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Computing Reachable Sets : An Introduction

Oded Maler

Abstract— This paper provides a tutorial introduction to
reachability computation, a new class of computational tech-
niques developed in order to export verification technology
toward continuous and hybrid systems.

I. INTRODUCTION

This paper surveys progress made during the last decade in

solving the following problem that we define first in a quasi-

formal manner. Consider a continuous dynamical system

with input defined over some bounded state space X , and

governed by a differential equation of the form

ẋ = f(x, v)

where v ranges over some pre-specified set of admissible

input signals. Given a set X0 ⊂ X , compute all the

states visited by trajectories of the system starting from any

x0 ∈ X0. The significance of this question to control is the

following: consider a controller that has been synthesized and

connected to its plant and which is subject to disturbances

modeled by v. Computing the reachable set allows one to

verify that all the behaviors of the closed-loop system stay

within a desired range of operation and do not reach a

forbidden region of the state space. Proving such properties

for systems subject to uncontrolled interaction with the

external environment is the main issue in verification of

programs and digital hardware from which this question

originates.

Before going further, let us try to situate this problem

in the larger control context. After all, control theory and

practice do exist already for many years without asking this

question nor trying to answer it. This question distinguishes

itself from traditional control questions in the following

respects:

1) It is essentially a verification rather than a synthesis

question, that is, the controller is assumed to exist

already. As we shall see, however, variants of reacha-

bility computation can be useful for synthesis as well;

2) External disturbances are modeled explicitly as a set

of admissible inputs, which is not the case for certain

control formulations.1 These disturbances are not mod-

eled stochastically but set-theoretically, which makes

the system in question look like a system defined by

differential inclusions [8];

3) The information obtained from reachability computa-

tion covers also the transient behavior of the system

in question, and not only its steady-state behavior.
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1See [32] for a short discussion of this intriguing fact.

This property makes the approach particularly attrac-

tive for the analysis of hybrid (discrete-continuous)

systems where the applicability of analytic methods

is rather limited. Such hybrid models can express, for

example, deviation from idealized linear models due

to constraints and saturation as well as other switching

phenomena;

4) The notion of to compute has a more effective flavor,

that is, to develop algorithms that produce a repre-

sentation of the set (or an approximation of it) with

which one can do something, for example, check for

intersection with a bad set of states.

Perhaps the most intuitive explanation of what is going

on in reachability computation can be given in terms of

numerical simulation, which is by far the most commonly-

used approach for validating complex control systems. Each

individual simulation consists of picking one initial condition

and one input stimulus (random, periodic, step, etc.), produc-

ing the induced trajectory using numerical integration and

observing whether this trajectory behaves properly. Ideally

one would like to repeat this procedure with all possible

disturbances which are uncountably many. Reachability com-

putation achieves the same effect as exhaustive simulation by

exploring the state space in a “breadth-first” manner: rather

than running each individual simulation to completion and

then starting a new one, we compute at each time step all

the states reachable by all possible inputs. This set-based

simulation is, of course, more costly than the simulation of

individual trajectories but provides more confidence in the

correctness of the system.

The paper is focuses on one popular approach to reachabil-

ity computation based on discretizing time and performing

a kind of set-based numerical integration. Alternative ap-

proaches are mentioned briefly at the end. The rest of the

paper is organized as follows. In Section 2 we give the basic

definitions of reachability notions used throughout the paper.

Section 3 is presents the principles of set-based computation

as well as basic issues related to the computational treat-

ment of sets in general and convex polytopes in particular.

Section 4 is devoted to reachability techniques for linear and

affine dynamical system in both discrete and continuous time,

a domain in which a lot of progress has been made recently.

The extension of these techniques to non-linear and hybrid

systems, an active are of research, is discussed in Section 5.

We conclude with some discussion of related work. The aim

of this paper is to provide a synthetic introduction to the

topic rather than an exhaustive survey, hence it is somewhat

biased toward techniques close to the author’s own research.
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Fig. 1. Trajectories induced by input signals from x0 and the set of
reachable states.

II. PRELIMINARIES

We assume a time domain T = R+ and a state space

X ⊆ R
n. A trajectory is a measurable partial function ξ :

T → X defined over all T (infinite trajectory) or over an

interval [0, t] ⊂ T (a finite trajectory). We use the notation

T (X) for all such trajectories and |ξ| = t to denote the

length (duration) of finite signals. We consider an input space

V ⊆ R
m and likewise use T (V ) to denote input signals

ζ : T → V . A continuous dynamical system S = (X,V, f)
is a system defined by the differential equation

ẋ = f(x, v). (1)

We say that ξ is the response of f to ζ from x if ξ is the

solution of (1) for initial condition x and v(t) = ζ. We

denote this fact by ξ = fx(ζ) and also as

x
ζ/ξ
−→ x′

when |ζ| = t and ξ(t) = x′. In this case we say that x′ is

reachable from x by ζ within t time and write it as

R(x, ζ, t) = {x′}.

This notion speaks of one initial state, one input signal and

one time instant and its generalization for a set X0 of initial

states, for all time instants in an interval I = [0, t] and for

all admissible input signals in T (V ) yields the definition of

the reachable set:

RI(X0) =
⋃

x∈X0

⋃

t∈I

⋃

ζ∈T (V )

R(x, ζ, t).

Figure 1 illustrate the induced trajectories and the reachable

states for the case where X0 = {x0}. We will use the same

RI notation also when I is not an interval but an arbitrary

time set. For example R[1..r](X) can denote either the states

reachable from X by a continuous-time systems at discrete

time instants, or states reachable by a discrete-time system

during the first r steps.

Note that our introductory remark equating the relation be-

tween simulation and reachability computation to the relation

between depth-first and breadth-first exploration of the space

of trajectories corresponds to the commutativity of union:
⋃

t∈I

⋃

ζ∈T (V )

R(x, ζ, t) =
⋃

ζ∈T (V )

⋃

t∈I

R(x, ζ, t).

III. PRINCIPLES

In what follows we lay down the principles of one of the

most popular approaches for computing reachable sets which

is essentially a set-based extension of numerical integration.

A. The Abstract Algorithm

The semigroup property of dynamical systems underlies

numerical integration which can be viewed as an incremental

approximate computation of the solution of the correspond-

ing differential equation. The reachability operator also ad-

mits this property which can be expressed as:

R[0,t1+t2](X0) = R[0,t2](R[0,t1](X0)).

Hence, the computation of RI(X0) for an interval I = [0, L]
can be achieved by picking a time step r and executing the

following algorithm:

Algorithm 1 (Abstract Incremental Reachability):

Input: A set X0 ⊂ X
Output: Q = R[0,L](X0)

P := Q := X0

repeat i = 1, 2 . . .
P := R[0,r](P )
Q := Q ∪ P

until i = L/r

Remark: When interested with reachability for unbounded

horizon, the termination condition i = L/r should be

replaced by P ⊆ Q, that is, the newly-computed reachable

states are included in the set of states already computed.

In this case the algorithm is not guaranteed to terminate.

Throughout most of this survey we focus on reachability

problems for a bounded time horizon.

B. Representation of Sets

The most urgent thing needed in order to convert the above

scheme into a working algorithm is to choose a class of

subsets of X that can be represented in the computer and be

subject to the operations appearing in the algorithm. This is a

very important issue, studied extensively in computer graph-

ics and computational geometry, but less so in the context of

dynamical systems and control, hence we elaborate on it a

bit, bringing in, at least informally, some notions related to

effective computation.

Mathematically speaking, subsets of R
n are defined as

those points that satisfy some predicate. Such predicates are

syntactic descriptions of the set and the points that satisfy

them are the semantic objects we are interested in. The

syntax of mathematics allows one to define weird types of

sets which are not subject to any useful computation. In order

to compute we need to restrict ourselves to (syntactically

characterized) classes of sets, that satisfy the following

properties:

1) Every set P in the class C admits a finite representa-

tion;
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Fig. 2. Intersecting two rectangles represented as 〈x, x〉 and 〈y, z〉 to

obtain a rectangle represented as 〈z, z〉. The computation is done by letting
z1 = max(x1, y1), z2 = max(x2, y2), z1 = min(x1, y1) and z2 =

min(x2, y2).

2) Given a representation of a set P ∈ C and a point x, it

is possible to check in a finite number of steps whether

x ∈ P .

3) For every operation ◦ on sets that we would like to

perform and every P1, P2 ∈ C we have P1 ◦ P2 ∈ C.

Moreover, given representations of P1 and P2 it should

be possible to compute a representation of P1 ◦ P2.

The latter requirement is often referred to as the (effective)

closure of C under ◦. This requirement can later be relaxed

into C containing a reasonable approximation of P1 ◦ P2.

To illustrate these notions, let us consider first a negative

example of a class of sets admitting a finite representation

but not satisfying requirements 2 and 3 above. The reachable

set of a linear system ẋ = Ax can be “computed” and

represented by a finite formula of the form

RI(X0) = {x : ∃x0 ∈ X0 ∃t ∈ I x = x0e
At},

however this formula is not very useful because, in the

general case, checking the membership of a point x in this

set amounts to solving the reachability problem itself! The

same holds for checking whether this set intersects another

set. On the other hand, a set defined by a quantifier-free

formula of the form

{x : g(x) ≥ 0},

where g is some computable function admits, in principle2

a membership check for every x: just evaluate g(x) and

compare with 0.

As a further illustration consider one of the simplest

classes of sets, hyper-rectangles with rational endpoints.

Such a hyper-rectangle can be represented by its leftmost and

rightmost corners x = (x1, . . . , xn) and x = (x1, . . . , xn).
The set is defined as all points x = (x1, . . . , xn) satisfying

n∧

i=1

xi ≤ xi ≤ xi,

a condition which is easy to check. As for operations,

this class is effectively closed under translation (just add

the displacement vector to the endpoints), dilation (mul-

tiply the endpoint by a constant) but not under rotation.

2Modulo round-off errors and other pathological issues.

As for Boolean set-theoretic operations, it is not hard to

see that rectangles are effectively closed under intersec-

tion by component-wise max of their leftmost corners and

component-wise min of their rightmost corners, see Figure 2.

However they are not closed under union and complemen-

tation. This is, in fact, a general phenomenon that we will

encounter in reachability computations, where the basic sets

that we work with are convex, but their union is not and

hence the reachable sets computed by concrete realizations

of Algorithm 1 will be stored as unions (lists) of convex sets.

As mentioned earlier, sets can be defined using combina-

tions of inequalities and, not surprisingly, linear inequalities

play a prominent role in the representation of some of

the most popular classes of sets. Most of our presentation

will use convex polytopes, bounded polyhedra definable as

conjunctions of linear inequalities. Let us mention, though,

that Boolean combinations of polynomial inequalities define

the semi-algebraic sets, which admit some interesting math-

ematical and computational results. Their algorithmics is,

however, much more complex than that of polyhedral sets.

The only class of sets definable by nonlinear inequalities

for which efficient algorithms have been developed is the

class of ellipsoids, convex sets defined as deformations of

a unit circle by a (symmetric and positive definite) linear

transformation. Ellipsoids can be finitely represented by their

center and the transformation matrix. Like polytopes, they

are closed under linear transformations, a fact that facilitates

their use in reachability computation for linear systems.

Ellipsoids differ from polytopes by not being closed under

intersection but such intersections can be approximated to

some extent.

C. Convex Polytopes

In the following we list some facts concerning convex

polytopes through which we will describe basic reachability

algorithms. These objects, which underlie other domains

such as linear programming, admit a very rich theory of

which we only scratch the surface. Readers interested in

more details and precision may consult textbooks such as

[34].

A linear inequality is an inequality of the form a · x ≤
b with a being an n-dimensional vector. The set of all

points satisfying a linear inequality is called a halfspace.

Note that the relationship between halfspaces and linear

inequalities is not one-to-one because any inequality of the

form ca ·x ≤ cb, with c positive, will represent the same set.

However using some conventions one can establish a unique

representation for each halfspace. A convex polyhedron is an

intersection of finitely many halfspaces. A convex polytope

is a bounded convex polyhedron. A convex combination of

a set {x1, . . . , xl} of points is any

x = λ1x1 + · · · + λlxl

such that
l∑

i=1

λi = 1.
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Fig. 3. Computing AP from P by applying A to the vertices.

The convex hull of a set P̃ of points, denoted by P =
conv(P̃ ) is the set of all convex combinations of its elements.

Convex polytopes admit two types of canonical representa-

tions:

1) Vertices: each convex polytope P admits a finite min-

imal set P̃ such that P = conv(P̃ ). The elements of

P̃ are called the vertices of P .

2) Inequalities: each convex polytope P admits a mini-

mal set H = {H1, . . . ,Hk} of halfspaces such that

P =
⋂k

i=1 Hi. This set is represented syntactically as

conjunctions of inequalities

k∧

i=1

aix ≤ bi.

Some operations are easier to perform on one representation

and some on the other. Testing membership x ∈ P is easier

using inequalities (just evaluation) while using vertices rep-

resentation, one needs to solve a system of linear equations

to find the λ’s. To check non-empty intersection P1∩P2, one

can first combine syntactically the inequalities of P1 and P2

but in order to check whether the obtained set is non-empty,

these inequalities should be brought into a canonical form.

On the other hand conv(P̃ ) is always non-empty for any

non-empty P̃ . Various algorithm can convert between vertex

and inequalities representation.

The most interesting property of convex polytopes, which

is also shared by ellipsoids, is the fact that they are closed

under linear operators, that is, if P is a convex polytope

(resp. ellipsoid) so is the set

AP = {Ax : x ∈ P}

and this property is evidently useful for set-based com-

putation, and the operation can be carried out using both

representations. If P = conv({x1, . . . , xl}) then AP =
conv({Ax1, . . . , Axl}). We leave the computation based on

inequalities as an exercise to the reader.

IV. LINEAR SYSTEMS

Naturally, the most successful results on reachability com-

putation have been obtained for systems with linear and

affine dynamics. We will start by explaining the treatment

of autonomous systems in discrete time, then move to

continuous time, systems with bounded inputs and finally

mention some recent complexity improvements that allow

one to analyze very large systems.

A. Discrete-Time Autonomous Systems

Consider a system defined by the recurrence equation

xi+1 = Axi.

In this case

R[0..L](X) =
L⋃

i=0

AiX

and the abstract algorithm can be realized as follows:

Algorithm 2 (Discrete-Time Linear Reachability):

Input: A set X0 ⊂ X represented as conv(P̃0)
Output: Q = R[0..L](X0) represented as a list

{conv(P̃0), . . . , conv(P̃L)}

P := Q := P̃0

repeat i = 1, 2 . . .
P := AP
Q := Q ∪ P

until i = L

The complexity of the algorithm, assuming |P̃0| = m0 is

O(m0LM(n)) where M(n) is the complexity of matrix-

vector multiplication in n dimensions which is O(n3) for

simple algorithms and slightly less for fancier algorithms. As

noted, this algorithm can be applied to other representations

of polytopes, to ellipsoids and any other class of sets closed

under linear transformation. If the purpose of reachability

is to detect intersection with a set B of bad states we can

weaken the loop termination condition into (i = L) ∨ (P ∩
B 6= ∅) where the intersection test is done by transforming

P into inequalities representation. If we consider unbounded

horizon and want to detect termination we need to check

whether the newly-computed P is included in Q which can

be done by “sifting” P through all the polytopes in Q and

checking whether it goes out empty. This is not a simple

operation but can be done. In any case, there is no guarantee

that this condition will ever become true.3

B. Continuous-Time Autonomous Systems

The approach just described can be adapted to continuous-

time systems of the form

ẋ = Ax

as follows. First choose a time step r and compute the

corresponding matrix exponential

A′ = eAr

and then use the discrete time reachability operator to com-

pute P ′ = R{r}(P ) = A′P , that is, the successors of P
at time r. Finally, we can use one of several techniques to

compute R[0,r](P ) from P and P ′. Let us mention three

approaches.

3We do not consider here numerical errors due to the use of floating-point
numbers nor alternative unbounded precision of rational numbers.
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1) Make r Small: This approach, used implicitly by [29],

just makes r small enough so that subsequent sets overlap

each other and the difference between their unions and

the continuous-time reachable set vanishes. This is the set-

based version of the approach which considers the outcome

of numerical integration to be the “real” continuous-time

trajectory.

2) Bloating: Let P and P ′ be represented by the sets of

vertices P̃ and P̃ ′ respectively. The set P = conv(P̃ ∪ P̃ ′)
is a good approximation of R[0,r](P ) but since in general,

we would like to obtain an over approximation (so that if

the computed reachable sets does not intersect with the bad

set, we are sure that the actual set does not either) we can

bloat this set to ensure that it is an outer approximation of

R[0,r](P ).
This can be done, for example, by pushing the facets of P

outward by a constant derived from the Taylor approximation

of the curve [4]. To do this we need to transform P into an

inequalities representation . An alternative approach [12] is

to find this over approximation via an optimization problem.

Note that for autonomous systems it is sufficient to compute

the over approximation once for conv(P̃0 ∪ P̃1), obtain an

over approximation of R[0,r](X0) and then apply the linear

transformation A to the obtained set.

3) Adding an Error Term: The last approach that we

mention is particularly interesting because it can be used,

as we shall see later, also for non-autonomous systems. Let

A and B be two subsets of R
n. Their Minkowski sum is

defined as

A ⊕ B = {a + b : a ∈ A ∧ b ∈ b}.

The maximal distance between the sets Rr(P ) and R[0,r](P )
can be estimated globally. Then, one can fix an “error ball” E
(could be a polytope for that matter) of that radius and over-

approximate R[0,r](P ) as AP ⊕ E. Since this computation

is equivalent to computing reachable set of the discrete time

system xi+1 = A′xi + e with e ∈ E, we need to use

the techniques for systems with input described in the next

section.

C. Discrete-Time Systems with Input

We can now move, at last, to systems of the form

xi+1 = Axi + Bvi

where v ranges over a bounded convex set V . The one-step

successor of a set P is defined as

P ′ = {Ax + Bv : x ∈ P, v ∈ V } = AP ⊕ BV.

Unlike linear operations that preserve the number of vertices

of a convex polytope, the Minkowski sum increases their

number and its successive application may prohibitively

increase the representation size. Consequently, methods for

reachability under disturbances need some compromise be-

tween exact computation that leads to explosion, and ap-

proximations which keep the representation size small but

may accumulate errors to the point of becoming useless,

a phenomenon also known in numerical analysis as the

P ⊕ V

P

V

Fig. 4. Adding a disturbance polytope V to a polytope P leads to a
polytope P ⊕ V with more vertices. The phenomenon is more severe in
higher dimensions.

P ′ ⊃ P ⊕ V

P
V

Fig. 5. Pushing each face of P by the element of V which pushes it to
the maximum. The result will typically not have more facets or vertices but
it is a proper superset of P ⊕ V (shaded triangles represent the error).

“wrapping effect” [25], [26]. We illustrate this tradeoff using

three approaches.

1) Using Vertices: Assume both P and V are convex

polytopes represented by their vertices, P = conv(P̃ ) and

V = conv(Ṽ ). Then it is not hard to see that

AP ⊕ BV = conv({Ax + Bv : x ∈ P̃ , v ∈ Ṽ }).

Hence, applying the affine transformation to all combinations

of vertices in P̃ × Ṽ we obtain all the candidates for vertices

of P ′ (see Figure 4). Of course, not all these are actual

vertices of P ′ but there is no known efficient procedure to

detect which are and which are not. Moreover, it may turn out

that the number of actual vertices indeed grows in a super-

linear way. Avoiding the elimination of fictitious vertices and

keeping all these points as a representation of P ′ will lead

to |P̃ | · |Ṽ |k vertices after k steps, a completely unacceptable

situation.

2) Pushing Facets: This approach over-approximates the

reachable set while keeping its complexity more or less fixed.

Assume P to be represented in (or converted into) inequality

representation. For each supporting halfspace Hi defined by

aix ≤ bi, let vi ∈ V be the disturbance vector which pushes

Hi in the “outermost” way, that is, the one which maximizes

the product v ·ai with the normal to Hi. In the discrete time

setting described here, vi ∈ Ṽ for every i. We then apply to

each Hi the transformation Ax + Bvi and the intersection

of the hyprplanes thus obtained is an over-approximation of

the successors (see Figure 5).

This approach has been developed first in the context

of continuous time, starting with [35] who applied it to

supporting planes of ellipsoids and then adapted in [15]

for polytopes. It is also similar in spirit to the face lifting

technique of [16]. In continuous time, the procedure of find-

ing each vi is a linear program derived from the maximum

principle of optimal control.

3) Using Zonotopes: Zonotopes, a special class of cen-

trally symmetric polytopes, first proposed in the verification
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context by [17], provide a compromise between potentially-

exponential growth in representation and accumulated ap-

proximation error. This is the only class of subsets of R
n

(except disconnected points) which is closed under both

linear operations and Minkowski sum.

A zonotope Z is a set that can be defined as the Minkowski

sum of a finite number of line segments. Equivalently it

can be seen as the image of a hypercube by an affine

transformation. A zonotope is represented as

(u, 〈g1, . . . , gm〉)

where u ∈ R
n is its center and g1, . . . , gm ∈ R

n are its

generators, see Figure 6. Semantically it defines the set

Z = {u +
m∑

j=1

αjgj , αj ∈ [−1, 1]}.

v3

v2

v1

Fig. 6. A planar zonotope with three generators.

It is not hard to see that AZ is represented by

(Au, 〈Ag1, . . . , Agm〉) and that the sum Z⊕Z ′ with another

zonotope Z ′ = (u′, 〈g′1, . . . , g
′
m′〉) is represented as (u +

u′, 〈g1, . . . , gm, g′1, . . . , g
′
m′〉) This is an additive growth in

the representation compared to the potentially-multiplicative

growth using vertex-based representation. Hence, in the

recurrence

Pi = APi−1 ⊕ BV,

where P0 is a zonotope with m0 generators and V is a

zonotope with m generators, the number of generators after

k steps will be m0 + mk.

Despite this advantage, it may become impractical to apply

A at every step to a set with an increasing number of

generators. Moreover, performing operations such as inter-

section on zonotopes with thousands of generators is not

simple either. The following observation [23], [19] alleviates

the first problem and restricts the application of the linear

transformation A to a fixed number of generators at each

step. Let us look at two consecutive sets Pk and Pk+1:

Pk = AkP0 ⊕ Ak−1BV ⊕ Ak−2BV ⊕ . . . ⊕ BV

and

Pk+1 = Ak+1P0 ⊕ AkBV ⊕ Ak−1BV ⊕ . . . ⊕ BV .

As one can see, these two sets “share” a lot of com-

mon generators that need not be recomputed. And indeed,

the algorithm described in [19] computes the sequence

P0, P1, . . . , Pk in O(k(m0+m)M(n)) time. A prototype im-

plementation of that algorithm could compute the reachable

set after 1000 steps for linear systems with 200 state variables

d1

x1
X10X00

X01 X11

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1

ẋ ∈ A00 · x ⊕ V00 ẋ ∈ A10 · x ⊕ V10

ẋ ∈ A01 · x ⊕ V01 ẋ ∈ A11 · x ⊕ V11

x2 ≥ d2
d2

x2

Fig. 7. Hybridization: a nonlinear system is over-approximated by a hybrid
automaton with an affine dynamics in each state. The transition guards
indicate the conditions for switching between neighboring linearizations.

within 2 minutes. In order to reduce space complexity and

facilitate operations, each Pi is tightly over-approximated by

a simpler type of set, but this object is not used to compute

Pi+1 and hence the wrapping effect is avoided.

V. NONLINEAR AND HYBRID SYSTEMS

Given that the reachability problem for linear systems can

be considered as solved, a major challenge is to extend it

to richer classes of systems admitting hybrid or nonlinear

dynamics. We sketch one possible line of attack based on

the hybridization of [7]. Consider a nonlinear system ẋ =
f(x) and a partition of its state space, for example into

cubes (see Figure 7). For each cube q one can compute a

linear function Aq and an error polytope Vq such that for

every x ∈ q, f(x) ∈ Aqx ⊕ Vq. In other words, Aq is a

local linearization of f with error bounded in Uq. We can

now build a hybrid automaton (a piecewise-affine dynamical

system) whose states correspond to the cubes, and which

makes transitions (mode switching) from q to q′ whenever

x crosses the boundary between them (see Figure 7). The

automaton provides an over approximation of the nonlinear

system.

To perform reachability computation on the automaton one

can apply the linear techniques described in the preceding

section using Aq and Vq, as long as the reachable states re-

main within cube q. Whenever some Pi reaches the boundary

between q and q′ we need to intersect it with the switching

surface (the transition guard) and use the obtained result as

an initial set for reachability computation in q′ using Aq′

and Vq′ . Let us mention some difficulties in realizing this

scheme:

• The intersection of a zonotope with a hyperplane is not

a zonotope, hence it should be approximated [18] and

this may lead to some wrapping effects in subsequent

transitions. Moreover, since the dynamics changes, one

cannot use anymore the trick of [19] for applying the

dynamics to a small set of generators;

• The intersection of the reachable set with the transition

guard may be distributed over several iterations and an

intelligent way to manage the generated exploration tree

should be found;

• The size of the partition of X is, of course, exponential

in the dimension, hence care should be taken in order to
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avoid state explosion. As suggested in [7], the partition

can be generated on-the-fly as the reachability com-

putation evolves. Other potential optimizations include

control of the cube size in each dimension, restricting

the hybridization to a small set of dimensions which is

sufficient to render the system linear, and more.

We may conclude that the extension of reachability com-

putation to nonlinear and hybrid systems is a challenging

problem which is still waiting for several conceptual and

algorithmic breakthroughs. We believe that the ability to

perform reachability computation for nonlinear systems of

non-trivial size can be very useful not only for control sys-

tems but also for other application domains such as analog

circuits and systems biology. In models coming from Biology

uncertainty in parameters and environmental condition is a

rule, not an exception, and such a set-based simulation can

be very beneficial.

VI. RELATED WORK

The idea of set-based numerical integration has several

origins. In some sense it can be seen as related to those

parts of numerical analysis, for example interval analysis,

that give “robust” set-based results to numerical computa-

tion to compensate for numerical errors. This motivation

is slightly different from verification and control where the

uncertainty is attributed to an external environment not to

the computation. The idea of applying set-based computation

to hybrid systems was among the first contributions of

the verification community to hybrid systems research [1]

but it was restricted to hybrid automata with very simple

continuous dynamics (a constant derivative in each state)

where future evolution can be computed without numerical

integration. To the best of our knowledge, the first explicit

mention of combining numerical integration with approxi-

mate representation by polyhedra for verification purposes

appeared in [21].

The polytope-based techniques described here were de-

veloped independently in [11], [12], [13] and in [4], [15].

Among other similar techniques that we have not described

in detail, let us mention again the extensive work on el-

lipsoids [28], [29], [10], [27] and another family of methods

[33] which uses techniques such as level sets, inspired by nu-

merical solution of partial differential equations, to compute

and represent the reachable states. Among the symbolic (non

numerical) approaches to the problem let us mention [30]

who compute an effective representation of the reachable

states for a restricted class of linear systems. Attempts to

scale-up reachability techniques to higher dimensions using

compositional methods that analyze an abstract approximate

systems obtained by projections on subsets of the state

variables are described in [22] and [6].

The interpretation of V as the controller’s output rather

than disturbance transforms the reachability problem into

some variant of controller synthesis [31], [32]. Hence it is not

surprising that the optimization-based approach developed

in [9] for synthesis, has also been applied to reachability

computation. On the other hand, reachability computation

can be used synthesize controllers in the spirit of dynamic

programming, as has been demonstrated in [5] where a

backward reachability operator has been used as part of an

algorithm for synthesizing switching controllers.

Finally let us mention some alternative approaches for

verifying continuous and hybrid systems. One family of

approaches consists of trying to approximate the system by a

simpler one, typically a finite-state automaton [3]. This can

be done simply by partitioning the state space into cubes

and defining transitions between adjacent cubes connected

by trajectories, or by more modern methods, inspired from

the verification of programs, such as predicate abstraction

and counter-example based refinement [2], [14]. Another

class of methods, called simulation-based, for example [24],

[20], attempts to obtain the same effect as reachability

computation by finitely many simulations, not necessarily

of extremal points as in the methods described in this paper.

Such techniques can be prove superior for nonlinear systems

whose dynamics does not preserve convexity.
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