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Abstract. We propose models that capture the influence of computation on the
performance of computer-controlled systems, and make it possible to employ
computational considerations in early stages of the design process of such sys-
tems. The problem of whether it is possible to meet performance requirements
given resource constraints is phrased as a problem of synthesizing switching con-
trollers for hybrid automata, for which we give algorithms that in some cases are
guaranteed to terminate and in others can solve the problem in an approximate
manner.

1 Background

In this work we build models that capture the influence of computational resources on
the performance of computer-controlled systems. Such models allow one to employ
computational considerations in early stages of the design process of control systems.
We view computation as an essential resource for achieving high-quality control, a re-
source that in certain situations may become a bottleneck in the system. As a first step
toward dealing explicitly with the interaction between control performance and the al-
location of computational resources, we consider in this paper the problem of schedul-
ing feedback computations on a single computer controlling multiple independent pro-
cesses. Notwithstanding some anomalies, we may assume that the quality of control
improves monotonically with the amount of computation invested (both on-line and
off-line) in the control loop, as the following examples show:

1. Sampling rates. Usually the quality of control improves with the frequency of the
basic loop (sample input, compute feedback function and output) and it approaches
the ideal continuous model as the sampling rate goes to infinity. Naturally, the
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amount of computational effort in a digital control implementation is proportional
to the sampling rate which specifies, roughly, the number of times the feedback
function is evaluated in any time interval.

2. Alternative feedback function. In certain situations, one may choose between sev-
eral feedback functions whose complexity increases with their quality. For exam-
ple, in model-predictive control, where the feedback function is computed using an
optimization procedure over a bounded horizon, longer decision horizons increase
the dimensionality of the optimization problem and hence its complexity.

3. Control under noise. In order to cope with noisy measurements, sophisticated fil-
tering and state-estimation algorithms need to be applied. These functions can be
implemented using dedicated hardware or, alternatively, using the same computer
that does the feedback computations. In that case they compete with these compu-
tations for the “attention” of the computer.

4. Dynamic Identification. When the dynamics of the controlled plant is unknown
or drifting, costly identification and re-calibration algorithms should be applied
occasionally in order to update the control law.

In an ideal world of unlimited computational resources1 (which is where classical
control theory evolved, at least its theoretical foundation) one could use as complex
control scheme as needed to achieve a desired quality of control. However, in any digital
implementation only a bounded amount of computation can be performed in any given
time interval. When computing power is significantly larger than the complexity of the
plant to be controlled (in other words, a slow plant is controlled by a fast computer)
one can work with the “separation of concerns” framework which can be summarized
as follows:

– The control engineer fixes the control law based on purely “functional” consid-
erations (the quality of control). The outcome of the design is a set of feedback
functions, each with its associated rate of invocation.2

– It is the responsibility of the hardware/software engineers to meet the implied com-
putational demands on an appropriate computer architecture (processor, I/O inter-
face, scheduling policy). This is done without taking into account the functional
content of the computations, i.e. their influence on the evolution of the plant. All
the implementor knows about are computational tasks with release times and dead-
lines.

While this separation of concerns has its advantages (programmers need not know about
differential equations and control engineers need not think about computations) it is not
so useful when, due to technological and economic constraints, the control of fast and
complex plants should be achieved using a bounded amount of computational resources.
In such situations computation may become a major bottleneck in the control system

1 Or equivalently in a world were mathematical functions are viewed as instantaneous objects
without computation and transmission concerns.

2 In fact, if you inspect closely the literature on digital control, you don’t find a real theory for
determining the sampling rate of a control loop, but rather “bandwidth” arguments applied,
sometimes, beyond their scope of validity.



and one has to allocate computations in a smart way to meet the conflicting demands
coming from different parts of the plant.

Mathematical models of plants and controllers that neglect computational issues
are not suitable for computation-conscious design. On the other hand, the opposite ap-
proach, that is, the introduction of detailed models of the implementation such as oper-
ating systems and scheduling policies, may render the design and analysis of the control
system intractable.3 We present an intermediate approach whose novelty is twofold:

1. It suggests simple abstract models of computations that can be incorporated in the
control design process. In these models only one essential feature of computation
that is relevant for control is represented, namely computation time.

2. As an application we suggest a simple way to derive adaptive scheduling strategies
that allocate computational resources to various parts of the plant based on the
actual observed performance.

By breaking the “wall” separating control design from its digital implementation, we
believe, a much larger part of the space of price/performance tradeoffs can be ex-
plored. This belief is apparently shared by other researchers from the control and real-
time communities who have recently expressed interest in better mutual interaction be-
tween control and computation considerations during the design process, e.g. [SLSS96],
[ABE+99], [PAB+00], [SLS+99], [ACV+01].

We present two generic models in which the controlled plant consists of several in-
dependent sub-systems which compete for the computational attention of the controller.
The first model captures the computational investment in updating the control law of a
system that drifts away from its current model while the second model is motivated by
the problem of allocating the best feasible mix of sampling rates to sub-systems based
on their current performance indices. These models can be easily adapted to other types
of resource constraints.

It should be emphasized that the main contribution of this paper is conceptual. We
present a new modeling methodology and demonstrate how it can be used to formulate
and solve some generic problems of control under resource constraints. Despite the
preliminary nature of this work, we believe it can serve as the basis for developing
practical algorithms for solving real problems in the future.

2 The Setting

We assume a plant consisting of n independent sub-plants P1, . . . , Pn, controlled by n
independent controllers C1, . . . Cn. The only dependency between these system com-
ponents is that all controllers use the same processor to compute their feedback function
(see Figure 1).

3 It can be argued that the type of computer science taught to control engineers is sometimes
very detail-oriented and lags behind the more abstract view of computation practiced in (some)
computer science quarters.
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Fig. 1. Controlling n independent plants.

2.1 Controller Performance

The composition of a single plant P with its corresponding controller C yields a closed-
loop system S = P ||C. We assume that we can associate with S a scalar variable x
tracking the evolution of some performance index of the system along its trajectories.
This measure can be either a memoryless function of the trajectory, such as the distance
from a reference point in the state-space, or some average measure of the trajectory
over a moving time window. It is important that an evaluation of the current value of x
during the actual evolution of the plant can be made from available observations within
a bounded delay so that this value can be used for adaptive scheduling.

Our mathematical assumptions concerning this measure are:

1. It lives in [0,∞) with 0 considered optimal, and our goal is to keep it always inside
a bounded interval [0, m].

2. Its evolution is defined by a differential inclusion of the form ẋ ∈ F (x) capturing
all possible behaviors under various disturbances.

3. All these behaviors are bounded from above by a worst-case dynamics which can
be characterized by a differential equation ẋ = f(x).

When several plants are controlled in parallel the overall performance of the system is
represented by x = (x1, . . . , xn) with ẋ = f(x) where f(x) = (f1(x1), . . . fn(xn)).
Note that f is “diagonal”, that is, the evolution of every xi depends only on xi.

In the two models defined below, we assume that the worst-case behavior for each
controller for a given allocation of computational resources is monotone. In Model I,
the worst-case behaviors for all of the controllers is monotone increasing, representing
the long-term behaviors of controllers that will always eventually require special atten-
tion to re-estimate parameters in internal models or to re-define the control function.
The problem is to decide when these re-tuning computations should be made for each



controller. In Model II, the performance of each controller depends on the amount of
computational resources (time) allocated to compute the feedback function. For each
controller it is possible to allocate sufficient resources to make the performance index
decrease (improve), but there are insufficient resources to make the performance indices
of all the controllers decrease simultaneously. In this case, the problem is to re-allocate
the computational resources dynamically to assure that all of the performance indices
remain within the specified bounds.

We use the notation x0
f,t−→ x1 to denote the fact that the solution of the differential

equation ẋ = f(x), starting from x0, leads to x1 at time t. Similarly x0
f,t−→ G indicates

that the solution reaches some point x1 ∈ G. If, in addition, the trajectory stays in H ⊆
X during the interval [0, t) we use the notations x0

f,t−→
H

x1 and x0
f,t−→
H

G, respectively.

We say that a set G is f -invariant if x
f,t−→ G implies x

f,t′−→ G for every t′, 0 ≤ t′ ≤
t and every x ∈ G. Note that convex polyhedra are f -invariant when f is constant and
that hyper-rectangles are f -invariant when f is monotone.

2.2 Model I: Re-calibrating Controllers

The first model represents the long-term behavior of adaptive controllers: the perfor-
mance evolves according to ẋ = f(x) where f(x) > 0. Here the only way to avoid
divergence and keep the system within a bounded subset is to invest occasionally some
time in updating the various controllers. We assume that it takes di time4 to update
the controller for plant Pi and that this action resets the value of xi to 0. For every
i ∈ {1, . . . , n} the reset function Ri : X → X is defined as Ri(x1, . . . , xi, . . . , xn) =
(x1, . . . , 0, . . . , xn) and its inverse is R−1

i : X → 2X .

Definition 1 (Resetting Dynamical Systems). A resetting dynamical system (RDS)
is A = (X, f, d) where X = [0,∞)n, f : X → R

n is a positive vector field and
d = (d1, . . . , dn) is a vector of delay constants.

Definition 2 (Update Strategies and Runs). An update strategy for an RDS A is a
function s : X → {1, . . . , n,⊥}. A run of A under an update strategy s starting from x
is

x
t1−→ x′ di−→ x′′ 0−→ Ri(x′′)

t2−→ . . .

such that x
f,t1−→

s−1(⊥)
x′ and s(x′) = i.

In other words, a strategy is a rule that tells the system at any given point whether or not
to start resetting one of the variables and which variable to reset. A run evolves without
resetting as long as s(x) = ⊥ until s(x) = i for some i, then it continues to evolve for
di time and resets xi to 0. An example of a run of an RDS in R

2 appears in Figure 2.

4 In fact, di should cover both the time to perform the identification algorithm and the time for
some transient behavior when the controller is changed. It is common in timed and hybrid
systems models to decompose actions that take some time into time passage followed by an
instantaneous transition.
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Fig. 2. (a) An update strategy in two dimensions. (b) An initial part of a run following that strategy

with resets indicated by dashed lines. The run can be written as x1
t1−→ x′

1
d2−→ x2

0−→ x3
t2−→

x′
3

d1−→ x4
0−→ x5

t3−→ x′
5

d2−→ x6
0−→ x7.

Definition 3 (Strategy Synthesis Problem for RDS). Given an RDS A and a hyper-
rectangle G ⊆ X containing 0, find the maximal controlled invariant subset of G, that
is, the maximal F ⊆ G for which there exists an update strategy s : F → {1, . . . n,⊥}
such that all trajectories starting in F stay in F .

To compute F and s we use a variant of the fixed-point computation described in
[ABD+00]. This approach was first presented for timed automata [MPS95] where it is
guaranteed to converge, and then adapted for hybrid automata [W97,TLS99,ABD+00].

Definition 4 (Delayed Predecessors). Let H be a subset of X and let f be a vector
field. The set

Π(f,d)(H) = {x : ∃t ≥ d x
f,t−→ H} (1)

consists of all points from which the system can reach H after evolving for at least d
time according to the dynamics f .

The relation between H and Π(H) is illustrated in Figure 3. Note that we will
always work inside a hyper-rectangle G and that Π is distributive over union: Π(H1 ∪
H2) = Π(H1) ∪ Π(H2).

The following algorithm computes F :

Algorithm 1 (Winning Update Strategies for RDS)

F 0 := G
repeat

F k+1 := G ∩ ⋃
i∈{1,...,n} Π(f,di)(R

−1
i (F k))

until F k+1 = F k

F := F k
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Fig. 3. A hyper-rectangle G, a set H ⊆ G and the set of its delayed predecessors inside G,
G∩Πf,d(H). The dark points are outside Πf,d(H) because following f for d time leads outside
H without being able to return to H .

Claim 1 (Properties of the Algorithm) Algorithm 1 generates a decreasing sequence
of sets F 0, F 1, F 2, . . . whose limit F is the maximal invariant set of Definition 3.

Sketch of Proof: Let d = min{di}. The proof is by showing that x ∈ F k if and only
if there is an update strategy such that the trajectory starting at x stays in G for at least
kd time. This is done by induction where F 0 satisfies the property trivially and the
inductive step works by showing that x ∈ F k+1 implies that for some i it is possible
to stay in G for some t time, t ≥ di ≥ d and then, after resetting, reach a point in F k

satisfying the inductive hypothesis.
The extraction of an update strategy from F can be done in two steps. First we

compute a non-deterministic strategy ŝ : F → 2{1,...,n,⊥} such that i ∈ ŝ(x) if x
f,di−→

F and ⊥ ∈ ŝ(x) iff x
f,t−→ F for some t > d = min{di}. In other words ⊥ ∈

ŝ(x) if updating is not urgent at x. This non-deterministic controller is the maximal
“least-restrictive” controller and any of its functional restrictions, i.e. any function s
satisfying s(x) ∈ ŝ(x) is a winning strategy. Of course, practical considerations such as
the description size of the strategy or the number of updates it induces will influence the
actual choice of the strategy. For example, one may prefer strategies satisfying s(x) =
⊥ whenever ⊥ ∈ ŝ(x).

The computational issues associated with the implementation of the algorithm and
of the update strategy are discussed after the next model.

2.3 Model II: Different Quality Mixes

In this model, a plant P admits a family C = {C1, . . . , Cp} of controllers of increasing
qualities, that is, for each j, the performance of the closed-loop system Sj = P ||Cj is
inferior to the performance of Sj+1 = P ||Cj+1, i.e. f j(x) ≥ f j+1(x) for every x. One
possible source of this characterization might be their sampling rates — the family C
might consists of discrete realizations of the same continuous controller with decreasing
time steps.



The set of controllers for the whole plant is C = C1 × . . . × Cn where for every
i, the family Ci = {C1

i , . . . , Cp
i } of controllers for plant Pi contains at least one good

controller with fi negative. Each C ∈ C is called a control “mode” of the system, and
when composed with the plant, it induces a worst-case dynamics for the performance
measure x. Our goal, as before, is to maintain x inside a bounded rectangle G ⊆ R

n
+, a

goal which could be trivially achieved if there were no additional constraints on control
modes — we would just stay in a mode such as (Cp

1 , . . . , Cp
n) where all controllers are

good. We assume, however, that only a subset C ′ ⊆ C of control modes is feasible due to
computational resources constraints and that for every element of C′ there is at least one
plant Pi which is controlled badly (positive fi). Hence there is no mode in which the
system can stay forever while maintaining x bounded, and the goal should be achieved,
if possible, by properly switching between feasible modes.
Example: A typical situation that can be modeled naturally in this framework is when
each family {C1, . . . , Ck} is parameterized by the frequency of sampling and comput-
ing. Assume that for every plant Pi the computation time of its feedback function is Di,
and that the frequency for each controller is ϕj

i . Hence a mode C = (Cj1
1 , . . . Cjn

n ) is
feasible if it satisfies the Liu and Layland schedulability condition [LL73], i.e.

n∑
i=1

Di · ϕji

i ≤ 1.

If, using the techniques developed in the sequel, it is shown that the plant cannot be
controlled by this set of modes, moving to a faster processor will reduce Di, increase
the set of feasible modes, and might make the system controllable.5 There could be other
reasons for certain modes to be infeasible, for example a mode in which two controllers
use the same actuator or where the total required power exceeds the available power.

We also assume that it takes up to d time units between the decision to switch and
its actual realization. This delay constant should cover the time is takes to compute
x from observations and for completing some cycles in the schedule corresponding
to the current mode before a new schedule is started. The whole situation can now be
described using a hybrid automaton whose discrete states correspond to feasible modes.

Definition 5 (Multi-Mode Hybrid Automata). A multi-mode hybrid automaton
(MMHA) is A = (Q, X, f, d) where Q is a finite set of discrete states (modes), X =
[0,∞)n, f : Q → (X → R) is a family of vector fields associated with the modes and
d > 0 is a delay constant.

We write f(q) as f q and assume that for every q and i the sign of f q
i is uniform all over

X .

Definition 6 (Switching Strategies and Runs). A switching strategy for a MMHA A
is a function s : Q × X → Q defined on a subset of Q × X . The trajectory of A under
a strategy s starting from (q, x) is a sequence of the form

(q, x) t1−→ (q, x′) d−→ (q, x′′) 0−→ (q′, x′′) t2−→ . . .

5 To avoid confusion with other approaches, we emphasize that we do not care about the imple-
mentation of the scheduling inside a mode — in this case, since everything is periodic, a static
schedule is sufficient in each mode.



such that x
fq,t−→

s−1(q)
x′, s(q, x′) = q′ and x′

fq,d−→ x′′.

In other words, x evolves for t1 time following the fq dynamics without needing to
switch until x′ where s(q, x′) = q′. After this decision point the system still evolves for
d time at q and then switches to q′. An example is depicted in Figure 4 for a MMHA
with two variables and two modes such that x1 diverges in q1 and x2 diverges in q2. We
can now formulate the synthesis problem.

q1

q2

q2

q1

q1 q2

q1 q2

x5

x2

x′1
x3

x′2

x′4

x1

x2

x3

x′3

x4x4

Fig. 4. A switching strategy and an initial part of a run of following this strategy. The run can

be written as (q1, x1)
t1−→ (q1, x′

1)
d−→ (q1, x2)

0−→ (q2, x2)
t2−→ (q2, x′

2)
d−→ (q2, x3)

0−→
(q1, x3)

t3−→ (q1, x′
3)

d−→ (q1, x4)
0−→ (q2, x4)

t4−→ (q2, x′
4)

d−→ (q2, x5).

Definition 7 (Strategy Synthesis Problem for MMHA). Given a MMHA A and a
hyper-rectangle G ⊆ X containing 0, find the maximal controlled invariant subset of
Q × G, that is, the maximal F ⊆ Q × G for which there exists a switching strategy
s : F → Q such that all the trajectories starting in F stay in F .



Note that F =
⋃

q∈Q(q, Fq) where each Fq is a subset of G. The algorithm for com-
puting F is the following.

Algorithm 2 (Winning Switching Strategies for MMHA)

∀q ∈ Q

F 0
q := G

repeat
F k+1

q := G ∩ ⋃
q′∈Q Π(fq,d)(F k

q′)
until F k+1

q = F k
q

Fq := F k
q

Claim 2 (Properties of the Algorithm) Algorithm 2 generates a decreasing sequence
of sets F0,F1,F2, . . . whose limit F is the maximal invariant set of Definition 7.

Sketch of Proof: Similarly to [AMPS98,ABD+00] we show that x ∈ F k
q if and only if

it is possible, starting from (q, x), to stay in G for at least kd time. This is true trivially
for k = 0. The inductive step is based on the definition of Π and on the fact that for
every q and k, F k

q is included in the hyper-rectangle G which f -invariant for every
monotone f . Hence, being in F k+1

q implies the ability to stay for at least d time in
G and then switch to some q′ such that F k

q′ satisfies the inductive hypothesis. Hence,
starting from a point in the limit F , we can stay in G indefinitely and F is indeed the
maximal invariant set.
An example of the behavior of the algorithm on a simple system appears in Figure 5.

2.4 Computational Issues

As discussed in [ABD+00], abstract algorithms such as Algorithm 1 and Algorithm 2
can not be effectively implemented in a precise manner for systems where f is arbitrary
because the sets of the form Π(f,d)(H) may have complex shapes. However, approx-
imate versions of similar algorithms have already been implemented in tools such as
d/dt [ADM01]. Such algorithms can find an under-approximation of the maximal in-
variant set and the corresponding switching strategy will be safe. The case when f is
constant in each mode is discussed in the next section.

As in Algorithm 1, the extraction of a switching strategy from F can be done by
first computing a least-restrictive non-deterministic strategy ŝ : F → 2Q defined as

ŝ(q, x) = {q′ : x
fq,d−→ Fq′}.

This strategy allows to switch to any q′ such that d time after the decision to switch the
system will still be inside its safe set for q′. Any functional restriction of ŝ is a good
switching strategy. Again, due to practical considerations one may prefer strategies with
less switches satisfying s(q, x) = q whenever q ∈ ŝ(q, x).

Once the controller is extracted it can be implemented as a small additional module
on top of the digital control system. It monitors the performance index of the systems
and switches between the modes according to simple rules. Note that the controller is
guaranteed to keep the system in G assuming the worst-case dynamics f for x in each



mode. Due to monotonicity this implies that it will work also for any better admissible
behavior of x, probably with less switches. We believe the this approach represents a
promising direction for adaptive scheduling of digital control systems.

3 Constant Slopes

In this section we study the special case where f q is constant for each q. This case is
interesting for several reasons. First, since we assume that the evolution of each variable
is monotone inside a mode, systems with constant slopes exhibit the same qualitative
phenomena as the more general ones. The constant derivatives can be interpreted as
an upper-approximation of the real fq or alternatively, when the system is linear, i.e.
fq(x) = Aqx with Aq a diagonal matrix, looking at log x we obtain a constant-slope
system. From a computational point of view, such systems admit effective computation
of successors and predecessors using linear algebra without numerical or symbolic in-
tegration and hence the algorithms can be easily incorporated into tools such as HyTech
[HHW97], and there is even a hope that they will terminate after a finite number of
steps (see below).

Constant slope systems are defined essentialy by assigining a constant vector field
cq = (c1, . . . , cn) to every mode q. However we need an additional saturation con-
struct to prevent variables from becoming negative.6 Let 
x� = max{0, x} and 
x� =
(
x1�, . . . , 
xn�). For every constant c define the function

c̄(x) =
{

c if x > 0 or c > 0
0 otherwise

and let c̄(x) be its pointwise extension, that is, c̄(x) = (c̄1(x1), . . . , c̄n(xn)). The evo-
lution of x in a mode is then defined by an equation of the form ẋ = c̄(x). We assume
further that all slope vectors are integer and that so is d (rational constants can be trans-
formed into integers by changing the time-scale).

When f(x) = c̄(x) the definition of the predecessor operator specializes into:

Π(c,d)(H) = {x : ∃t ≥ d 
x + ct� ∈ H}.

Claim 3 (Preservation of Polyhedra) 1) If H is a convex polyhedron so is Π(c,d)(H).
2) When c is positive, and H is a hyper-rectangle with integer endpoints, so are R−1(H)
and Π(c,d)(H).

Sketch of Proof: 1) Follows from the definition of Π and the elimination of t (this
closure of polyhedra under constant-derivative time passage underlies the algorithmic
verification of timed automata and “linear” hybrid automata [ACH+95]). 2) Let c =
(c1, . . . , cn) be a positive vector and H =

∧
i xi ≤ mi. To be in Π(c,d)(H) one must

ensure for every xi that xi + ci · d ≤ mi and hence the operator transforms H into∧
i xi ≤ mi − cidi.

As we will see later, the second claim is not true for non-positive c.

6 This is not needed if we use the logarithmic interpreation.



Corollary 1 (Effectiveness and Convergence). 1) The steps of Algorithms 1 (RDS)
and 2 (MMHA) can be effectively implemented. 2) Algorithm 1 terminates after finitely
many steps and the problem of finding the maximal invariant set under update strategies
for constant-slope RDS is algorithmically solvable.

Sketch of Proof: Effectiveness follows from the definition of the algorithms and the
distributivity of Π over union. For convergence, Algorithm 1 performs a monotone
iteration over the finite class of sets which can be written as unions of hyper-rectangles
with integer endpoints and hence it reaches a fixed-point after finitely many steps.

The problem of finding switching strategies for a MMHA with different slopes in
every mode is much more difficult. A first observation is that a necessary condition for
having such a switching policy is the existence of non-negative constants {λq}q∈Q such
that

∑
q∈Q λq = 1 and ∑

q∈Q

λqcq ≤ 0 (2)

The reason is that if we look at the long term behavior of the system under any switching
strategy and let λq be the average time spent at state q, then the sum in (2) represents the
total “average direction” of the system which must be non-positive for the system not to
diverge. The condition is not sufficient, though, because it ignores the saturation at zero
and the delay. To illustrate the algorithm consider a system in R

2 with two states and
slope vectors c1 = (a1,−b1) and c2 = (−a2, b2) such that a1, b1, a2, b2 are positive.
We assume d = 1 and G = [0, m]2. The necessary condition for controllability is
b2/a2 < b1/a1. After the first iteration we obtain:

F 1
1 = x1 ≤ m − a1

x2 ≤ m
F 1

2 = x1 ≤ m
x2 ≤ m − b2

which expresses the obvious condition that the diverging variables in each state (x1 in
the first and x2 in the second) do not go beyond m within 1 unit of time. The second
iteration gives

F 2
1 =

x1 ≤ m − a1

b1x1 + a1x2 ≤ (b1 + a1)m − a1b2

and

F 2
2 =

x2 ≤ m − b2

b2x1 + a2x2 ≤ (a2 + b2)m − a1b2

The set F 2
1 is a subset of F 1

1 obtained by removing points from which it is possible to
stay in G and switch from q1 to q2 but only to points outside F 1

2 . These are points where
x2 is larger than m− b2 and cannot go below it before x1 goes above m, as can be seen
by re-arranging the second inequality:

m − x1

a1
≥ x2 − (m − b2)

b1

The interpretation of F 2
2 is similar. While for two modes in R

2 the algorithm always
converges, the question whether it terminates in higher dimensions is still open.
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Fig. 5. Applying Algorithm 2 to a two-dimensional system with m = 10 and two modes c1 =
(5,−6) and c2 = (−3, 2). We omit from the figure successive applications of the same Π(c,1)

operator. The inequality 2x1 + 3x2 ≤ 40 in F 2
2 guarantees that x1 will become smaller than 5

before x2 becomes greater than 10.



It should be emphasized that, although the question of whether F can be computed
exactly is an intriguing theoretical question about hybrid automata, its relevance for the
practical application of the approach presented in this paper is marginal, because we al-
ready work with approximative performance measures. Other interesting mathematical
questions concerning this model are whether there is an alternative, more “analytical”,
way to characterize F and whether some strategies lead to periodic behaviors.

4 Implementation

We have implemented Algorithm 2 for the case of constant slopes. In order to gain in-
sight concerning possible decidability, we have used exact rational arithmetics. We have
tried examples with up to 4 dimensions, and in all of them the algorithm terminated. An
example of the input file and a fragment of the output for a 3-dimensional system ap-
pears below. In this example the maximal invariant set is empty but the iteration goes
through rather complex unions of convex polyhedra before converging. The software is
available from the authors upon request. We are currently investigating the possibility
of implementing the algorithm for more general dynamics by modifying the control
synthesis algorithm of d/dt [ABD+00].

Input file:

3 % number of dimensions

10 10 10 % intial X

1 % delay constant

3 % no of modes

3 2 -1 % slope for state 1

2 -3 4 % slope for state 2

-2 4 3 % slope for state 3

Output file:

**** iteration #1 ******

--------- F1 -------------
x_1 <= 7

& x_2 <= 8
& x_3 <= 10

--------- F2 -------------
x_1 <= 8

& x_2 <= 10
& x_3 <= 6

--------- F3 -------------
x_1 <= 10

& x_2 <= 6
& x_3 <= 7

**** iteration #2 ******

[...]

**** iteration #5 ******
--------- F1 -------------

3 x_1 + 2 x_2 <= 20
& 3 x_1 + 2 x_3 <= 20
& 2 x_1 + x_2 <= 13
& x_1 + 3 x_3 <= 9
& 4 x_2 + 3 x_3 <= 7
& x_2 + 2 x_3 <= 3

<UNION>
x_1 + 3 x_3 <= 2

& x_2 + 2 x_3 <= 7
<UNION>

3 x_1 + 2 x_2 <= 14
& 3 x_1 + 2 x_3 <= 16
& 2 x_1 + x_2 <= 9
& x_1 + 3 x_3 <= 10
& 4 x_2 + 3 x_3 <= 10
& x_2 + 2 x_3 <= 5

<UNION>
- x_1 = 0

& x_3 <= 1
& x_2 <= 8

<UNION>
3 x_1 + 2 x_2 <= 16

& 3 x_1 + 2 x_3 <= 8
& 2 x_1 + x_2 <= 9
& x_1 + 3 x_3 <= 5
& 4 x_2 + 3 x_3 <= 23
& x_2 + 2 x_3 <= 7

<UNION>
3 x_1 + 2 x_2 <= 9

& 3 x_1 + 2 x_3 <= 13
& 2 x_1 + x_2 <= 5
& x_1 + 3 x_3 <= 16
& x_1 <= 2
& 4 x_2 + 3 x_3 <= 27
& x_2 + 2 x_3 <= 13
[...]
**** iteration #7 ******
--------- F1 -------------
<EMPTY>
--------- F2 -------------
<EMPTY>
--------- F3 -------------
<EMPTY>



5 Conclusions

The models presented in this paper capture natural, if not universal, situations of control
under resource constraints: you have to handle many affairs simultaneously but your
resources are insufficient for handling all of them properly. The natural solution is to
invest your attention in the more burning issues, while letting the others deteriorate a
bit, hoping that they will not deteriorate too much until you can pay them attention
again. Our models provide methods, based on hybrid automata, for checking whether
such a solution is feasible. We hope that such models and techniques will proliferate
eventually into engineering practice.
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