each job may be
processed at any time. Tasks cannot be preempted once started.

The objective is to determine the starting times for each task in order to minimize
the total execution time of all jobs, i.e. the time the last task terminates. This prob-
lem is known in the scheduling community as J ||Cmax where Cmax is the maximum
completion time, called makespan.

5

S2

m3 m2 m1

m3m2

m1

m2

m3

J1

J1

J2

J1 J2

J1

J2

0 2 4 7 8

S1

m3 m2 m1

m2 m3

2

m3

m2

J1

J2 J1

J1

J2

J1 J2

m1

3 4 5 90

Fig. 1. Two feasible schedules S1 and S2 visualized as the task progress (up) and as machine
allocation (down).

As an example consider M = {m1,m2,m3} and two jobs

J1 = (m3, 2), (m2, 2), (m1, 4) and J2 = (m2, 3), (m3, 1)

Two schedules S1 and S2 are depicted in Figure 1. Schedules are 3-dimensional
objects involving tasks, machines and time and hence they can be depicted using
two types of Gantt diagrams based either on job progress or on machine occupation.
The first form is more related to automaton modeling of the problem and will be
used henceforth. The length of S2 is |S2| = 8 and it is the optimal schedule.

Note that a job can be idle at time t even if its precedence constraints are satisfied
and the machine it needs at that time is available. As one can see in schedule S2

of Figure 1, machine m2 is available at time t = 0 whereas J2 does not use it and
remains idle until time t = 4. If we execute the tasks of J 2 as soon as they are
enabled we obtain the longer schedule S1. The ability to achieve the optimum by
waiting instead of starting immediately increases the set of possible solutions that
need to be explored and is the major source of the complexity of scheduling.

Our problem definition below is slightly more general than the classical job-shop
problem, allowing precedence constraints that are not necessarily a set of linear
chains.

Definition 1 (Machine Scheduling Problem) A machine scheduling problemJ =
(P,≺,M, µ, d) consists of a set P = {p1, . . . , pm} of tasks, a strict partial-order
precedence relation ≺ on P , a set M = {m1, . . . ,mn} of machines, a function
µ : P → M assigning machines to tasks and a duration function d : P → N.

We assume throughout the paper that all machines are distinct and that each task
p can be performed only on machine µ(p). The extension of the model to the case

6

where a task can be executed on one out of several machines (possibly with differ-
ent speeds) is an easy exercise that can be done at the expense of complicating the
notation. We denote by Π(p) the set of immediate predecessors of p, i.e. those p′

such that p′ ≺ p and there is no p′′ such that p′ ≺ p′′ ≺ p.

We want to find the schedule that minimizes the total execution time and respects
the following conditions: 1) A task can be executed only if all its predecessors have
terminated; 2) Each machine can process at most one task at a time; 3) Tasks cannot
be preempted once started.

Definition 2 (Feasible and Optimal Schedules)
A schedule for a problem J = (P,≺,M, µ, d) is determined by the function st :
P → R+ indicating the start time of each task. In a deterministic setting, the end
time of a task is en(p) = st(p) + d(p). A schedule is feasible if it satisfies:

(1) Precedence: For every p, p′ ∈ P , p ≺ p′ ⇒ en(p) ≤ st(p′).
(2) Mutual exclusion: For every two tasks p, p′ such that µ(p) = µ(p′),

[st(p), en(p)] ∩ [st(p′), en(p′)] = ∅.

The length of the schedule is max{en(p) : p ∈ P}. An optimal schedule is a
schedule whose length is minimal.

Note that condition (2) reduces into a disjunction

st(p) − st(p′) ≥ d(p′) ∨ st(p′) − st(p) ≥ d(p)

rendering the whole problem highly non-convex when viewed as a constrained op-
timization problem.

3 Modeling with Timed Automata

Timed automata (AD94) are automata augmented with continuous clock variables
whose values grow uniformly at every state. Clocks can be reset to zero at certain
transitions and tests on their values can be used as conditions for enabling tran-
sitions. Hence they are ideal for describing concurrent time-dependent behaviors.
Our definition below is an “open” version of timed automata which can refer to
the states of other automata, ranging over Q′, in their transition guards. The clocks
constraints that we use are slightly less general than in the standard definition of
timed automata.

Definition 3 (Timed Automaton)
An open timed automaton is A = (Q,C, I, ∆, s, f) where

• Q is a finite set of states;

7

• C is a finite set of clocks;
• I is the staying condition (invariant), assigning to every q ∈ Q a conjunction Iq

of inequalities of the form c ≤ u, for some clock c and integer u;
• ∆ is a transition relation consisting of elements of the form (q, φ, ρ, q ′) where
· q and q′ are states;
· φ = φ1 ∧ φ2 is the transition guard where φ1 is a formula characterizing a

subset of an external set of states Q′ and φ2 is a conjunction of constraints of
the form (c ≥ l) for some clock c and some integer l;

· ρ ⊆ C is a set of clocks to be reset;
• s and f are the initial and final states, respectively.

A clock valuation is a function v : C → R+ ∪ {0}, or equivalently a |C|-
dimensional vector over R+. We denote the set of all such valuations by V and
v(ci) by vi. A configuration of the automaton is hence a pair (q, v) consisting of a
discrete state (also known as location) and a clock valuation. Every subset ρ ⊆ C
induces a reset function Resetρ defined for every clock valuation v and every clock
variable c ∈ C as

Resetρ v(c) =

{

0 if c ∈ ρ

v(c) if c 6∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves the other clocks un-
changed. We use 1 to denote the unit vector (1, . . . , 1) and 0 for the zero vector.

A step of the automaton is one of the following:

• A discrete step: (q, v)
0

−→ (q′, v′), where there exists δ = (q, φ1 ∧φ2, ρ, q′) ∈ ∆,
such that the external environment satisfies φ1, v satisfies φ2 and v′ = Resetρ(v).

• A time step: (q, v)
t

−→ (q, v + t1), t ∈ R+ and v + t1 satisfies Iq.

A run of the automaton starting from a configuration (q0, v0) is a finite sequence of
steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · ·
tn−→ (qn, vn).

The logical length of such a run is n and its metric length is t1 + t2 + · · ·+ tn. Note
that discrete transitions take no time.

Our goal is to model each scheduling problem using a timed automaton so that
every run corresponds to a feasible schedule and the shortest run gives the op-
timal schedule. As a running example consider the problem M = {m1,m2},
P = {p1, p2, p3}, p1 ≺ p2, µ(p1) = µ(p3) = m1, µ(p2) = m2, d(p1) = 4,
d(p2) = 5 and d(p3) = 3.

For every task p we build a 3-state automaton with one clock c and a set of states
Q = {p, p, p} where p is the waiting state before the task starts, p is the active state
where the task executes and p is a final state indicating that the task has terminated.
The transition from p to p resets the clock to zero and can be taken only if all the
automata corresponding to the tasks in Π(p) are in their final states. The transition

8

from p to p is taken when c = d(p).

Definition 4 (Timed Automaton for a Task) For every task p ∈ P its associated
timed automaton is A = (Q, {c}, I, ∆, s, f) with Q = {p, p, p} where the initial
state is p and the final state is p. The staying conditions are true for p and p and
c ≤ d(p) in p. The transition relation ∆ consists of the two transitions:

start : (p,
∧

p′∈Π(p)

p′, {c}, p)

and
end : (p, c = d(p), ∅, p)

Note that the clock is active only in state p where it measures the time elapsed since
it started executing while its value in p does not influence the future and hence need
not be part of the system state. This fact can also be deduced from observing that the
only transition outgoing from p resets the clock to zero without testing its value. 3

The automata Ap1 , Ap2 and Ap3 corresponding to the tasks in the example appear
in Figure 2.

To obtain the timed automaton representing the whole scheduling problem we need
to compose the automata for the individual tasks. The composition takes care of the
precedence constraints by allowing the automaton to make a start transition only
when the automata for its predecessors are in their respective final states. Mutual
exclusion constraints are enforced by forbidding global states in which two or more
tasks that use the same machine are active. An n-tuple q = (q1, . . . , qn) is said to
be conflicting if it contains two components qj and qk such that qj = pj , qk = pk

and µ(pj) = µ(pk).

Definition 5 (Mutual Exclusion Composition) Let J = (P,≺,M, µ, d) be a ma-
chine scheduling problem and let Ai = (Qi, Ci, I i, ∆i, si, f i) be the automaton
corresponding to each task pi. Their mutual exclusion composition is the automa-
ton A = (Q,C, I, ∆, s, f) such that Q is the restriction of Q1 × . . . × Qn to non-
conflicting states, C = C1 ∪ . . . ∪ Cn, s = (s1, . . . , sn), f = (f 1, . . . , fn), the
staying condition for a global state q = (q1, . . . qn) is Iq = Iq1 ∧ . . . ∧ Iqn and the
transition relation ∆ contains all the tuples of the form

((q1, . . . , qj, . . . , qn), φ2, ρ, (q1, . . . , rj, . . . , qn))

such that the source and target states are non-conflicting, (qj, φ1 ∧ φ2, ρ, rj) ∈ ∆j

for some j and φ1 is satisfied by (q1, . . . , qn).

In the automata derived from tasks, the formula φ1 in the guard for the start tran-
sition specifies that the automata for the preceding tasks are in their respective final

3 Clock activity analysis was introduced in (DY96) to reduce the dimensionality of the
clock space.

9

p3

p
3

p3

c3 := 0

c3 = 3

m1

m1

m2

m2

c1 := 0

c1 = 4

c1 := 0

c1 = 5

m1

f

m1

c2 := 0

c1 = 3

A1 A2

f

p1

p1

p
1

p
1
/c2 := 0

p2

p2

p
2

c2 = 5

c1 := 0

c1 = 4

c1 := 0

c1 = 4

c2 = 5

c2 := 0

p
1
p

2

p
1
p2

p
1
p2

p1p2

p1p2

Ap1 Ap2 Ap3 Ap1 ||Ap2

p1

p1

p2

p2

c := 0

c = 4

c := 0

c = 5

f

Ap1||p2

Fig. 2. Automata for tasks and jobs.

states and the runs of the product automaton satisfy precedence constraints by con-
struction. A run of A is complete if it starts at (s, 0) and the last step is a transition
to f . From every complete run ξ one can derive in an obvious way a schedule where
st(pi) is the time the starti transition is taken. The length of the schedule coincides
with the metric length of ξ. Note that the interleaving semantics inserts some re-
dundancy as there could be more than one run associated with a feasible schedule
in which several tasks start or end simultaneously.

10

Before showing the product let us discuss the simplifications associated with the
fact that we work with the job-shop problem which constitutes a special case of
machine scheduling where P can be partitioned into a set J = {J 1, . . . Jn} of
chains called jobs, each of the form p1 ≺ . . . ≺ pk. In this case each task has at most
one immediate predecessor denoted by π(p). If we look at the composition of Ap1

and Ap2 (the automaton Ap1 ||Ap2 of Figure 2) we see that it has a chain structure
because p2 cannot move until p1 terminates and the automaton is isomorphic to the
automaton Ap1||p2 where the states are associated with the waiting and active states
of each task plus a special state f indicating the termination of the last task in the
chain. For the same reason one clock is sufficient for each chain. In the rest of the
paper we will draw the automata for the jobs as in A1 and A2 of Figure 2, replacing
p by µ(p). Likewise we will specify jobs as sequences like

(µ(p1), d(p1)), . . . , (µ(pk), d(pk)).

The global automaton obtained by composing A1 and A2 is depicted in Figure 3.
Two feasible schedules for this problem appear in Figure 4. The length of S1 is 9
and it is the optimal schedule for this problem. The two schedules correspond to
the following two runs of the automaton (we use notation ⊥ to indicate inactive
clocks):

S1 :

(m1,m1,⊥,⊥)
0

−→ (m1,m1, 0,⊥)
4

−→ (m1,m1, 4,⊥)
0

−→ (m2,m1,⊥,⊥)
0

−→

(m2,m1, 0,⊥)
0

−→ (m2,m1, 0, 0)
3

−→ (m2,m1, 3, 3)
0

−→ (m2, f, 3,⊥)
2

−→

(m2, f, 5,⊥)
0

−→ (f, f,⊥,⊥)

S2 :

(m1,m1,⊥,⊥)
0

−→ (m1,m1,⊥, 0)
3

−→ (m1,m1,⊥, 3)
0

−→ (m1, f,⊥,⊥)
0

−→

(m1, f, 0,⊥)
4

−→ (m1, f, 4,⊥)
0

−→ (m2, f,⊥,⊥)
0

−→ (m2, f, 0,⊥)
5

−→

(m2, f, 5,⊥)
0

−→ (f, f,⊥,⊥)

4 Shortest Paths in Timed Automata

The standard forward reachability algorithm for timed automata (HNSY94), used
in tools such as Kronos, Uppaal and IF (Y97; LPY97; BGM02), can compute the
set of all reachable configurations of a given automaton. In order to compute the
shortest path one can augment an automaton A with an additional clock T which
is never reset to zero and hence it measures the time elapsed since the beginning

11

m1m1m1m1 m1f

m2m1

m2m1

c1 = 4

c1 := 0

c1 := 0

m2m1

c1 := 0

c1 = 4

c1 := 0

c1 = 5

c2 = 3c2 := 0

c2 = 3c2 := 0

c2 = 3c2 := 0

c2 = 3c2 := 0

c1 := 0

c1 = 5 c1 = 5

fm1 ff

m2f

m2m1 m2f

m1fm1m1

fm1

Fig. 3. The global timed automaton for the two jobs.

9

m1

m2

J1

J2

S1

m1

12

m1

m1

m2

J1

J2

S2

Fig. 4. Two schedule S1 and S2 for the example.

of a run. 4 Clearly, a configuration (q, v) is reachable within time t in A iff (q, v, t)
is reachable in the augmented automaton. Hence, reachability computation is suf-
ficient for solving the shortest path problem (see also (ACH97)). This solution is,
however, not very efficient for the following reason. The reachability algorithm was
designed with verification in mind and, consequently, it is exhaustive in the sense
that it computes all possible runs of the automaton. These runs cover all (qualita-
tive) paths in the automaton, and in each path they cover all the uncountably-many
choices of times in which a transition could be taken. Thus the algorithm has to
manipulate an exponential number of zones (special polyhedra in the clock space
represented by a data-structure of size quadratic in the number of jobs). As we will

4 A similar construction was previously described in (NTY00) to implement shortest path
algorithm for cyclic timed automata using forward reachability.

12

S′

m1 m2

m2

m1

m1

m1 m2

m1 m2

m1

S

J1

J2

J3

. . .

m1 m2

m1

Ŝ

m1

m2

Fig. 5. Removing laziness from a schedule S: first we eliminate laziness in the task of
J2 which uses m1. This creates further manifestation of laziness which are subsequently
removed until a non-lazy schedule Ŝ is obtained. The dashed line indicates the frontier
between L(S) and the rest of the tasks.

see, in our case, a much more efficient algorithm is possible.

We start with an observation concerning optimal schedules that we use to eliminate
the need for zones. A task p is enabled at time t in a given schedule if t ∈ [t1, t2]
where t1 = en(π(p)), t2 = st(p) and the machine µ(p) is not used by any other
task. We say that a schedule S exhibits laziness at task p if p is enabled in a non-
empty interval [t, st(p)]. A schedule is lazy if it exhibits laziness at one or more
task. We have noted before that sometimes it is preferable not to start a task as soon
as it is enabled, however, this waiting is useless if no other task takes advantage of
it. 5 This fundamental intuition is formalized below.

Claim 1 (Non-Lazy Optimal Schedules) Any lazy schedule S can be transformed
into a non-lazy schedule Ŝ with |Ŝ| ≤ |S|. Hence every machine scheduling prob-
lem admits an optimal non-lazy schedule.

Proof: The proof is by taking a lazy schedule S and transforming it into a schedule
S ′ in which laziness occurs “later”. A schedule induces a partial order relation
@ on P defined as p @ p′ if either p ≺ p′ (when they belong to the same job)
or µ(p) = µ(p′) and st(p) < st(p′) (when they are in conflict and the schedule
gives priority to p). The laziness elimination procedure picks a lazy task p which
is minimal with respect to @ and shifts its start time backwards to the beginning
of the laziness interval to yield a new feasible schedule S ′, such that |S ′| ≤ |S|.
Moreover, the partial order associated with S ′ is identical to the one induced by
S. The laziness at p is thus eliminated, and this might create new manifestations of
laziness at later tasks which are eliminated in the subsequent stages of the procedure
(see illustration in Figure 5). Let L(S) = {p : ∃p′ v p s.t. there is laziness in p′},
namely the set of tasks that are lazy or preceded by laziness. Clearly the laziness
removal procedure decreases L(S) and terminates due to finiteness. 2

The next step is to restrict the runs of the automaton to those that correspond to

5 The situation is quite different in scheduling under uncertainty where waiting may lead
to gaining additional information.

13

m1 m2

J1

J2

m3

Fig. 6. A lazy schedule which corresponds to an immediate run.

non-lazy schedules. A lazy run in a job-shop automaton A is a run containing a
fragment

(q, v) . . .
t

−→ . . . (q′, v′)
starti−→ (q′′, v′′)

such that the starti transition is enabled in all states (q, v), . . . , (q′, v′). As one can
see this notion is non local in the sense that at the moment of not taking the starti

transition we do not know yet whether this run will be extended to a lazy one. To
simplify the presentation we will use here the weaker notion of an immediate run.
The actual implementation generates only non-lazy runs and the reader can find
more details in (A02).

Definition 6 (Immediate Runs) An immediate run is a run in which whenever a
start transition is taken in a state, it is taken as soon as it is enabled. A non-
immediate run contains a fragment

(q, v)
t

−→ (q, v + t)
starti−→ (q′, v′).

Note that enabledness of start transitions does not depend on clock values. Clearly
a schedule derived from a non-immediate run exhibits laziness, hence in order to
find an optimal schedule it is sufficient to explore the (finite) set of immediate runs.
The converse is not true: Figure 6 shows a lazy schedule which is immediate. It is
lazy because m3 could have started at time 0, but it corresponds to an immediate
run because m3 was started after the termination of m1, that is, in a state different
from the state where it could have been started.

The restriction to immediate runs transforms the timed automaton into a discrete
directed graph where nodes correspond to single configurations connected by a
simple successor relation defined as follows. Let θ be the maximal amount of time
that can elapse in a configuration (q, v, t) until an end transition becomes enabled,
i.e.

θ = min{(d(pi) − vi) : ci is active at q}.

The timed successor of a configuration is the result of letting time progress by θ
and terminating all that can terminate by that time:

Succt(q1, . . . , qn, v1, . . . , vn, t) = {(q′1, . . . , q
′
n, v′

1, . . . , v
′
n, t + θ)}

14

(⊥, 0, 0)

(⊥, ⊥, 3)

(0, ⊥, 3)

(⊥, ⊥, 4)

(0, ⊥, 4)

(0, ⊥, 0)

(⊥, ⊥, 0)

(⊥, 0, 4)

(⊥,⊥, 12)

(0, ⊥, 7)

(⊥, ⊥, 7)

(⊥, ⊥, 12)

(3, ⊥, 7)

(0, 0, 4)

(⊥, ⊥, 9)

(⊥, 0, 9)

(⊥, ⊥, 9)

f m1

f m1

m1 m1

m2 fm2 f

m2 m1

f ff f

m1 m1

m1 f

m1 f

m2 f

f f

m2 m1

m2 m1

m1 m1

m2 m1

Fig. 7. The immediate runs of the timed automaton of Figure 3

such that for every i

(q′i, v
′
i) =







(q′′i , v
′′
i) if the transition (qi, vi + θ)

endi−→ (q′′i , v
′′
i) is enabled

(qi, vi + θ) otherwise.

The discrete successors are all the successors by immediate start transition:

Succδ(q, v, t) = {(q′, v′, t) s.t. ∃i (q, v, t)
starti−→ (q′, v′, t)}

The set of successors of each (q, v, t) is:

Succ(q, v, t) = Succt(q, v, t) ∪ Succδ(q, v, t).

Figure 7 shows the graph thus obtained from the automaton of Figure 3, where
the paths correspond to the 5 immediate runs. Note that due to interleaving the
same schedule can be represented by more than one run. Applying standard search
algorithms to this graph we can find the shortest path (and the optimal schedule)
without using zone technology.

Although using points instead of zones reduces significantly the computational
cost, the inherent combinatorial explosion remains. In the rest of this section we de-
scribe further methods to reduce the search space, some of which preserve the opti-

15

mal solutions and some provide sub-optimal ones. Similar ideas were first explored
in (BFH+01a). The first self-evident idea is to avoid exploring identical nodes or
nodes that are obviously worse than nodes already explored.

Definition 7 (Domination) Let (q, v, t) and (q, v′, t′) be two reachable configura-
tions. We say that (q, v, t) dominates (q, v′, t′) if t′ ≤ t and v ≥ v′.

Clearly if (q, v, t) dominates (q, v′, t′) then for every complete run going through
(q, v′, t′) there is a run through (q, v, t) which is not longer. Hence whenever we
encounter a new node in the graph we check whether it is dominated by an explored
or waiting node and in this case we discard it. If it dominates a node in the waiting
list we replace it.

The next thing to do is to apply best-first search and explore the “most promising”
nodes first. To this end we need an evaluation function over configurations. Con-
sider a job J = (p1, d1), . . . (pk, dk) and its corresponding automaton. For every
configuration (q, v) of this automaton g(q, v) is a lower-bound on the time remain-
ing until f is reached from the configuration (q, v):

g(f,⊥) = 0

g(pj,⊥) =
∑k

l=j d(pl)

g(pj , v) = g(pj,⊥) − v

The evaluation of global configurations is defined as:

E((q1, . . . , qn), (v1, . . . , vn, t)) = t + max{g(qi, vi)}
n
i=1

Note that max{g} gives the most optimistic estimation of the remaining time to
completion, assuming that no job will have to wait due to a conflict. The best-
first search algorithm below maintains the waiting list sorted according to E . It is
guaranteed to produce the optimal path because it stops the exploration only when
it is clear that the unexplored states cannot lead to schedules better than those found
so far.

Algorithm 1 (Best-first Forward Reachability)

16

Waiting:={Succ(s, 0, 0)};
Best:=∞
(q, v, t):= first in Waiting;
while E(q, v, t) < Best
do
For every (q′, v′, t′) ∈ Succ(q, v, t);

if q′ = f then
Best:=min{Best, t′}

else
Insert (q′, v′, t′) into Waiting;

Remove (q, v, t) from Waiting
(q, v, t):= first in Waiting;

end

A prototype implementation of this algorithm can find optimal schedules for prob-
lems with up to 6 jobs and 6 machines in few seconds. To treat larger problems we
resort to a heuristic algorithm which is not guaranteed to produce the optimal so-
lution. The algorithm is a mixture of breadth-first and best-first search with a fixed
number w of explored nodes at any level of the automaton. For every level we take
the w best (according to E) nodes, generate their successors but explore only the
best w among them, and so on. The number w is the main parameter of this tech-
nique, and although the number of explored states grows monotonically with w, the
quality of the solution does not — sometimes the solution found with a small w is
better than the one found with a larger one.

We tested the heuristic algorithm on 10 problems among the most notorious job-
shop scheduling problems. Note that these are pathological problems with a large
variability in step durations, constructed to demonstrate the hardness of job-shop
scheduling. For each of these problems we have applied our algorithm for different
choices of w. In Table 1 we compare our best results on these problems with the
best results reported in Table 15 of the comprehensive survey (JM99), where the
results of the 18 best-known methods were compared. As one can see our results
are typically 5−10% longer than the optimum. For comparison, an algorithm which
picks the best out of 3000 randomly generated runs deviates from the optimum by
more than 100%.

5 Scheduling under Uncertainty

The problem treated so far was completely deterministic. All the information con-
cerning the tasks to be executed was known in advance, including their identity,
inter-dependence, duration and release time. The same goes for the machines whose
quantity was assumed to be fixed. Real life is not like that. New tasks can arrive in

17

problem heuristic Opt

name #j #m time length deviation length

FT10 10 10 3 969 4.09 % 930
LA02 10 5 1 655 0.00 % 655
LA19 10 10 15 869 3.21 % 842
LA21 10 15 98 1091 4.03 % 1046
LA24 10 15 103 973 3.95 % 936
LA25 10 15 148 1030 5.42 % 977
LA27 10 20 300 1319 6.80 % 1235
LA29 10 20 149 1259 9.29 % 1152
LA36 15 15 188 1346 6.15 % 1268
LA37 15 15 214 1478 5.80 % 1397

Table 1
The results for 10 hard problems using the bounded width heuristic. The first three columns
give the problem name, number of jobs and number of machines (and tasks). Our results
(time in seconds, the length of the best schedule found and its deviation from the optimum)
appear next.

the middle of execution while others can be canceled. Task processing can take
more or less time than expected, machines may break down, cost criteria may
change, etc. In such situations the actual evolution of the system depends on the
actions of two “players”, the scheduler which decides whether or not to start a
task in a given situation and the “environment”, a generic name for all sources of
uncontrolled external events such as the arrival or termination of a task.

5.1 Strategies and their Evaluation

The evaluation or optimization of the performance of such an open reactive sys-
tem which interacts with an external environment, raises some serious conceptual
problems. 6 In a deterministic setting, each scheduler induces a unique schedule
according to which it can be evaluated and compared with other candidate sched-
ulers. For an open system S, each instance d of the environment can potentially
induce a different behavior S(d), and the question is how to take all these behav-
iors into account while evaluating and comparing schedulers. Several approaches
to this problem are commonly used:

• Worst-case: The system is evaluated according to its worst behavior.
• Average-case: The set of all environment instances is considered as a probability

space and this induces a probability over all system behaviors. The system is
then evaluated according to the expected value (over all its behaviors) of the
performance measure.

6 Readers interested in a more comprehensive discussion of these issues are invited to look
at (M04).

18

• Nominal-case: The system is evaluated based on one behavior which corresponds
to one “typical” instance of the environment.

Each of these approaches has its advantages and shortcomings. The worst-case ap-
proach is often used for safety-critical systems where the cost associated with bad
behaviors is too high to tolerate, even if they constitute a negligible fraction of the
possible behaviors. This is implicitly the approach taken in verification, where the
performance measure is discrete and consists of a binary classification into “cor-
rect” and “incorrect”, and this means that a system is correct only if all its behav-
iors satisfy the property in question. On the negative side, this approach might lead
to an over-pessimistic allocation of resources which can be very inefficient during
most of the system lifetime. 7

The probabilistic approach is more appropriate when the performance measure is
more “continuous” in nature, e.g. the waiting time in a queue, and one can toler-
ate some performance degradation during pressure periods. The implicit assump-
tion underlying the nominal approach is somewhat similar to the probabilistic one,
namely, the nominal behavior is “close” to most of the behaviors we are likely to
see during the system life-time and the performance of other behaviors varies “con-
tinuously” with the distance from the nominal one. This approach is widely (and
implicitly) used in Control Theory, for example, in “step response” analysis the
system is simulated with one disturbance which is, in certain cases, sufficient for
its evaluation.

From a computational standpoint the evaluation of a given scheduler S is the easiest
under the nominal approach because when d is fixed the system is closed and the
behavior S(d) can be computed by simple simulation (it is represented by a single
path in the corresponding automaton). Moreover, the comparison of two candidate
systems S and S ′ is based on the same d. In the worst-case approach when it is not
known a-priori which d induces the worst behavior, one has to “simulate exhaus-
tively” and evaluate the scheduler against all instances in order to find the worst-
case. This is the inherent difficulty of verification compared to testing/simulation.
Moreover, when we want to compare S and S ′ for optimality, it might be that each
of them attains its worst performance on a different instance. The probabilistic ap-
proach is a-priori 8 the most difficult because not only do we need to explore all
behaviors but also to keep track of their probabilities in order to compute the overall
evaluation of the system.

7 A good analogy is to live all your life wearing a helmet fearing a meteorite rain, or going
to the airport a day before the flight in anticipation of all conceivable traffic jams.
8 At least when the approach is applied naively without using additional mathematical
information that can lead to analytic solutions in some special cases.

19

5.2 Scheduling under Temporal Uncertainty

In the rest of the paper we treat a non-deterministic generalization of the job-shop
scheduling problem where the exact duration of the tasks is not given in advance
but rather restricted to be bounded within an interval of the form [l, u]. In Section 7
we will also treat an alternative model where the duration of each task is given
as a continuous random variable. Each instance (or realization in the Operation
Research jargon) of the environment consists of selecting a number d ∈ [l, u] for
every task. The behavior induced by the scheduler on each instance is evaluated, as
before, according to the length of the schedule.

As an example consider the job shop problem

J1 = (m1, 10), (m3, [2, 4]), (m4, 5) J2 = (m2, [2, 8]), (m3, 7)

where the only resource under conflict is m3 and the order of its utilization is the
only decision the scheduler needs to take. The uncertainties concern the durations
of the first task of J2 and the second task in J1. Hence an instance is a pair d =
(d1, d2) ∈ [2, 8] × [2, 4]. It is very important to note that in our example (and
in “reactive” systems in general) instances reveal themselves progressively during
execution — the value of d2, for example, is known only after the termination of
the second task of J1.

Each instance defines a deterministic scheduling problem admitting one or more
optimal solutions. Figure 8-(a) depicts optimal schedules for the instances (8, 4),
(8, 2) and (4, 4). In general, only a clairvoyant scheduler who knows the whole
instance in advance can always find such an optimal schedule.

For this particular type of problem, worst-case optimization can be reduced to
nominal-case because there is one specific instance, namely the one where each
task terminates as late as possible, such that the performance of any scheduler on
this instance will be at least as bad as on any other instance. To obtain worst-case
optimality it is sufficient to find an optimal schedule for the worst instance, ex-
tract the start time for each task and stick to the schedule regardless of the actual
instance. The behavior of a static scheduler for our example, based on instance
(8, 4), is depicted in Figure 8-(b), and one can see that is is rather wasteful for
other instances. Intuitively we will prefer a smarter adaptive scheduler that reacts
to the evolution of the system and modifies its decisions according to additional
information revealed during execution. This is the essential difference between a
schedule (a plan, an open-loop controller) and a scheduling strategy (a reactive
plan, a closed-loop controller). The latter is a mechanism that observes the state of
the system (which tasks have terminated, which are executing) and decides accord-
ingly what to do. In the former, since there is no uncertainty, the scheduler knows
exactly what will be the state at every time instant and the strategy can be reduced
to a simple assignment of start times to tasks.

20

m1

m2

m4m3

m3

20

m3 m4

m3

19

m3

21

J1

J2

J2

J1

J1

J2

(4, 4)

(8, 2)

(8, 4) m2

m1

m1

m2

m4m3

m1

m2 m3

m1

m2

m3 m4

m3

m4m3

m1 m4

m2 m3

m3

21

21

21

(a) (b)

(8, 2)

(8, 4)

J2

J1

J2

J2

J1

J1

(4, 4)

m1

m1

m2

m3

19

m4m3

m3

m4

m3

m1 m4

m2 m3

m3

m2

21

21

m1

m2

m4m3

m3

m3m2

m1 m4m3

21

21

(c) (d)

Fig. 8. (a) Optimal schedules for three instances. For the first two the optimum is obtained
with J1

@ J2 on m3 while for the third — with J2
@ J1; (b) A static schedule based on the

worst instance (8, 4). It gives the same length for all instances; (c) The behavior of a hole
filling strategy based on instance (8, 4); (d) The equal performance of the two strategies on
instance (5, 4).

One of the simplest ways to be adaptive is the following. First we choose a nominal
instance d and find a schedule S which is optimal for that instance. Rather than
taking S “literally” as the function st, we extract from it only the qualitative in-
formation, namely the order in which conflicting tasks utilize each resource. In our
example the optimal schedule for the worst instance (8, 4) is associated with the
ordering J1

@ J2 on m3. Then, during execution, we start every task as soon as its
predecessors have terminated, provided that the ordering is not violated (a similar
strategy was used in (NY01) and probably elsewhere). As Figure 8-(c) shows, such
a strategy is better than the static schedule for instances such as (8, 2) where it takes
advantage of the earlier termination of the second task of J 1 and “shifts forward”
the start times of the two tasks that follow. On the other hand, instance (4, 4) can-
not benefit from the early termination of m2 because shifting m3 of J2 forward will
violate the J1

@ J2 ordering on m3.

Note that this “hole-filling” strategy is not restricted to the worst-case. One can use
any nominal instance and then shift tasks forward or backward in time as needed

21

while maintaining the order. On the other hand, a static schedule (at least when
interpreted as a function from time to actions) can only be based on the worst-case
— a schedule based on another nominal instance may assume a resource available
at some time point, while in reality that resource will be occupied.

While the hole filling strategy can be shown to be optimal for all those instances
whose optimal schedule has the same ordering as that for the nominal instance, it
is not good for instances such as (4, 4) where a more radical form of adaptiveness
is required. If we look at the optimal schedules for (8, 4) and (4, 4) (Figure 8-(a))
we see that in both of them the decision whether or not to give m3 to J2 is taken at
the same qualitative state where m1 is executing and m2 has terminated. The only
difference is in the elapsed execution time of m1 at the decision point. Hence an
adaptive scheduler should base its decisions also on such quantitative information
which, in the case of timed automaton models, is represented by clock values.

Consider the following approach: initially we find an optimal schedule for some
nominal instance. During execution, whenever a task terminates (before or after the
time it was assumed to) we reschedule the “residual” problem, assuming nominal
values for the tasks that have not yet terminated. In our example, we first build an
optimal schedule for (8, 4) and start executing it. If task m2 in J2 terminated after
4 time units we obtain the residual problem

J ′
1 = (m1,6), (m3, 4), (m4, 5) J ′

2 = (m3, 7)

where the boldface letters indicate that m1 must be scheduled immediately (it is
already executing and we assume no preemption). For this problem the optimal
solution will be to give m3 to J2. Likewise if m2 terminates at 8 we have

J ′
1 = (m1,2), (m3, 4), (m4, 5) J ′

2 = (m3, 7)

and the optimal schedule consists of waiting for the termination of m1 and then
giving m3 to J1. The property of the schedules obtained this way, is that at any
moment in the execution they are optimal with respect to the nominal assumption
concerning the future. 9

This approach involves a lot of online computation, namely solving a new schedul-
ing problem each time a task terminates. The alternative approach that we propose
is based on expressing the scheduling problem using timed automata and synthesiz-
ing a controller off-line. In this framework (AMPS98; AM99; AGP99) a strategy
is a function from states and clock valuations to controller actions (in this case
starting tasks). After computing such a strategy and representing it properly, the
execution of the schedule may proceed while keeping track of the state of the cor-
responding automaton. Whenever a task terminates, the optimal action is retrieved

9 A similar idea is used in model-predictive control where at each time actions at the
current “real” state are re-optimized while assuming some nominal prediction of the future.

22

from the strategy look-up table and the results are identical to those obtained via
online re-scheduling. 10 The major contribution of this paper is the formalization of
this intuition and the development and implementation of an algorithm for finding
adaptive schedulers that are optimal in this sense.

5.3 Problem Statement

Definition 8 (Uncertain Machine Scheduling)
An uncertain machine scheduling problem is J = (P,≺,M, µ,D, U) where P ,
≺, M and µ are as in Definition 1, D : P → Int(N) assigns an integer-bounded
interval to each task and U ⊆ P is a subset of immediate tasks consisting of some
≺-minimal elements.

The set U is typically empty in the initial definition of the problem and we need it
to define residual problems. We use Dl and Du to denote the projection of D on
the lower- and upper-bounds of the interval, respectively.

An instance of the environment is any function d : P → R+, such that d(p) ∈ D(p)
for every p ∈ P . The set of instances admits a natural partial-order relation: d ≤ d′

if d(p) ≤ d′(p) for every p ∈ P . Any environment instance induces naturally a
deterministic instance of J , denoted by J (d). The worst-case is defined by the
maximal instance d̂ where d̂(p) = Du(p) for every p.

A feasible schedule for an instance J (d) of the problem is characterized, as in
Definition 2, by a function st : P → R+ denoting the start time of each task,
satisfying the precedence and mutual exclusion constraint, as well as the additional
continuity constraint stating that st(p) = 0 for every p ∈ U .

In order to be adaptive we need a scheduling strategy, a rule that may induce a
different schedule for each d. However, this definition is not simple because we
need to restrict ourselves to causal strategies, strategies that can base their decisions
only on information available at the time they are made. In our case, the actual
value of d(p) is revealed only when p terminates.

Definition 9 (State of Schedule)
A state of a schedule S at time t is s = (P f , P a, κ, P e) such that P f is a downward-
closed subset of (P,≺) consisting of tasks that have terminated (those satisfying
en(p) ≤ t) , P a is a set of active tasks currently being executed (those satisfying
st(p) ≤ t < en(p)), κ : P a → R+ is a function such that κ(p) = t−st(p) indicates
the time elapsed since the activation of p and P e is the set of enabled tasks, those

10 Of course, there is a trade-off between what we gain by reducing online computation time
and what we pay in terms of offline computation time and in terms of the space needed to
store the strategy.

23

whose predecessors are in P f . The set of all possible states is denoted by S .

Definition 10 (Scheduling Strategy) A (state-based) scheduling strategy is a func-
tion σ : S → P ∪ {⊥} such that for every s = (P f , P a, c, P e), σ(s) ∈ P e ∪ {⊥}
and if σ(s) = p then µ(p) 6= µ(p′) for every p′ ∈ P a.

In other words, a strategy decides at each state whether to do nothing and wait for
the next event (⊥) or to start executing an enabled task which is not in conflict with
any active task. An operational definition of the interaction between a strategy and
an instance will be given later using timed automata, but intuitively one can see that
the evolution of the schedule consists of time passage interleaved with two types
of transitions: uncontrolled transitions where an active task p terminates after d(p)
time and moves from P a to P f (leading possibly to the insertion of new tasks to
P e) and a decision of the scheduler to start an enabled task. The combination of a
strategy and an instance yields a unique schedule S(d, σ) and we say that a state is
(d, σ)-reachable if it occurs in S(d, σ).

Remark: In certain types of games, the optimal strategy may be history-dependent,
that is, it will make different decisions at the same state depending on the path
through which it has been reached. However in games like those considered in the
paper where the cost function is additive, it can be shown that state-strategies (also
known as positional strategies in Game Theory) are sufficient for optimality.

Next we formalize the notion of a residual problem, namely a specification of what
remains to be done in an intermediate state of the execution. We use a −. b for
max{0, a − b} and [a, b] −. c for [a −. c, b −. c].

Definition 11 (Residual Problem) Let s = (P f , P a, κ, P e) be a state of a sched-
ule for the problem J = (P,M,≺, µ,D, U). The residual problem starting from s
is Js = (P − P f ,M,≺′, µ′, D′, P a) where ≺′ and µ′ are, respectively, the restric-
tions of ≺ and µ, to P − P f and D′ is constructed from D by letting

D′(p) =

{

D(p) −. κ(p) if p ∈ P a

D(p) otherwise

Likewise a residual instance ds is the instance d restricted to P − P f defined as

ds(p) =

{

d(p) −. κ(p) if p ∈ P a

d(p) otherwise

Let d be an instance. A strategy σ is d-future-optimal if for every instance d′ and
from every (σ, d′)-reachable state s, it produces the optimal schedule for the resid-
ual problem Js(ds). If we take d to be the maximal instance, this is exactly the
property of the online re-scheduling approach described informally in the previous
section.

24

6 Optimal Strategies for Timed Automata

In this section we show how the problem of finding d-future optimal strategies can
be formulated and solved algorithmically using timed automata. The algorithm will
be presented in two levels of abstraction. At the higher level, we present a dynamic
programming algorithm that computes iteratively a value function defined on the
state space of the timed automaton. This is the cost-to-go function denoting the
length of the shortest path to termination from each configuration. At the more
concrete level we explain how this function is represented and computed using
a slight modification of the standard backward reachability algorithm for timed
automata.

6.1 Modeling

The modeling of the problem with timed automata is similar to Definition 4 with
more attention paid to the distinction between controlled and uncontrolled transi-
tions. The automaton Ap

D of Figure 9 models all the possible (isolated) behaviors
of a task p with D(p) = [l, u]. The start transition is controlled and can be ini-
tiated by the scheduler any time, given that precedence constraints are met. The
end transition is initiated by the environment and can be taken within t ∈ [l, u]
time after start. This uncertainty is modeled using the staying condition c ≤ u
for state p and the transition guard c ≥ l. 11 Composing these automata, as in the
deterministic case, gives a global automaton AD, such that the set of its runs covers
all the schedules that are feasible under all possible combinations of strategies and
instances.

As a running example consider a simplified version of the example of Section 5
with only one uncertain duration:

J1 = (m1, 10), (m3, , 4), (m4, 5) J2 = (m2, [2, 8]), (m3, 7).

The automata for the example and their composition appear in Figure 10. The cor-
respondence between schedule states and reachable configurations is straightfor-
ward. Moreover, the residual problem associated with any state of the schedule is
represented by the sub-automaton rooted in the corresponding configuration.

The automaton can be viewed as specifying a game between the scheduler and the
environment. The environment can decide whether or not to take an end transition
and terminate an active task, and the scheduler can decide whether or not to take
some enabled start transition. A state-based strategy is a function that maps any

11 An elegant alternative to using staying condition could be to use timed automata with
deadlines (SY96) which are rich enough to express our scheduling problems.

25

φ1φ1/c := 0

c ≤ d

c ≥ d

p

p

p

A
p

d

φ1/c := 0

c ≤ u

p

p

p

c ≥ d

A
p

D,d

φ1/c := 0

c ≤ u

c ≥ l

p

p

p

A
p

D

p

p

p

λ

A
p

λ

startstart startstart

end endend end

Fig. 9. The generic automaton Ap
D for a task p such that D(p) = [l, u]. The automaton Ap

d

for a deterministic instance d. The automaton Ap
D,d for computing d-future optimal strate-

gies and the automaton Ap
λ for an exponentially distributed duration. Staying conditions for

p and p are true and are omitted from the figure.

configuration of the automaton either into one of its transition successors or to the
waiting “action”. For example, at (m1,m3) there is a choice between moving to
(m1,m3) by giving m3 to J2 or waiting until J1 terminates m1 and letting the
environment take the automaton to (m3,m3). Such decisions, as we shall see, may
depend also on clock values.

Let Σ be the set of starti transitions and let Σq denote those transitions that are
enabled at global state q of the automaton. A scheduling strategy is a partial func-
tion σ : Q × V → Σ ∪ {⊥} such that σ(q, v) ∈ Σq ∪ {⊥}, which is defined at
least for every state which is (d, σ)-reachable for some instance d. Let Vi(q) = {v :
σ(q, v) = starti} denote the clock values at which the strategy decides to start task
pi at q, and let V⊥(q) = {v : σ(q, v) = ⊥} be the values at which it decides to wait.
Synthesizing the strategy can be seen as eliminating from the automaton the non-
determinism on the scheduler side by restricting the guards and staying condition
such that at any configuration only one transition guard or staying condition holds.

Definition 12 (Strategy Automaton) Let AD be the automaton describing an un-
certain scheduling problem and let σ : Q × V → Σ ∪ {⊥} be a strategy. The au-
tomaton Aσ

D, obtained from AD by restricting the transition guards of every state q
to Vi(q) and intersecting the staying condition with V⊥(q).

Note that a-priori the sets Vi(q) and V⊥(q) could have complicated forms which go
outside the expressive power of timed automata, but as we shall see (and as was the
case in (MPS95; AM99)), for optimal strategies these sets can be expressed using
zones. A strategy σ is d-future optimal if from every configuration reachable in Aσ

D,
it gives the shortest path to the final state (assuming that the remaining uncontrolled
transitions are taken according to d). In the sequel we use a simplified form of the
definitions and the algorithm of (AM99) to find such strategies.

26

m3m2

m4m2

m1m2

fm2

m1m2

m1m2

m3m2

m1m2

m3m2

m4m2

m4m2

fm2

m1m2

m3m2

m1m3

m3m3

m3m3

m4m3

m4m3

m1m3

m1m3

m3m3

m4m3

fm3fm3

m1m3 m1f

m1f

m3f

m3f

m4f

m4f

ff

c2 ≥ 2

c2 ≥ 2

c2 ≥ 2

c2 ≥ 2

c2 ≥ 2

c2 ≥ 2

c2 ≥ 2

c1 := 0

c1 = 10

c1 := 0

c1 = 4

c1 := 0

c1 = 5

c1 := 0

c1 = 10

c1 := 0

c1 = 4

c1 := 0

c1 = 5

c1 := 0

c1 = 10

c1 := 0

c1 = 4

c1 := 0

c1 = 5

c1 := 0

c1 = 5

c1 = 10

c1 := 0c1 := 0

c2 := 0

c2 := 0

c2 := 0

c2 := 0

c2 := 0

c2 := 0

c2 := 0 c2 := 0

c2 := 0

c2 := 0

c2 := 0

c2 := 0

c2 := 0 c2 = 7

c2 = 7

c2 = 7

m4m3

c2 = 7

c2 = 7

c2 = 7

c1 = 10

c1 := 0

c1 = 4

c1 := 0

c1 = 5

c2 := 0 c2 := 0 c2 = 7c2 ≥ 2

m3 f

m1

m1

m3

m4

f

c1 = 10

c1 := 0

c1 := 0

c1 = 4

c1 := 0

c1 = 5

m3

m2 m3

m4

m2

c2 ≤ 8

c2 ≤ 8

c2 ≤ 8

c2 ≤ 8

c2 ≤ 8

c2 ≤ 8

c2 ≤ 8

c2 ≤ 8

Fig. 10. The global automaton for the job-shop specification. The automata on the left and
upper parts of the figure are those of the two jobs.

6.2 The Value Function and Abstract Algorithm

The particularity of d-future optimal strategies where the “current” state (where a
decision should be taken) could have been reached by any choice of duration by the
environment, while the decision at that state is based on assuming d for the future,
forces us to use a slightly modified automaton to do our computation. We will use
the automaton Ap

D,d of Figure 9 to model each task. It can terminate as soon as

27

c ≥ d but can stay in p until c = u. We denote by AD,d = (Q,C, I, ∆, s, f) the
automaton obtained by composing these automata.

The strategy is obtained as a side effect of computing the value function h : Q ×
V → R+ where h(q, v) is the length of the minimal run from (q, v) to f , assuming
that all uncontrolled future transitions will be taken according to d. This function
satisfies

h(q, v) = min{t + h(q′, v′) : (q, v)
t

−→ (q, v + t1)
0

−→ (q′, v′)}

In other words, to compute h(q, v) we should compare all the possibilities to stay
some time t in q and then take a transition to some (q ′, v′). The Bellman principle
guarantees that the value associated with such possibility is the sum of t plus the
value of (q′, v′). Note that h can be written as

h(q, v) = min{hδ(q, v), h⊥(q, v)}

where
hδ(q, v) = min{h(q′, v′) : (q, v 0

−→ (q′, v′)}

is the value achieved by taking the best enabled transition immediately (non-laziness),
and

h⊥(q, v) = t + h(q′, v′)

is the value associated with waiting, where t is the minimal distance from v to a
guard of an uncontrolled transition to (q′, v′) while assuming instance d (recall that
the guards in the automaton on which the computation is performed are of the form
c ≥ d).

To understand how this works in our case consider a configuration (q0, v0) =
(p1, p2, p3, p4, v1, v2,⊥,⊥) where two tasks are executing and two tasks are waiting
(see Figure 11). Among the two uncontrolled end transitions only one can be taken,
namely end1 if d1 − v1 < d2 − v2 or end2 otherwise. 12 Suppose that the first case
holds, and let t = d1−v1. The other transitions can be taken anytime between 0 and
t but the non-laziness result, which still holds because we assume a deterministic
d-future, tells us that if we take them, we should take them immediately. Hence
in this case we have h(q0, v0) = min{d1 − v1 + h(q1, v1), h(q3, v3), h(q4, v4)}. In
another configuration where d1−v1 > d2−v2 we should replace d1−v1+h(q1, v1)
by d2−v2+h(q2, v2). Note that h should be defined also for clock valuations where
vi > di but still less than ui.

The abstract algorithm for computing h works iteratively by letting

h0(q, v) =

{

0 if q = f

∞ otherwise

12 We ignore here the case of equality when two uncontrolled transitions are enabled at
exactly the same time. The special structure of our automata guarantees that such transitions
commute anyway.

28

q3, v3 q4, v4q2, v2

q0, v0

q1, v1

end1

c2 ≥ d2

end2

c3 := 0

start3

c4 := 0

start4

c1 ≥ d1

Fig. 11. Computing the value function.

and then

hk+1(q, v) = min({hk(q, v)}∪{t+hk(q
′, v′) : (q, v)

t
−→ (q, v+ t1)

0
−→ (q′, v′)}),

until hk+1 = hk. The correctness of this procedure for the more general case of
arbitrary timed automata has been proved in (AM99). The proof is based on show-
ing that hk(q, v) is the length of the shortest path (among those that have not more
than k transitions) from (q, v) to termination, and that the hk’s range over a class
of “nice” functions closely related to the zones used in the verification of timed au-
tomata. This class is well-founded and hence the computation of h terminates even
for cyclic automata, a fact that we do not need here as h is computed in one sweep
through all acyclic paths from the final to the initial state. Note that all such paths
have the same number of transitions.

After having computed h, the extraction of a strategy is straightforward: if the op-
timum of h at (q, v) is obtained via a controlled starti transition we let σ(q, v) =
starti, otherwise we let σ(q, v) = ⊥. In case when the optimum is obtained via
more than one continuation we can define some “tie breaking” rules which pre-
fer, say, waiting over action, and start the task with the least index when there are
several candidates.

Before presenting the more concrete version of the algorithm let us illustrate the
computation of h on our example. We start with

h(f, f,⊥,⊥) = 0

h(m4, f, v1,⊥) = 5 −. v1

h(f,m3,⊥, v2) = 7 −. v2,

because the time to reach (f, f) from (m4, f) is the time it takes to satisfy the guard
c1 = 5, etc. The value of h at (m4,m3) depends on the values of both clocks which
determine which of m3, m4 will terminate first and whether the shorter path goes

29

via (m4, f) or (f,m3).

h(m4,m3, v1, v2) = min

{

7 −. v2 + h(m4, f, v1 + 7 −. v2,⊥),

5 −. v1 + h(f,m3,⊥, v2 + 5 −. v1)

}

= min{5 −. v1, 7 −. v2}

=

{

5 −. v1 if v2 −
. v1 ≥ 2

7 −. v2 if v2 −
. v1 ≤ 2

Note that the corresponding transitions are both uncontrolled end transitions and
no decision of the scheduler is required in this state.

This procedure goes higher and higher in the graph, computing h for the whole
reachable state-space Q × V . In particular, for state (m1,m3) where we need to
decide whether to give m3 to J2 or to wait, we obtain:

h(m1,m3, v1,⊥) = min{16, 21 −. v1}

=

{

16 if v1 ≤ 5

21 −. v1 if v1 ≥ 5

As for the strategy, one can see that at (m1,m3) the optimal result is obtained by
giving m3 immediately to J2 and moving to (m1,m3) when v1 ≤ 5 or by waiting to
the termination of m1, reaching (m3,m3) and then moving to (m3,m3) if v1 ≥ 5.
Note that if we assume that J1 and J2 started their first tasks simultaneously, the
value of c1 upon entering (m1,m3) is exactly the duration of m2 in the instance.
Figure 8-(d) shows that, indeed, the two choices coincide in performance when
v1 = 5.

6.3 The Concrete Algorithm

We now describe how h is computed using a standard backward reachability algo-
rithm that works on sets, not on functions. Let Θ be an upper bound on the length
of the worst-case optimal schedule, for example the sum of the maximal durations
of all tasks. Instead of computing h directly we compute the set

R = {(q, v, t) : Θ − t ≥ h(q, v) ∧ t ≥ 0}.

Note, that R contains exactly the same information as h and, in particular, h can be
reconstructed from R:

h(q, v) = min{Θ − t : (q, v, t) ∈ R}

30

Moreover, since h(q, v) ≤ Θ for any (q, v) which is forward reachable in AD, any
such (q, v) is a projection of some point (q, v, t) ∈ R. Consequently, computing R
amounts to computing the strategy for every reachable configuration.

From the definitions of h and R, a triple (q, v, t) belongs to R iff one can reach
the final state (f,⊥) of the automaton from (q, v) within Θ − t time, assuming
instance d for all tasks that have not terminated in (q, v). Hence the set R can be
characterized in terms of reachability as follows. Let A′

D,d be the auxiliary automa-
ton obtained by augmenting AD,d with a clock T which is never reset to zero (as
in Section 4) and by adding the constraint T < Θ to the staying condition of every
state (to avoid divergence of T). The following result gives a useful characterization
of R.

Lemma 1 A configuration (q, v, t) ∈ R iff the state (f,⊥, Θ)) is reachable from
(q, v, t) in A′

D,d.

Proof: If there is a run in A′
D,d, from (q, v, t) to (f,⊥, Θ), then, by the definition of

the auxiliary clock T , this run is of duration Θ − t and (q, v, t) ∈ R. Conversely, if
(q, v, t) ∈ R, then there exists t′ ≥ t and a run of A′

D,d from (q, v, t′) to (f, ,⊥, Θ)
of duration Θ− t′. By subtracting (t′− t) from T on both sides of the run we obtain
a run from (q, v, t) to (f,⊥, Θ−(t′− t)) which can be extended, via idling for t′− t
time in f , into a run of length Θ − t. 2

Hence, the set R can be obtained by the standard backward reachability algorithm
for timed automata, and has a form of a finite union of zones. For completeness we
instantiate the backward reachability algorithm for this case.

We recall some commonly-used definitions in the verification of timed automata
(HNSY94). A zone is a subset of V consisting of points satisfying a conjunction
of inequalities of the form ci − cj ≥ k or ci ≥ k. A symbolic state is a pair (q, Z)
where q is a discrete state and Z is a zone. It denotes the set of configurations
{(q, v) : v ∈ Z}. Zones and symbolic states are closed under various operations
including the following:

• The time predecessors of (q, Z) is the set of configurations from which (q, Z)
can be reached by letting time progress:

Pret(q, Z) = {(q, v) : v + r1 ∈ Z, r ≥ 0}.

• The δ-transition predecessor of (q, Z) is the set of configurations from which
(q, Z) is reachable by taking the transition δ = (q′, φ, ρ, q) ∈ ∆:

Preδ(q, Z) = {(q′, v′) : v′ ∈ Reset−1
ρ (Z) ∩ φ ∩ Iq′}.

• The predecessors of (q, Z) is the set of all configuration from which (q, Z) is

31

reachable by any transition δ followed by passage of time:

Pre(q, Z) =
⋃

δ∈∆

Preδ(Pret(q, Z)).

The result can be represented as a set of symbolic states.

Algorithm 2 is based on the standard backward reachability algorithm for timed
automata. It starts with the final state of A′ (with T = Θ) in a waiting list and
outputs the set R of all backward-reachable symbolic states. In order to be able to
extract strategies we store tuples of the form (q, Z, q′) such that Z is a zone of A′

and q′ is the successor of q from which (q, Z) was reached backwards.

Algorithm 2 (Backward Reachability for Timed Automata)
Waiting:={(f, {(⊥, Θ)}, ∅)};
Explored:=∅;
while Waiting 6= ∅ do
Pick (q, Z, q′′) ∈ Waiting;
For every (q′, Z ′) ∈ Pre(q, Z);

Insert (q′, Z ′, q) into Waiting;
Move (q, Z, q′′) from Waiting to Explored

end
E:=Explored

The backward reachable set of states R is related to the set of triples E as follows:

(q, v, t) ∈ R ⇔ ∃Z, q′ : (v, t) ∈ Z ∧ (q, Z, q′) ∈ E.

For implementing the strategy it is convenient to use the set of triples E. Whenever
a transition to (q, v) is taken during the execution we look at all the symbolic states
with discrete state q and find by which tuple (q, Z, q′) the minimum

h(q, v) = min{Θ − t : (v, t) ∈ Z ∧ (q, Z, q′) ∈ E}

is obtained. If q′ is a successor via a controlled transition, we move to q ′, otherwise
we wait until a task terminates and an uncontrolled transition is taken. Non-laziness
guarantees that we need not revise a decision to wait until the next transition. This
concludes the major contribution of this paper, an algorithm for computing d-future
optimal strategies for the problem of job-shop scheduling under uncertainty.

Result 1 (Computing d-future Optimal Strategies) The problem of finding d-
future optimal strategies for job-shop scheduling problem under uncertainty is solv-
able using timed automata reachability algorithms.

32

6.4 Experimental Results

We have implemented Algorithm 2 using the zone library of Kronos/If (BDM+98;
BGM02), as well as the hole-filling strategy.As a benchmark we took the following
problem with 4 jobs and 6 machines:

J1 : (m2, 34), (m4, [21, 54]), (m3, 74), (m5, [6, 26]), (m1, 5)(m6, 43)

J2 : (m2, 24), (m5, [13, 28]), (m1, 53), (m3, 8), (m6, [16, 23]), (m4, 45)

J3 : (m6, [35, 75]), (m5, 14), (m3, [8, 15]), (m1, 31), (m2, 24), (m4, 6)

J4 : (m1, [12, 42]), (m3, [25, 32]), (m6, 15), (m4, 42), (m5, 62), (m2, 18)

The static worst-case optimal schedule for this problem is 268. We have applied
Algorithm 1 to find d-future optimal strategies based on two instances that corre-
spond, respectively, to “optimistic” and “pessimistic” predictions. For every p such
that D(p) = [l, u] they are defined as dmin(p) = l and dmax(p) = u. In addi-
tion we have synthesized a hole-filling strategy based on these two instances. We
have generated 100 random instances with task durations drawn uniformly from
each [l, u] interval, and compared the results of the abovementioned strategies with
an optimal clairvoyant scheduler 13 that knows d in advance, and with the static
worst-case scheduler. It turns out that the static schedule is, in the average, longer
than the optimum by 12.54%. The hole filling strategy deviates from the optimum
by 4.90% (for optimistic prediction) and 4.44% (for pessimistic prediction). Our
strategy produces schedules that are longer than the optimum by 1.40% and 1.14%,
respectively.

Having demonstrated that adaptive strategies can lead to more efficient schedules,
the question of scaling-up the results to larger problems remains. Currently the
computation of a strategy for the 4 × 6 example takes around 10 minutes and there
is not much hope to go significantly beyond this size using exhaustive backward
reachability. 14 For the deterministic case, we have shown that much larger prob-
lems can be solved using forward reachability algorithms that do not use zones and
that can employ intelligent search strategies combined with heuristics to prune the
search space. Apparently this is not the case for uncertain problems where exhaus-
tive backward computations on zones seems unavoidable. The reason is that, unlike
deterministic problems where the scheduler alone determines the set of reachable
states, under uncertainty the environment can lead the automaton to a large portion
of the discrete state-space and to uncountably-many clock valuations. The strat-
egy needs to be defined for all of them. As one can see from the results, the more

13 In the domain of online algorithms it is common to compare the performance of algo-
rithms that receive their inputs progressively to a clairvoyant algorithm and the relation
between their performances is called the competitive ratio of the algorithm.
14 The computation of the strategy for exponential distribution described in the next section
is much faster because it involves no clocks and zones, but it is subject to the same type of
state explosion.

33

 220

 225

 230

 235

 240

 245

 250

 255

 260

 265

 270

 220 225 230 235 240 245 250 255 260 265 270

H
(m

in
)

Optimum

 220

 225

 230

 235

 240

 245

 250

 255

 260

 265

 270

 220 225 230 235 240 245 250 255 260 265 270

H
(m

ax
)

Optimum

 220

 225

 230

 235

 240

 245

 250

 255

 260

 265

 270

 220 225 230 235 240 245 250 255 260 265 270

S
(m

in
)

Optimum

 220

 225

 230

 235

 240

 245

 250

 255

 260

 265

 270

 220 225 230 235 240 245 250 255 260 265 270

S
(m

ax
)

Optimum

Fig. 12. The quality of schedules produced by the hole-filling (H) strategy and the d-future
optimal strategy (S) using optimistic and pessimistic predictions. Each instance is drawn as
a point (x, y) on the plane with x indicating the length of the optimal schedule and y — the
length of the schedule produced by the corresponding strategy.

conservative and sub-optimal hole-filling strategy produces reasonable schedules
with much more modest computation — it just computes the optimal strategy for a
deterministic problem and can do it for significantly larger systems.

34

7 Probabilistic Uncertainty

In this section we describe briefly how optimal scheduling under probabilistic tem-
poral uncertainty can be formulated and solved using similar techniques. We as-
sume uncertainties in task durations to be exponentially distributed, that is, we as-
sociate with each task a parameter λ such that its duration d is a random variable
satisfying

P (d ≥ T) = e−λT .

A scheduling problem with n tasks defines a probability distribution over the space
of instances R

n
+. A scheduling strategy is, as before, a mechanism for deciding at

every point in time whether to start an enabled task or to wait. A strategy together
with an instance determines the length of the obtained schedule and we look for a
strategy that minimizes the expected value (over all instances) of this length.

The automaton Aλ for modeling a task appears in Figure 9. It is a mixture of a
non-deterministic automaton and a continuous time Markov chain. The decision
when to make the transition from p to p is to be made by the scheduler and is not
probabilistically distributed. Hence, before the construction of the scheduler we
cannot assign probabilities to the runs of the automaton, which are of the form

p
r

−→ p
0

−→ p
d

−→ p
0

−→ p
∞
−→

where r is the time chosen by the scheduler to wait before starting p. The product
automaton obtained for the scheduling problem has the same discrete structure as
for the deterministic or non-deterministic versions, with the λ-labelled end transi-
tion interpreted probabilistically. For the scheduler to decide in each state whether
to start a task or to wait, it has to compare the costs of active actions with that of
waiting. There are two major differences compared to the non-deterministic case:

(1) The exponential distribution is memoryless, which means that the probability
that an end transition is taken at a given state does not depend on the time
already spent in this state. 15 Hence an optimal strategy depends only on dis-
crete states and does not need clocks.

(2) If the scheduler decides to wait in a state where two or more tasks are active,
the identity of the task that will terminate first as well as its duration are de-
fined probabilistically (this is called “race analysis” in the Markovian jargon).

The optimal strategy is found by a variant of value iteration with a function h :
Q → R+ be a function such that h(q) is the best achievable expected time from
q to the final state f . By definition, h(f) = 0 and its value for the other states is
computed backwards as follows.

15 This property is a source for both the analytic simplicity of this distribution as well as its
modest relevance to certain real-world situations.

35

Let q be a state having k outgoing end transitions leading to states q1, . . . , qk with
parameters λ1, . . . , λk, respectively, and l outgoing start transitions leading to
states q′1, . . . , q

′
l, respectively. As before h can be written as

h(q) = min{hδ(q), h⊥(q)}

where hδ(q) is the value of immediate action which is min{h(q′1), . . . h(q′l)} and
h⊥, the value of waiting is given by

h⊥(q) = d +
k

∑

j=1

γj · h(qj)

where d is the expected duration (over all instances) of staying in q and γj is the
probability that the transition to qj will win the race. These are computed as:

d = 1
∑k

a=1
λa

and γj =
λj

∑k

a=1
λa

.

This solves to optimal scheduling to this (unexplored, to the best of our knowledge)
class of continuous-time Markov decision processes.

8 Related Work

This work can be viewed in the context of extending verification methodology in
two orthogonal directions: from verification to synthesis and from qualitative to
quantitative evaluation of behaviors. In verification we check the existence of cer-
tain paths in a given automaton, while in synthesis we have an automaton in which
not all design choices have been made and we can remove controlled transitions
(and hence make the necessary choices) so that a property is satisfied. If we add
a quantitative dimension (in this case, the length or cost of the run), verification is
transformed to the evaluation of the worst performance measure over all paths, and
synthesis into the restriction of the automaton to one or more optimal paths.

The idea of applying synthesis to timed automata was first explored by Wong-Toi
and Hoffmann (WH92) who proved decidability of controller synthesis for timed
automata. An algorithm for safety controller synthesis for timed automata, based
on operation on zones was first reported in (MPS95) and later in (AMP95), where
an example of a simple scheduler was given. This algorithm is a generalization
of the verification algorithm for timed automata (HNSY94; ACD93) used in Kro-
nos (Y97; BDM+98). In these and other works on treating scheduling problems
as synthesis problems for timed automata, such as (AGP99), the emphasis was on
yes/no properties, such as the existence of a feasible schedule, respecting additional
constraints such as deadlines, in the presence of an uncontrolled adversary.

36

A transition toward quantitative evaluation criteria was made already in (CY91)
where timed automata were used to compute bounds on delays in real-time systems
and in (CCM+94) where variants of shortest-path problems were solved on a timed
model much weaker than timed automata. To our knowledge, the first quantitative
synthesis work on timed automata was (AM99) in which the following problem
has been shown to be decidable: “given a timed automaton with both controlled
and uncontrolled transitions, restrict the automaton in a way that from each con-
figuration the worst-case time to reach a target state is minimal”. The result of
(AM99), achieved using value iteration on h, is very general but has never been
implemented. Our algorithm for scheduling under uncertainty can be seen as an
instantiation of this algorithm for a special class of timed automata that model
scheduling problems.

Around the same time, in the framework of the VHS (Verification of Hybrid Sys-
tems) project, a simplified model of a steel plant was presented as a case-study
(BS99). The model had more features than the job-shop scheduling problem such as
upper-bounds on the time between steps, transportation problems, etc. A. Fehnker
proposed a timed automaton model of this plant from which feasible schedules
could be extracted (F99). This work inspired us to find a systematic connection be-
tween classical scheduling problems and timed automata (M99), upon which this
work is based. Another work in this direction was concerned with another VHS
case-study, a cyclic experimental batch plant at Dortmund for which an optimal
dynamic scheduler was derived in (NY01).

The idea of using heuristic search is useful not only for shortest-path problems
but for verification of timed automata (and verification in general) where some
evaluation function can guide the search toward the target state. The possibility
of guiding the search for optimal paths in timed automata was first investigated
in (BFH+01a) where it was applied to several classes of examples, including the
job-shop problems.

In (NTY00) it was shown that in order to find shortest paths in a timed automaton,
it is sufficient to look at acyclic sequences of symbolic states (a fact that we do
not need due to the acyclicity of job-shop automata) and an algorithms based on
forward reachability was introduced. A recent generalization of the shortest path
problem was investigated by (BFH+01b) and (ATP01). In this model there is a
different price for staying in any state and the total cost associated with run evolves
in different rates along the path. It has been proved that the problem of finding
the path with the minimal cost is computable. In (AM02) the results of Section 4
were generalized to scheduling with preemption, while in (AKM03) the case of
precedence constraints that do not decompose into chains was treated. Yet another
recent application of timed automata to scheduling can be found in (FPY02) were
the question of schedulability of preemptible non-periodic tasks under deadline
constraints is addressed.

37

Let us mention briefly some work on scheduling under uncertainty which is not
based on automata. Interested readers may consult the recent survey (DB00). The
fact that uncertainty may arise due to various sources (machine breakdown, un-
expected arrival of new orders, modification of existing orders) is well-known to
practitioners but the number of scientific publications devoted to this problem is
relatively small (and most of them have the flavor of AI planning rather than Oper-
ations Research). In (H94) it is observed that a schedule which is determined to be
optimal prior to its execution is optimal only to the degree that the real world be-
haves as expected during execution and that a new model of scheduling is needed.
In a study of the job shop problem (MSB98) the authors claim that the dynamic
characteristics of some real-world scheduling environment render the bulk of exist-
ing solution approaches unusable when applied to practical problems. In this paper
the authors criticize existing job-shop scheduling research by saying: “The static
problem definition is so far removed from job-shop reality that perhaps a different
name for the research should be considered.”

Most of the research dealing with uncertainty has been carried out within the last
few years and the main focus was about the existence of feasible schedules satis-
fying some constraints rather than on optimization. It is clear that some notion of
schedule robustness is needed in order to assess solutions that have to cope with
uncertainty but there is no agreement on the formal definition of this robustness.
In general there are two approaches to deal with uncertainty: pro-active and reac-
tive scheduling. Pro-active techniques create robust schedules that do not need to
be modified during the execution while reactive scheduling involves a revision of
the schedule when an unexpected event occurs. We mention briefly a pro-active
technique (redundancy-based) and a reactive one (contingent scheduling).

Redundancy-based techniques account for uncertainty by inserting some form of
redundancy, typically extra time or additional backup resources, into the schedule
so that unexpected events during execution can be dealt with. Examples of such
methods are fault tolerant real time scheduling (GMM95; G96), slack-based pro-
tection (LW94) and temporal protection (CF90; G95). These techniques are close
in spirit to the static worst-case strategy we have described.

Contingent scheduling techniques attempt to anticipate disruptive events and gen-
erate multiple schedules (or schedule fragments) which respond to these events.
This is all done a priori so that at execution time a set of schedules is available
and the scheduler can switch between them as events occur. This technique was
applied in (DBS94) to solve the telescope observation problem, a one machine
problem where activities have uncertain durations, and these uncertainties can lead
to schedule breakage. This approach can be viewed as an ad hoc version of strategy
synthesis and its extension to systems with multiple resources suffers from combi-
natorial explosion.

Another popular approach for treating planning under uncertainty is to model the

38

scheduling problem as a (discrete time) Markov decision process, and synthesize
an average-case optimal strategy, see (BDH99) for a survey. While this approach is
natural for representing discrete uncertainty (for example, a machine breaks down
with some probability) it is not yet clear how the apply it effectively to temporal
uncertainty and how to cope with state explosion in general.

9 Conclusions and Future Work

We have suggested a novel application of timed automata, namely for solving op-
timal job-shop scheduling problems. We believe that the insight gained from this
point of view will contribute both to scheduling and to the study of timed automata.
We have demonstrated that the performance of automaton-based methods is not in-
ferior to other methods developed within the last three decades and have shown
how they can be used to synthesize adaptive scheduling strategies for problem with
uncertain task durations.

Future research should extend the model toward more complex situations includ-
ing cyclic tasks, uncertainty in task arrival times, non-monotonic timing constraints
and logical dependencies among tasks. On the algorithmic side, an adaptation of
forward search algorithms on game graphs to timed automata may lead to more ef-
ficient algorithms for scheduling under uncertainty. Yet another interesting question
is how to adapt this theory to resource-bounded schedulers which have to control
a fast environment without access to huge tables and with a restricted utilization of
clocks.

Acknowledgment: We are grateful to Marius Bozga for his valuable help in the im-
plementation of the algorithms. This work benefitted from interactions with other
members of Veriamg and partners in the VHS and AMETIST projects, in partic-
ular Kim Larsen, Peter Niebert, Stavros Tripakis, Sergio Yovine, Joseph Sifakis,
Ed Brinksma and Sebastian Engell. Comments by anonymous referees improved
significantly the rigor of this paper.

References

[A02] Y. Abdedadı̈m, Scheduling with Timed Automata, PhD Thesis, INPG,
Grenoble, 2002.

[AAM03] Y. Abdeddaı̈m, E. Asarin and O. Maler, On Optimal Scheduling under
Uncertainty, Proc. TACAS’03, 240-255, LNCS 2619, Springer, 2003.

[AKM03] Y. Abdedadı̈m, A. Kerbaa and O. Maler, Task Graph Scheduling us-
ing Timed Automata, Proc. FMPPTA’03, 2003.

[AM01] Y. Abdedadı̈m and O. Maler, Job-Shop Schedusling using Timed Au-
tomata, Proc. CAV’01, 478-492, LNCS 2102, Springer 2001.

39

[AM02] Y. Abdeddaı̈m and O. Maler, Preemptive Job-Shop Scheduling us-
ing Stopwatch Automata, Proc. TACAS’02, 113-126, LNCS 2280,
Springer, 2002.

[AGP99] K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S. Tripakis and
S. Yovine, A Framework for Scheduler Synthesis, Proc. RTSS’99,
154-163, IEEE, 1999.

[ACH97] R. Alur, C. Courcoubetis and T.A. Henzinger, Computing Accumu-
lated Delays in Real-time Systems, Formal Methods in System Design
11, 137-155, 1997.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill, Model Checking in Dense
Real Time, Information and Computation 104, 2-34, 1993.

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical
Computer Science 126, 183-235, 1994.

[ATP01] R. Alur, S. La Torre and G.J. Pappas, Optimal Paths in Weighted
Timed Automata, Proc. HSCC’01, 49-64, LNCS 2034, Springer
2001.

[AM99] E. Asarin and O. Maler, As Soon as Possible: Time Optimal Control
for Timed Automata, Proc. HSCC’99, 19-30, LNCS 1569, Springer,
1999.

[AMP95] E. Asarin, O. Maler and A. Pnueli, Symbolic Controller Synthesis for
Discrete and Timed Systems, Hybrid Systems II, 1-20, LNCS 999,
Springer, 1995.

[AMPS98] E. Asarin, O. Maler, A. Pnueli and J. Sifakis, Controller Synthesis for
Timed Automata, Proc. IFAC Symposium on System Structure and
Control, 469-474, Elsevier, 1998.

[BDH99] C. Boutilier, T. Dean, and S. Hanks, Decision-theoretic Planning:
Structural Assumptions and Computational Leverage, Journal of Ar-
tificial Intelligence Research 11, 1-94, 1999.

[BFH+01a] G. Behrmann, A. Fehnker T.S. Hune, K.G. Larsen, P. Pettersson and
J. Romijn, Efficient Guiding Towards Cost-Optimality in UPPAAL,
Proc. TACAS’01, 174-188, LNCS 2031, Springer, 2001.

[BFH+01b] G. Behrmann, A. Fehnker T.S. Hune, K.G. Larsen, P. Pettersson,
J. Romijn and F.W. Vaandrager, Minimum-Cost Reachability for
Linearly Priced Timed Automata, Proc. HSCC’01, 147-161, LNCS
2034, Springer 2001.

[BD91] B. Berthomieu and M. Diaz, Modeling and Verification of Time De-
pendent Systems using Time Petri Nets, IEEE Trans. on Software
Engineering 17, 259-273, 1991.

[BS99] R. Boel and G. Stremersch, VHS case study 5: Modelling and Verifi-
cation of Scheduling for Steel Plant at SIDMAR, Draft, 1999.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine,
Kronos: a Model-Checking Tool for Real-Time Systems, Proc.
CAV’98, LNCS 1427, Springer, 1998.

[BGM02] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation Environment
for Component-Based Real-Time Systems, Proc. CAV’02, LNCS

40

2404, Springer, 2002.
[CCM+94] S Campos, E. Clarke, W. Marrero, M. Minea and H. Hiraishi, Com-

puting Quantitative Characteristics of Finite-state Real-time Systems,
Proc. RTSS’94, IEEE, 1994.

[CF90] W.Y. Chiang and M.S. Fox, Protection Against Uncertainty in a De-
terministic Dchedule, Proc. 4th Int. Conf. on Expert Systems and
Leading Edge in Production and Operations Management, 184-197,
1990.

[CY91] C. Courcoubetis and M. Yannakakis, Minimum and Maximum Delay
Problems in Real-time Systems, Proc. CAV’91, 399-409, LNCS 575,
Springer, 1991.

[DB00] A.J. Davenport and J.Ch. Beck, Managing Uncertainty in Schedul-
ing: A Survey, Preprint, 2000.

[DY96] C. Daws and S. Yovine, Reducing the Number of Clock Variables of
Timed Automata, Proc. RTSS’96, 73-81, IEEE, 1996.

[DBS94] M. Drummond, J. Bresina, and K. Swanson, Just-in-case Scheduling,
Proc. AAAI-94, 1994.

[F99] A. Fehnker, Scheduling a Steel Plant with Timed Automata, Proc.
RTCSA’99, 1999.

[FPY02] E. Fersman, P. Pettersson and W. Yi Timed Automata with
Asynchrounous Processes: Schedulability and Decidability, Proc.
TACAS’02, 67-82, LNCS 2280, Springer, 2002.

[FT63] H. Fisher, and G.L. Thompson, Probabilistic Learning Combinations
of Local Job-Shop Scheduling Rules, in J.F. Muth, and G.L Thomp-
son (Eds), Industrial Scheduling, 225-251, Prentice Hall, 1963.

[G95] H. Gao, Building Robust Schedules using Temporal Protection, Mas-
ter’s thesis, Department of Industrial Engineering, University of
Toronto, 1995.

[G96] S. Ghosh, Guanranteeing Fault-Tolerance through Scheduling in
Real-Time Systems, PhD thesis, University of Pittsburgh, 1996.

[GMM95] S. Ghosh, R. Melhem, and D. Mosse, Enhancing Real-time Schedules
to Tolerate Transient Faults, Proc. RTSS’95, 120-129, 1995.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic
Model-checking for Real-time Systems, Information and Compu-
tation 111, 193–244, 1994.

[H94] D.W. Hildum, Flexibility in a Knowledge-based System for Solv-
ing Dynamic Resource Constrained Scheduling Problems, PhD the-
sis, Departement of Computer Science, University of Massachusetts,
1994.

[JM99] A.S. Jain and S. Meeran, Deterministic Job-Shop Scheduling: Past,
Present and Future, European Journal of Operational Research 113,
390-434, 1999.

[LPY97] K.G. Larsen, P. Pettersson and W. Yi, UPPAAL in a Nutshell, Soft-
ware Tools for Technology Transfer 1/2, 1997.

[LW94] V.J. Leon and S.D. Wu and R.H. Storer, Robustness Measures and

41

Robust Scheduling for Job Shops, IIE Transactions 26, 32-43, 1994.
[M99] O. Maler, On the Problem of Task Scheduling, Draft, February 1999.
[M04] O. Maler, On optimal and Sub-optimal Control in the Presence of

Adversaries, Proc. WODES’04 (to appear), 2004.
[MPS95] O. Maler, A. Pnueli and J. Sifakis. On the Synthesis of Discrete Con-

trollers for Timed Systems, Proc. STACS’95, 229-242, LNCS 900,
Springer, 1995.

[MSB98] K.N. McKay, F.R Safayeni, and J.A. Buzacott, Job-shop Scheduling
Theory: What is Relevant?, Interfaces 18, 84-90, 1998.

[NTY00] P. Niebert, S. Tripakis and S. Yovine, Minimum-Time Reachability
for Timed Automata, IEEE Mediteranean Control Conference, 2000.

[NY01] P. Niebert and S. Yovine, Computing Optimal Operation Schemes for
Chemical Plants in Multi-batch Mode, European Journal of Control
7, 440-453, 2001.

[SY96] J. Sifakis and S. Yovine, Compositional Specification of Timed Sys-
tems, Proc. STACS’96, 347-359, LNCS 1046, Springer, 1996.

[WH92] H. Wong-Toi and G. Hoffmann, The Control of Dense Real-Time
Discrete Event Systems, Technical report STAN-CS-92-1411, Stan-
ford University, 1992.

[Y97] S. Yovine, Kronos: A Verification Tool for Real-time Systems, Int. J.
of Software Tools for Technology Transfer 1, 1997.

42

