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Abstract� The paper shows that� by an appropriate choice of a rich as�
sertional language� it is possible to extend the utility of symbolic model
checking beyond the realm of bdd�represented �nite�state systems into the
domain of in�nite�state systems� leading to a powerful technique for uniform
veri�cation of unbounded �parameterized� process networks�
The main contributions of the paper are a formulation of a general framework
for symbolic model checking of in�nite�state systems� a demonstration that
many individual examples of uniformly veri�ed parameterized designs that
appear in the literature are special cases of our general approach� verifying
the correctness of the Futurebus� design for all single�bus con�gurations�
extending the technique to tree architectures� and establishing that the pre�
sented method is a precise dual to the top�down invariant generation method
used in deductive veri�cation�

� Introduction

The problem of uniform veri�cation of parameterized systems is one of the most
thoroughly researched problems in computer�aided veri�cation� The problem seems
particularly elusive for systems that consist of regularly connected �nite�state pro�
cesses �a process network�� Such a system can be veri�ed for any given con�guration�
but this does not provide a conclusive evidence for the question of uniform veri��

cation� i�e�� showing that the system is correct for all possible con�gurations�
We have had a recent experience with the Futurebus� system� which has been

veri�ed for many con�gurations in 	CGH�
�� � Using the tlv system 	PS
�� we
were able to analyze additional �and larger� con�gurations and detected a bug
that escaped the previous veri�cation e�orts� Having corrected the bug� all of the
con�gurations we have been able to check� veri�ed correctly� However� the question
of whether the Futurebus� protocol in its last version contains another lurking bug�
which makes its appearance only in a con�guration much larger than anyone was
able to check� still remains unresolved� One of our main motivations in the research
reported in this paper is to develop a method by which uniform veri�cation of
parameterized designs such as the Futurebus� can be algorithmically performed�

Many methods have been proposed for the uniform veri�cation of parameter�
ized systems� These include explicit induction �	EN
��� 	SG
���� network invariants�
which can be viewed as implicit induction �	KM�
�� 	WL�
�� 	HLR
��� 	LHR
����
methods that can be viewed as abstraction and approximation of network invariants
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�	BCG��� 	SG�
�� 	CGJ
���� and other methods which can be viewed as based on
abstraction �	ID
�� 	EN
���

In this methodologically simplistic paper� we go back to basics and claim that�
with an appropriate choice of an expressive but decidable assertional language� the
good old paradigm of symbolic model checking is adequate for uniform veri�cation
of parameterized systems� The paper demonstrates this claim by studying in detail
symbolic model checking with the assertional languages of regular sets and tree
regular sets� For the case of regular sets of strings� we show that many of the
examples previously veri�ed using specialized representations or additional theories�
such as the examples considered in 	CGJ
��� 	ID
�� and 	EN
�� can be solved by
this single and simple approach� The use of regular assertional tree languages is new
�except for a brief mention in 	HJJ�
�� and its application to a uniform veri�cation
of the Futurebus� system will be a very convincing evidence to the power of the
approach advocated here�

One of the inspirations to the work reported here was 	CGJ
�� �and its pre�
decessor 	SG�
��� where regular languages was the main instrument used at the
end� However� we strongly felt that� with some restrictions� the same veri�cation
capabilities can be obtained without the elaborate theory developed in 	CGJ
��� In
particular� we felt that there exists a redundancy between the network grammar

used in 	CGJ
�� just to de�ne the network topology and structure and the addi�
tional means for representing the dynamic behavior by another regular language�
In our approach� we use a single regular language to describe both the topology
and the local states of the participating processes� However� we cannot handle as
general network topologies as are considered in 	CGJ
��� and must restrict ourselves
to either array or tree topologies� The general principle is still applicable to other
topologies but it requires the development of a di�erent assertional language for
each family of topologies�

By adopting the idea that a set of possible con�gurations of an unbounded
array of processes can be represented as a set of strings over the process alphabet�
we can go further and view the transitions of the system as rewrite rules applied to
these strings� Hence the model�checking problem for networks can be reduced to the
problem of calculating predecessors of a language via a rewriting system consisting
of a �nite set of length�preserving rules�� In 	BM
�� a technique for calculating
the reachable states of an alternating push�down process �i�e� an automaton with
one unbounded variable� a push�down stack� was presented and used in order to
model�check such processes against ��calculus formulae� This technique �inspired
by the construction given in 	BO
��� pages 
��
�� is based on representing a regular
set L of stack con�gurations by an automaton A and then calculating the set of
predecessors of L via a rewrite rule by modifying A� In the case of push�down
processes the algorithm is guaranteed to converge� but experience shows that it
converges in many other cases�

In this paper we generalize this idea in few directions� First� by using �nite�
state transducers we extend the technique to treat a more general class of rewrite
rules� We transfer the concept from theory to practice by implementing it into a
working system and applying it successfully to several examples including all single�

� If we ignore process creation and annihilation�
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bus con�gurations of the Futurebus�� Secondly� we treat processes arranged in a
tree architecture� To this end we de�ne sets of process con�gurations as regular
tree languages� employ bottom�up tree automata to represent them� and use tree
transducers in order to de�ne predecessors�

The implementation owes much to the mona system and its underlying princi�
ples 	HJJ�
�� Similar to mona� we adopt an S�S�inspired language for the user
interface with the system� which is then translated into �nite automata represented
with bdd�labeled edges� However� unlike some of the applications to veri�cation
reported in 	HJJ�
� and 	BK
��� which are essentially deductive in nature� we use
similar tools for symbolic model checking� A similar implementation for trees is in
the making� with the intended goal of verifying the Futurebus� for all multiple�bus
con�gurations�

� Symbolic Model Checking

In Fig� � we present the well�known symbolic model checking procedure for showing
that the invariance property � g �AG g in ctl� is satis�ed by system P � where g is
an assertion �state formula�� This procedure was already formulated in the early ���s
�see 	CE���� 	QS���� 	CES���� however� it became practical and widely usable only
with implementations based on ordered binary decision diagrams �obdds� 	Bry���
such as 	BCM�
�� and 	McM
��� Procedure symb�mc attempts to compute an
assertion characterizing all the states from which a �g�state can be reached by
a �nite number of P �steps� If the search loop terminates at iteration i� then �i
provides such an assertion� By checking that none of the �bad� states characterized
by �i are allowed as initial states of P � we verify that there is no �g�state reachable
from a P �initial state� so g is an invariant of system P �

Procedure symb�mc�g	 assertion��
assertion� ��� ��� � � � �

Let �� 	� �g �
For i � �� �� � � � repeat
Let �i�� 	� �i � pred

P
��i� �

until �i�� � �i �

Check that �i � init
P
� f

end procedure

Fig� �� A procedure for symbolic model checking�

The procedure uses the assertion init
P
as a characterization of all the P �initial

states� and the predicate transformer pred
P
� For an assertion �� pred

P
��� is an

assertion characterizing all states that have a ��state as a P �successor�
As recommended by the rich�language symbolic model checking �rsmc� method�

ology expounded in this paper� in order to verify that assertion g is an invariant of
the �possibly in�nite�state� system P � one chooses an assertional language L and
uses it to apply the symb�mc procedure� To be applicable� the language L should
satisfy the following minimal requirements�

� The property g and the assertion init
P
should be expressible in L�
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� The language L should be e�ectively closed under the boolean operations of
negation and disjunction� and possess an algorithm for deciding equivalence of
two assertions�

� There should exist an algorithm for constructing the predicate transformer
pred

P
�L �� L for every system P �

We refer to a language satisfying these three requirements as a language adequate

for symbolic model checking � Note that identifying an adequate assertional lan�
guage only guarantees that Procedure symb�mc is applicable� It is still only a
semi�algorithm which� when terminating� provides either proof of correctness or
a counter example� but may fail to terminate� In fact� due to the theoretical results
of 	AK��� the invariance checking problem for parameterized systems is in general
undecidable� and the best we can hope for in the general case is a semi�algorithm�

In the remaining sections� we will consider several useful adequate assertional
languages and illustrate their application to parameterized systems of interest�

� Regular Languages are Adequate
In this section we demonstrate the use of the class of regular languages as adequate
assertional languages� As a running example� we will use program mux of Fig� �
that implements mutual exclusion by synchronous communication�

in M 	 integer where M � �
local � 	 array ����M � of channel of boolean

M

i��

P �i� 		

�
���������������

local has� boolean where has� �i���

CN T

when has � i � M do�
��i�� t

has 	� f

�
if �has � i � � then
��i� ��� has

await has

�
���������������

Fig� �� Parameterized Program mux�

The body of the program is a variable�size parallel composition of processes
P 	��� � � �� P 	M �� Each process P 	i� has two local state variables� a local boolean
variable has and a control variable � ranging over the set of locations fN� T�Cg
�the noncritical section� the trying section� and the critical section� respectively��
Process P 	i� sends the boolean value t on channel �	i� to its right neighbor �if i � M �
and reads into variable has a boolean value from its left neighbor on channel �	i���
�if i 	 ��� As seen in the program� process P 	i� can enter its critical section only if
P 	i��has � t�

A local state of process P 	i� is a valuation of the local state variables� For exam�
ple� h� � C� has � ti is a local state in which P 	i� is in its critical section while its
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variable has has the value t� We abbreviate h� � C� has � ti to hC� ti� listing just
the values assigned to the variables�

A global state �also called a con�guration� of system mux� is a sequence of local
states� Note that every con�guration of system mux can be viewed as a word over
the �nite alphabet


MUX� fhN� fi� hT� fi� hC� fi� hN� ti� hT� ti� hC� tig�
Consequently� we can view a set of con�gurations of program mux as a language
over the alphabet 
MUX� Examining procedure symb�mc� we identify two languages
and one language transformer which need to be syntactically characterized� We will
consider each of these in turn�

��� Expressing the Initial Condition initP and the Desired

Invariant g
Our general recommendation is to use as an assertional language for a process array

system P � such as program mux� the language of regular expressions over the
alphabet 


P
� A regular expression over 


P
de�nes a language which characterizes

a set of global states� For example� the initial condition for program mux can be
expressed by the regular expression

initMUX� hN� ti�hN� fi���
While we propose to use regular expressions in the user interface with the rsmc

support system� the internal representation of the data structure �assertion� used in
procedure symb�mc� is that of a �nite�state automaton �fsa� over 


P
� We consider

such an automaton to be given by A� h

P
� Q� q�� �� F i� where 


P
is the input

alphabet� Q is the set of automaton states� q� � Q is the initial automaton state�
��Q�


P
�� �Q is the transition function � and F � Q is the set of accepting states�

Next� we consider the desired property g� For the case of program mux� the
required property is that of mutual exclusion requiring that at most one process
reside in its critical section at any given instance� This property can be expressed
by the regular expression

g� 	x 	� C�� � 	x 	� C��	x � C�	x 	� C���
where we use the abbreviations 	x � C� � hC� ti� hC� fi and
	x 	� C� � 
MUX � 	x � C��

��� Expressing the predP Transformer
To express the pred

P
transformer� we �rst attempt to describe the change in con�

�gurations as a result of a single program step� Consider our running example�
program mux� The �parameterized� fair transition system 	MP
�� corresponding to
this program has two kinds of transitions� There are transitions that a�ect only a
single process and represent internal movements and variable changes within this
process� The other kind is the transition that involves two contiguous processes�
i�e�� P 	i� and P 	i � �� for some i � f��M � �g� This transition corresponds to the
synchronous communication in which process P 	i� sends the boolean value t� which
process P 	i� �� receives and stores into has �

We can summarize the transformation e�ected by the various transitions by the
following list of rewrite rules�

U �

	
hN� fi � hT� fi � hC� fi � hN� fi � hT� ti � hC� ti
hN� ti � hT� ti � hC� ti � hN� ti






�

M �
�
hN� ti hT� fi � hN� fi hT� ti

�
where U �the unary rewrites� represents changes that a�ect only a single process�
while M is a binary rewrite rule representing a joint transition of two contiguous
processes� For example� applying the rewrite rule hN� ti hT� fi � hN� fi hT� ti to
the con�guration hN� ti hT� fi hN� fi yields the successor con�guration
hN� fi hT� ti hN� fi� representing the result of passing a token from P 	�� to P 	���

A precise characterization of the transformation caused by each of these rewrite
rules can be provided by a �nite�state transducer �fst� T � h


P
� 


P
� Q� q�� �� F i�

which is an fsa over the alphabet


P
� 


P
� f	a� b� j a� b � 


P
g�

Let u � a� 
 
 
ak and v � b� 
 
 
bk be two 

P
�words of equal length� We de�ne

their cross product u� v to be the 

P
�
�

P
�word �	a�� b�� 
 
 
 	ak� bk��� We say that

word v is a transduction of word u by the fst T if the cross word u� v is accepted
by T �

Consider the fst T� presented in Fig� �� The label id appearing in the transducer
stands for the set f�a� a� j a � 
MUXg� representing the identity transformation�
The transducer T� represents the rewrite rule hN� ti hT� fi � hN� fi hT� ti� For
example� the con�guration v � hN� fi hT� ti hN� fi is a T��transduction of the
con�guration u � hN� ti hT� fi hN� fi� because the joint word

u� v � �	hN� ti� hN� fi� 	hT� fi� hT� ti� 	hN� fi� hN� fi��
is accepted by T��

�hN� ti� hN� fi� �hT� fi� hT� ti�
idid

Fig� �� Transducer T� representing a two�state rewrite�

In a similar way� we can construct a transducer corresponding to each of the
remaining rewrite rules� expressing the e�ect of a single transition in program mux�
Since the class of regular languages is closed under union� it is possible to construct
a single transducer TMUX such that the con�guration v is a TMUX�transduction of a
con�guration u i� v can be obtained from u by a single step of program mux� We
refer to TMUX as the step transducer for program mux�

Given a transducer T � h
 �
�R� r�� �T � FT i and an fsa

A � h
�Q�Q�� �A� FAi� we de�ne their composition to be the automaton
T �A � h
�R� Q� 	r�� q��� �� FT � F

A
i�

where 	r�� q�� � ��	r�� q��� a� i� there exists a b � 
 such that r� � �
T
�r�� 	a� b�� and

q� � �
A
�q�� b��

It is possible to establish the following claim�

Claim � The language accepted by the composition T � A consists of all words

having a T �transduction which is accepted by A�

Going back to the use of fsas as an assertional language� we observe that if
A is an automaton characterizing a set of states of system P and T

P
is the step

transducer for P � then the precondition transformer pred
P
required in procedure

symb�mc is given by pred
P
�A� � T

P
�A�
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��� Applicability of FSAs as Assertional Languages

We can summarize the previous discussions by the following claim�

Claim � If P is a system with an encoding of its global states into words over an

alphabet 

P
� such that

� the initial condition init
P

and the goal assertion g can be represented by 

P
�

automata� and

� the global transition relation of P can be represented by a step transducer T
P
�

then procedure symb�mc can be applied to the veri�cation of P j� � g� using fsa�s

as the assertional language�

Claim � does not guarantee that the application of symb�mc will terminate�
We have constructed an implementation of a system that accepts as inputs the

automata representing init
P
and g and the step transducer T

P
� and checks whether

g is a P �invariant� although it may fail to terminate� We managed to verify program
mux and other simple programs including versions of mux with either synchronous
or asynchronous communication where the processes are arranged in a ring rather
than an array� Finally� two of the four safety speci�cations which were veri�ed
in 	CGH�
�� and 	PS
� were checked for a single�bus version of the Futurebus�
protocol and were found to be correct�

The representation of automata in our implementation uses obdd�encoded as�
sertions over the local state variables instead of explicit enumeration of the local
states which allow a transition from one automaton state to another� Thus� our tran�
sition function has the type �� Q � local assertions �� �Q� where a local assertion
is an assertion over the local state variables�

� Tree Languages

In this section� we extend the method of regular expressions over strings to deal with
regular tree languages �see 	TW��� 	GS���� 	D����� This will enable us to handle
process networks organized in a tree topology� Since process trees may have di�erent
out�degrees for di�erent nodes� we have to generalize the notion of tree automata
to deal with varying arity��

��� Bottom�Up Tree Automata

We de�ne a tree structure S to be a �nite subset of N� �i�e� a �nite set of sequences
of natural numbers� satisfying�

� S contains the empty sequence ��
� If S contains the sequence ���� � � � � �k�� then it also contains the �possibly
empty� sequence ���� � � � � �k��� and the sequences ���� � � � � �k��� r�� for every
r� � � r � �k�

We refer to the elements of S as the nodes of the tree structure S� Obviously� S
represents a node by specifying the path that has to be followed from the root in
order to get to the node� Thus� in a tree structure� � represents the root� and ��� ��

� An extension of tree automata to arbitrary arity was made in �KG�� but in a top�down
in�nite context�
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represents the node which is the �rst child of the second child of the root� A node
� � S is a leaf� if it is not a pre�x of any other member of S�

Let A be an arbitrary alphabet� i�e� a �nite set of symbols� An A�tree T � hS� i
consists of a tree structure S and a labeling function �S �� A� mapping each node
of the tree to an A label� We will often refer to nodes in the tree as n � T and to
their labels as �n��

A �variable�arity� bottom�up tree automaton �bta� B� h
�Q���F i where 
� Q
and F � Q are the standard �nite alphabet � set of states� and set of accepting states�
while

��Q� � 
 �� �Q

is a regular transition function � i�e� for every a � 
 and eQ � Q� the set of words
fw � Q� j ��w� a� � eQg is regular� In our presentations of btas� we write �

as a �nite number of entries of the form ��Ei� 
i� � Qi� where Ei is a regular
expression over Q� 
i � 
� and Qi � Q indicating that for q � Q� w � Q�� and
a � 
� q � ��w� a� i� q � ��Ei� a� for some Ei such that w � L�Ei��

The way a bta operates when applied to a 
�tree T is that it proceeds from the
leaves towards the root� annotating the tree nodes with automaton states� A single
annotation step can be applied to the tree node n � T only when all of its children
have been already annotated� Assume that the children of n have been annotated
with q�� � � � � qk� Then� n can be annotated by q � Q if q � ��q� 
 
 
qk� �n���

More formally� a run of the bta B over the tree T � hS� i is a mapping r�S �� Q

satisfying�
For each n � S with children n�� � � � � nk� r�n� � ��r�n�� 
 
 
 r�nk�� �n���

A bta is deterministic if j��w� a�j � �� for every w � Q� and a � 
�
Example� Let us de�ne a bta B which recognizes all variable�arity trees� labeled
by 
 � fa� bg� with the requirement that precisely one node is labeled by b� For the
components of B� we choose as follows� 
 � fa� bg� Q � fq�� q�� q�g� F � fq�g�

� � De�ned as follows�
��q��� a� � fq�g
��q��� b� � ��q��q�q

�
�� a� � fq�g

��Q�q�Q
�q�Q

�� fa� bg� � ��Q�q�Q
�� fa� bg� � ��q��q�q

�
�� b� � fq�g

The bta B is obviously deterministic� Given an fa� bg�tree T � automaton B will
annotate by q� all the nodes n such that the subtree rooted at n is only labeled by
a� Nodes rooting a subtree such that precisely one node in the subtree is labeled
by b will be annotated by q�� All other nodes are annotated by q�� The tree T is
accepted by B i� its root is annotated by q��

The transition function � determines the annotation of a node n� based on the
annotation of its children and the 
�character labeling n� According to the table� n
will be annotated by q� if all its children are annotated by q� and n�s label is a� This
also takes care of the a�labeled leaves� since the empty word belongs to the language
q��� Node n will be annotated by q� if either all children are annotated by q� and
n is labeled by b� or all children are annotated by q� except for one child which is
annotated by q� and n is labeled by a� In all other cases� n will be annotated by q�
which implies that at least two b�s have been detected in the tree�

A tree T is said to be accepted by the bta B if there exists a run r of B over T
such that r��� � F � We denote by L�B� the set of trees accepted by B� The btas
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B� and B� are said to be equivalent if L�B�� � L�B��� By applying the standard
subset construction� we can establish the following claim�

Claim �

�� Every bta is equivalent to a deterministic bta�

�� The class of tree languages recognizable by a bta is closed under the boolean

operations of complementation and union�

��� Con�gurations of a Process Tree as a Tree Language

As a running example� consider program percolate of Fig� �� The assertion
leaf ��� S� holds for tree address � � S i� � is a leaf of S�

in S 	 tree structure

��S

P ��� 		

�
��������

local val 	 f�� �� ug where leaf ���S�	 val 
 f�� �g

�
����
M 	� fmj� �m 
 Sg
repeat
if �m 
M 	 P �� �m��val � u

then val 	�
W
m�M

P �� �m��val

until val � u

�
����

�
��������

Fig� 	� Process tree program percolate�

Program percolate consists of a tree of processes� each having its local variable
val � which ranges over the set of values f�� �� ug� The value u should be interpreted
as �unde�ned yet�� which implies that it will eventually change to either � or ��
Initially� all the leaf processes in the tree have val � f�� �g and all other processes
have val � u� The purpose of program percolate is to percolate to the root of the
tree a value � if at least one of the leaves has value �� and a value of �� if all leaves
have value �� If P 	�� does not yet have a de�ned value but all its childrens� values
are de�ned then P 	�� sets its value to the disjunction of the values of its children�
Consequently� we can represent a con�guration of program percolate as a tree
over the alphabet 
PERCOLATE� f�� �� ug�

The speci�cation of program percolate can be given by the formula

g� P 	���val 	� u �

P 	���val �

W
leaf ���S�P 	���val

�
�

This formula states that if the root has a de�ned value then its value equals
the disjunction of all val values at the leaves� It is not di�cult to construct a bta
which will accept precisely the trees that have the property speci�ed by g� In a
similar way� it is straightforward to construct a bta which will accept the initial
con�gurations of the program�

To complete the demonstration that the assertional language of bta�s is ad�
equate for symbolic model checking of program percolate� we should specify a
tree transducer that will represent the state transformations due to execution of
statements within the individual processes�

Let T� � hS� �i and T� � hS� �i be two 
�trees over the same tree structure
S� These can be viewed as two di�erent labeling of the same underlying tree� We



	


de�ne the cross product of T� and T� as the 
 � 
 tree T� � T� � hS� �i� where�
for each � � S� ���� � 	����� ������

A tree transducer �over 
� is simply a bta over the product alphabet 
�� For
trees T� and T� as described above� we say that T� is a T �transduction of T� if the
tree T� � T� is accepted by T �
Example� A tree transducer that represents the single transition �parameterized
by the process address �� of program percolate is de�ned as follows�


�
PERCOLATE �
PERCOLATE Q� fq�� q�� qu� �z �
Qn

� qdg F � fqdg

� � De�ned as follows�
��Q�

n� 	�� ��� � fq�g ��Q�
n� 	�� ��� � fq�g ��Q�

n� 	u� u�� � fqug
��q��� 	u� ��� � ���q� � q���q��q� � q���� 	u� ��� � ��Q�

nqdQ
�
n� id� � fqdg

The transducer uses four states� Annotation of node � by the automaton states
Qn� fq�� q�� qug re�ects the value of P 	���val and also implies that in the subtree
rooted at �� all the 
� labels are the identity id � Annotation of � by qd such that
no descendant of � is annotated by qd identi�es the only allowed node in the tree
structure which is labeled by a 
��character di�erent from id � The rules for such
annotations are given by the second line in the de�nition of �� This line allows a
change of value from u to � if all the children of � are annotated by q�� It allows a
change of value from u to � if at least one of the descendants is annotated by � and
all the rest are annotated by � or ��

Once the �rst �lowest� node is annotated by qd� this annotation propagates from
each node to its parent� provided none of the siblings is annotated by qd� This
guarantees that only one process in the tree changes its value from u to � or ��

Given a tree transducer T � h
 � 
�R� �
T
� F

T
i and a bta A � h
�Q� �

A
� F

A
i�

we de�ne their composition to be the bta

T �A � h
�R� Q� �� F
T
� F

A
i�

where� for every r � R� q � Q� v � R�� and w � Q��

	r� q� � ��v �w� a� i� b � 
 such that r � �
T
�v� 	a� b�� and q � �

A
�w� b��

Claim � The tree language accepted by the composition T �A consists of all trees

having a T �transduction which is accepted by A�

Going back to the use of btas as an assertional language� we observe that if A
is a bta characterizing a set of con�gurations of system P and T

P
is the step tree

transducer for P � then the precondition transformer pred
P
required in procedure

symb�mc is given by pred
P
�A� � T

P
�A�

� Symbolic Model Checking is Dual to Invariant Generation

An important component in all the modern support systems for deductive veri�ca�
tion� such as STeP 	MAB�
�� and pvs 	SOR
��� consists of algorithms and heuris�
tics for the automatic generation of invariants� Several of these techniques have
been presented in 	MP
�� and e�ciently implemented as reported in 	BBM
�� and
	BLS
�� Perhaps the most powerful and widely applicable is the technique called
top�down invariant generation � As described in 	MP
�� and 	BBM
��� the method



		

starts with a goal assertion g� whose invariance we wish to prove� and applies a
series of strengthening steps� until we obtain a stronger assertion � which implies g
and is inductive � Using our notation� the strengthening procedure can be described
as in Fig� �� The predicate transformer pred�

P
appearing in the procedure is dual

to the pred
P
transformer used in procedure symb�mc of Fig� �� It can be de�ned

either by the duality relation pred�
P
��� � �pred

P
����� or by saying that a state s

satis�es pred�
P
��� i� all	 P �successors of s satisfy ��

Procedure strengthen�g	 assertion��
assertion� ��� ��� � � � �

Let �� 	� g �
For i � �� �� � � � repeat
Let �i�� 	� �i � pred�

P
��i� �

until �i�� � �i �

Check that init
P
� �i

end procedure

Fig� 
� A procedure for top�down invariant generation�

Procedure strengthen is a perfect dual of procedure symb�mc� One of the
procedures terminates i� the other does and� when they terminate� they terminate
after precisely the same number of steps� Furthermore� for every i � �� �� � � �� reached
in the application of these procedures� �i � ��i� and one of them reports success
�implying that g is a P �invariant� i� the other does�

So presenting the considered procedure as symbolic model checking or as part
of the deductive set of tools is a matter of taste� The successful veri�cation cases
reported in 	BBM
�� and 	BLS
� will work equally well in the approach of symbolic
model checking suggested here� Symmetrically� it shows that the two assertional
languages of regular languages and regular tree languages analyzed here can be
imported into the invariant generation methodology with equal success�
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