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We provide a tutorial introduction to reachability computation, a class of computational techniques
that exports verification technology toward continuous and hybrid systems. For open under-determined
systems, this technique can sometimes replace an infinite number of simulations.

1 Introduction

The goal of this article is to introduce the fundamentals of algorithmic verification of continuous dy-
namical systems defined by differential equations and of hybrid dynamical systems defined by hybrid
automata which are dynamical systems that can switch between several modes of continuous dynamics.
There are two types of audience that I have in mind. The first is verification-aware computer scientists
who know finite-state automata and their algorithmic analysis. For this audience, the conceptual scheme
underlying the presented algorithms will be easy to grasp as it is mainly inspired by symbolic model-
checking of non-deterministic automata. Putting aside dense time and differential equations, dynamical
systems can be viewed by this audience as a kind of infinite-state reactive program defined over the so-
called real numbers. For this reason, I will switch from continuous to discrete-time discourse quite early
in the presentation.

The other type of audience is people coming from control or other types of engineering and applied
mathematics. These are relatively well versed in the concrete mathematics of continuous systems and
should first be persuaded that the verification question is interesting, despite the fact that airplanes can
fly (and theoretical papers can be written) without it. In my attempts to accommodate these two types
of audience, I have written some explanation that will look trivial to some but this cannot be avoided
while trying to do genuine inter-disciplinary research1 (see also [65] for an attempt to unify discrete
and continuous systems and [69] for some historical reflections). My intention is to provide a synthetic
introduction to the topic rather than an exhaustive survey, hence the paper is strongly biased toward
techniques closer to my own research. In particular, I will not deal with decidability results for hybrid
systems with simplified dynamics and not with deductive verification methods that use invariants, barriers
and Lyapunov functions. I sincerely apologize to those who will not find citations of their relevant work.

The rest of the paper is organized as follows. Section 2 describes the problem and situates it in
context. Section 3 gives the basic definitions of reachability notions used throughout the paper. Section 4
presents the principles of set-based computation as well as basic issues related to the computational
treatment of sets in general and convex polytopes in particular. Section 5 is devoted to reachability
techniques for linear and affine dynamical systems in both discrete and continuous time, the domain

1The need to impress the members of one’s own community is perhaps the main reason for the sterility of many attempts to
do inter-disciplinary research.
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where a lot of progress has been made in recent years. The extension of these techniques to hybrid and
non-linear systems, an active area of research, is discussed in Section 6. I conclude with some discussion
of related work and new research directions.

2 The Problem

This paper is concerned with the following problem that we define first in a quasi-formal manner:
Consider a continuous dynamical system with input defined over some bounded state space X and

governed by a differential equation of the form2

ẋ = f (x,v)

where v[t] ranges, for every t, over some pre-specified bounded set V of admissible input values. Given
a set X0 ⊂ X, compute all the states visited by trajectories of the system starting from any x0 ∈ X0.

The significance of this question to control is the following: consider a controller that has been de-
signed and connected to its plant and which is subject to external disturbances modeled by v. Computing
the reachable set allows one to verify that all the behaviors of the closed-loop system stay within a desired
range of operation and do not reach a forbidden region of the state space. Proving such properties for
systems subject to uncontrolled interaction with the external environment is the main issue in verification
of programs and digital hardware from which this question originates. In verification you have a large
automaton with inputs that represent non-deterministic (non-controllable) effects such as behaviors of
users and interactions with other systems and you would like to know whether there is an input sequence
that drives the automaton into a forbidden state.

Before going further, let me try to situate this problem in the larger control context. After all, control
theory and practice have already existed for many years without asking this question nor trying to answer
it. This question distinguishes itself from traditional control questions in the following respects:

1. It is essentially a verification rather than a synthesis question, that is, the controller is assumed to
exist already. However, it has been demonstrated that variants of reachability computation can be
used for synthesizing switching controllers for timed [14, 8, 21] and hybrid [9] systems.

2. External disturbances are modeled explicitly as a set of admissible inputs, which is not the case
for certain control formulations.3 These disturbances are modeled in a set-theoretic rather than
stochastic manner, that is, only the set of possible disturbances is specified without any probability
induced over it. This makes the system in question look like a system defined by differential
inclusions [16] which are the continuous analog of non-deterministic automata: if you project
away the input you move from ẋ = f (x,v) to ẋ ∈ F(x). Adding probabilities the the inputs will
yield a kind of a stochastic differential equation [15].

3. The information obtained from reachability computation covers also the transient behavior of the
system in question, and not only its steady-state behavior. This property makes the approach
particularly attractive for the analysis of hybrid (discrete-continuous, numerical-logical) systems
where the applicability of analytic methods is rather limited. Such hybrid models can express,
for example, deviation from idealized linear models due to constraints and saturation as well as
other switching phenomena such as thermostat-controlled heating or gear shifting, see [66] for

2We use the physicists’ notation where ẋ indicates dx/dt. It is amusing to note that the idea of having a dedicated notation
for the special variable called Time, is not unique to Temporal Logic.

3See [68] for a short discussion of this intriguing fact.
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a lightweight introduction to hybrid systems and more elaborate accounts in books, surveys and
lecture notes such as [74, 17, 64, 48, 61, 80, 76, 30, 20, 4].

4. The notion of to compute has a more effective flavor, that is, to develop algorithms that produce a
representation of the set of reachable states (or an approximation of it) which is computationally
usable, for example, it can be checked for intersection with a bad set of states.

Perhaps the most intuitive explanation of what is going on in reachability computation (and verifica-
tion in general) can be given in terms of numerical simulation, which is by far the most commonly-used
approach for validating complex systems. Each individual simulation consists of picking one initial con-
dition and one input stimulus (random, periodic, step, etc.), producing the corresponding trajectory using
numerical integration and observing whether this trajectory behaves properly. Ideally, to be on the safe
side, one would like to repeat this procedure with all possible disturbances which are uncountably many.
Reachability computation achieves the same effect as exhaustive simulation by exploring the state space
in a “breadth-first” manner: rather than running each individual simulation to completion and then start-
ing a new one, we compute at each time step all the states reachable by all possible one-step inputs from
states reachable in the previous step (see [67] for a more elaborate development of this observation and
[70] for a more general discussion of under-determined systems and their simulation). This set-based
simulation is, of course, much more costly than the simulation of an individual trajectory but it provides
more confidence in the correctness of the system than a small number of individual simulations would.
The paper is focused on one popular approach to reachability computation based on discretizing time
and performing a kind of set-based numerical integration. Alternative approaches are mentioned briefly
at the end.

3 Preliminaries

We assume a time domain T =R+ and a state space X ⊆Rn. A trajectory is a measurable partial function
ξ : T → X defined over all T (infinite trajectory) or over an interval [0, t]⊂ T (a finite trajectory). We use
the notation T (X) for all such trajectories and |ξ |= t to denote the length (duration) of finite signals. We
consider an input space V ⊆Rm and likewise use T (V ) to denote input signals ζ : T →V . A continuous
dynamical system S = (X ,V, f ) is a system defined by the differential equation

ẋ = f (x,v). (1)

We say that ξ is the response of f to ζ from x if ξ is the solution of (1) for initial condition x and v(.) = ζ .
We denote this fact by ξ = fx(ζ ) and also as

x
ζ/ξ−→ x′

when |ζ | = t and ξ [t] = x′. In this case we say that x′ is reachable from x by ζ within t time and write
this as

R(x,ζ , t) = {x′}.

This notion speaks of one initial state, one input signal and one time instant and its generalization for a
set X0 of initial states, for all time instants in an interval I = [0, t] and for all admissible input signals in
T (V ) yields the definition of the reachable set:

RI(X0) =
⋃

x∈X0

⋃
t∈I

⋃
ζ∈T (V )

R(x,ζ , t).
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x0x0

Figure 1: Trajectories induced by input signals from x0 and the set of reachable states.

Figure 1 illustrates the induced trajectories and the reachable states for the case where X0 = {x0}. We will
use the same RI notation also when I is not an interval but an arbitrary time set. For example R[1..r](X0)
can denote either the states reachable from X0 by a continuous-time systems at discrete time instants, or
states reachable by a discrete-time system during the first r steps.

Note that our introductory remark equating the relation between simulation and reachability compu-
tation to the relation between breadth-first and depth-first exploration of the space of trajectories corre-
sponds to the commutativity of union:

⋃
t∈I

⋃
ζ∈T (V )

R(x,ζ , t) =
⋃

ζ∈T (V )

⋃
t∈I

R(x,ζ , t).

4 Principles

In what follows we lay down the principles of one of the most popular approaches for computing reach-
able sets which is essentially a set-based extension of numerical integration.

4.1 The Abstract Algorithm

The semigroup property of dynamical systems, discrete and continuous alike, allows one to compute
trajectories incrementally. The reachability operator also admits this property which is expressed as:

R[0,t1+t2](X0) = R[0,t2](R[0,t1](X0)).

Hence, the computation of RI(X0) for an interval I = [0,L] can be carried out by picking a time step r
and executing the following algorithm:

Algorithm 1 (Abstract Incremental Reachability)
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Input: A set X0 ⊂ X
Output: Q = R[0,L](X0)

P := Q := X0
repeat i = 1,2 . . .
P := R[0,r](P)
Q := Q∪P

until i = L/r

Remark: When interested in reachability for unbounded horizon, the termination condition i = L/r
should be replaced by P ⊆ Q, that is, the newly-computed reachable states are included in the set of
states already computed. With this condition the algorithm is not guaranteed to terminate. Throughout
most of this article we focus on reachability problems for a bounded time horizon.

4.2 Representation of Sets

The most urgent thing needed in order to convert the above scheme into a working algorithm is to choose
a class of subsets of X that can be represented in the computer and be subject to the operations appearing
in the algorithm. This is a very important issue, studied extensively (but often in low dimension) in
computer graphics and computational geometry, but less so in the context of dynamical systems and
control, hence we elaborate on it a bit bringing in, at least informally, some notions related to effective
computation.

Mathematically speaking, subsets of Rn are defined as those points that satisfy some predicate. Such
predicates are syntactic descriptions of the set and the points that satisfy them are the semantic objects
we are interested in. The syntax of mathematics allows one to define weird types of sets which are
not subject to any useful computation, for example, the set of irrational numbers. In order to compute
we need to restrict ourselves to (syntactically characterized) classes of sets that satisfy the following
properties:

1. Every set P in the class C admits a finite representation.

2. Given a representation of a set P ∈ C and a point x, it is possible to check in a finite number of
steps whether x ∈ P.

3. For every operation ◦ on sets that we would like to perform and every P1,P2 ∈ C we have P1 ◦P2 ∈
C . Moreover, given representations of P1 and P2 it should be possible to compute a representation
of P1 ◦P2.

The latter requirement is often referred to as C being effectively closed under ◦. This requirement will
later be relaxed into requiring that C contains a reasonable approximation of P1 ◦P2. To illustrate these
notions, let us consider first a negative example of a class of sets admitting a finite representation but not
satisfying requirements 2 and 3 above. The reachable set of a linear system ẋ = Ax can be “computed”
and represented by a finite formula of the form

RI(X0) = {x : ∃x0 ∈ X0 ∃t ∈ I x = x0eAt},

however this representation is not very useful because, in the general case, checking the membership of
a point x in this set amounts to solving the reachability problem itself! The same holds for checking
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Figure 2: Intersecting two rectangles represented as 〈x,x〉 and 〈y,y〉 to obtain a rectangle represented
as 〈z,z〉. The computation is done by letting z1 = max(x1,y1), z2 = max(x2,y2), z1 = min(x1,y1) and
z2 = min(x2,y2).

whether this set intersects another set. On the other hand, a set defined by a quantifier-free formula of
the form

{x : g(x)≥ 0},

where g is some computable function, admits in principle a membership check for every x: just evaluate
g(x) and compare with 0.

As a further illustration consider one of the simplest classes of sets, hyper-rectangles with axes-
parallel edges and rational endpoints. Such a hyper-rectangle can be represented by its leftmost and
rightmost corners x = (x1, . . . ,xn) and x = (x1, . . . ,xn). The set is defined as all points x = (x1, . . . ,xn)
satisfying

n∧
i=1

xi ≤ xi ≤ xi,

a condition which is easy to check. As for operations, this class is effectively closed under translation
(just add the displacement vector to the endpoints), dilation (multiply the endpoints by a constant) but not
under rotation. As for Boolean set-theoretic operations, it is not hard to see that rectangles are effectively
closed under intersection by component-wise max of their leftmost corners and component-wise min of
their rightmost corners, see Figure 2. However they are not closed under union and complementation.
This is, in fact, a general phenomenon that we encounter in reachability computations, where the basic
sets that we work with are convex, but their union is not and hence the reachable sets computed by
concrete realizations of Algorithm 1 will be stored as unions (lists) of convex sets (the recent algorithm
of [38] is an exception).

As mentioned earlier, sets can be defined using combinations of inequalities and, not surprisingly,
linear inequalities play a prominent role in the representation of some of the most popular classes of
sets. We will mostly use convex polytopes, bounded polyhedra definable as conjunctions of linear in-
equalities. Let us mention, though, that Boolean combinations of polynomial inequalities define the
semi-algebraic sets, which admit some interesting mathematical and computational results. Their algo-
rithmics is, however, much more complex than that of polyhedral sets. The only class of sets definable
by nonlinear inequalities for which relatively-efficient algorithms have been developed is the class of
ellipsoids, convex sets defined as deformations of a unit circle by a (symmetric and positive definite)
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linear transformation [54]. Ellipsoids can be finitely represented by their center and the transformation
matrix and like polytopes, they are closed under linear transformations, a fact that facilitates their use in
reachability computation for linear systems. Ellipsoids differ from polytopes by not being closed under
intersection but such intersections can be approximated to some extent.

4.3 Convex Polytopes

In the following we list some facts concerning convex polytopes. These objects, which underlie other
domains such as linear programming, admit a very rich theory of which we only scratch the surface.
Readers interested in more details and precision may consult textbooks such as [75, 82].

A linear inequality is an inequality of the form a · x ≤ b with a being an n-dimensional vector. The
set of all points satisfying a linear inequality is called a halfspace. Note that the relationship between
halfspaces and linear inequalities is not one-to-one because any inequality of the form ca · x ≤ cb, with
c positive, will represent the same set. However using some conventions one can establish a unique
representation for each halfspace. A convex polyhedron is an intersection of finitely many halfspaces. A
convex polytope is a bounded convex polyhedron. A convex combination of a set {x1, . . . ,xl} of points
is any x = λ1x1 + · · ·+λlxl such that

l∧
i=1

λi ≥ 0∧
l

∑
i=1

λi = 1.

The convex hull of a set P̃ of points, denoted by P = conv(P̃), is the set of all convex combinations of its
elements. Convex polytopes admit two types of canonical representations:

1. Vertices: each convex polytope P admits a finite minimal set P̃ such that P = conv(P̃). The ele-
ments of P̃ are called the vertices of P.

2. Inequalities: a convex polytope P admits a minimal set H = {H1, . . . ,Hk} of halfspaces such that
P =

⋂k
i=1 H i. This set is represented syntactically as a conjunction of inequalities

k∧
i=1

ai · x≤ bi.

Some operations are easier to perform on one representation and some on the other. Testing membership
x ∈ P is easier using inequalities (just evaluation) while using vertices representation, one needs to solve
a system of linear equations to find the λ ’s. To check whether P1∩P2 6= /0 one can first combine syntac-
tically the inequalities of P1 and P2 but in order to check emptiness, these inequalities should be brought
into a canonical form. On the other hand, conv(P̃) is always non-empty for any non-empty P̃. Various
(worst-case exponential) algorithms convert polytopes from one representation to the other.

The most interesting property of convex polytopes, which is also shared by ellipsoids, is the fact that
they are closed under linear operators, that is, for a matrix A, if P is a convex polytope (resp. ellipsoid)
so is the set

AP = {Ax : x ∈ P}

and this property is evidently useful for set-based simulation. The operation can be carried out using both
representations of polytopes: if P = conv({x1, . . . ,xl}) then AP = conv({Ax1, . . . ,Axl}) and we leave the
computation based on inequalities as an exercise to the reader.
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Figure 3: Computing AP from P by applying A to the vertices.

5 Linear Systems

Naturally, the most successful results on reachability computation have been obtained for systems with
linear and affine dynamics, that is, systems defined by linear differential equations, not to be confused
with the simpler “linear” hybrid automata (LHA) where the derivative of x in any state is independent
of x. We will start by explaining the treatment of autonomous systems in discrete time, then move to
continuous time and then to systems with bounded inputs. In particular we describe some relatively-
recent complexity improvements based on a “lazy” representation of the reachable sets. This algorithm
underlies the major verification procedure in the SpaceEx tool [39] and can handle quite large systems.

5.1 Discrete-Time Autonomous Systems

Consider a system defined by the recurrence equation

xi+1 = Axi.

In this case

R[0..L](X0) =
L⋃

i=0

AiX0

and the abstract algorithm can be realized as follows:

Algorithm 2 (Discrete-Time Linear Reachability)

Input: A set X0 ⊂ X represented as conv(P̃0)
Output: Q = R[0..L](X0) represented as a list {conv(P̃0), . . . ,conv(P̃L)}

P := Q := P̃0
repeat i = 1,2 . . .

P := AP
Q := Q∪P

until i = L

The complexity of the algorithm, assuming |P̃0| = m0 is O(m0LM(n)) where M(n) is the complexity of
matrix-vector multiplication in n dimensions which is O(n3) for simple algorithms and slightly less for
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fancier ones. As noted, this algorithm can be applied to other representations of polytopes, to ellipsoids
and any other class of sets closed under linear transformations. If the purpose of reachability is to
detect intersection with a set B of bad states we can weaken the loop termination condition into (i =
L)∨ (P∩B 6= /0) where the intersection test is done by transforming P into an inequalities representation.
If we consider unbounded horizon and want to detect termination we need to check whether the newly-
computed P is included in Q which can be done by “sifting” P through all the polytopes in Q and
checking whether it goes out empty. This is not a simple operation but can be done. In any case, there is
no guarantee that this condition will ever become true.

5.2 Continuous-Time Autonomous Systems

The approach just described can be adapted to continuous-time systems of the form

ẋ = Ax

as follows. First it is well known that by choosing a time step r and computing the corresponding matrix
exponential A′ = eAr we obtain a discrete-time system

xi+1 = A′xi

which approximates the original system in the sense that for every i, xi of the discrete-time system is close
to x[ir] of the continuous-time system. The quality of the approximation can be indefinitely improved by
taking smaller r. We then use the discrete time reachability operator to compute P′ = R{r}(P) = A′P, that
is, the successors of P at time r and can use one out of several techniques to compute an approximation
of R[0,r](P) from P and P′:

5.2.1 Make r Small

This approach, used implicitly by [53], just makes r small enough so that subsequent sets overlap each
other and the difference between their unions and the continuous-time reachable set vanishes.

5.2.2 Bloating

Let P and P′ be represented by the sets of vertices P̃ and P̃′ respectively. The set P = conv(P̃∪ P̃′) is a
good approximation of R[0,r](P) but since in general, we would like to obtain an over-approximation (so
that if the computed reachable sets does not intersect with the bad set, we are sure that the actual set does
not either) we can bloat this set to ensure that it is an outer approximation of R[0,r](P).

This can be done, for example, by pushing the facets of P outward by a constant derived from the
Taylor approximation of the curve [12]. To this end we need first to transform P into an inequalities
representation. An alternative approach [24] is to find this over-approximation via an optimization prob-
lem. Note that for autonomous systems we can modify Algorithm 1 by replacing the initialization by
P := Q := R[0,r](X0) and the iteration by P := R[r,r](P), that is, the successors after exactly r time units.
This way the over-approximation is done only once for conv(P̃0∪ P̃1) and then A is applied successively
to this set [58].
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5.2.3 Adding an Error Term

The last approach that we mention is particularly interesting because it can be used, as we shall see later,
also for non-autonomous systems as well as nonlinear ones. Let Y and Y ′ be two subsets of Rn. Their
Minkowski sum is defined as

Y ⊕Y ′ = {y+ y′ : y ∈ Y ∧ y′ ∈ Y ′}.

The maximal distance between the sets Rr(P) and R[0,r](P) can be estimated globally. Then, one can fix
an “error ball” E (could be a polytope for that matter) of that radius and over-approximate R[0,r](P) as
AP⊕E. Since this computation is equivalent to computing the reachable set of the discrete time system
xi+1 = A′xi+e with e∈ E, we can use the techniques for systems with input described in the next section.

5.3 Discrete-Time Systems with Input

We can now move, at last, to open systems of the form

xi+1 = Axi +Bvi

where v ranges over a bounded convex set V . The one-step successor of a set P is defined as

P′ = {Ax+Bv : x ∈ P,v ∈V}= AP⊕BV.

Unlike linear operations that preserve the number of vertices of a convex polytope, the Minkowski sum
increases their number and its successive application may prohibitively increase the representation size.
Consequently, methods for reachability under disturbances need some compromise between exact com-
putation that leads to explosion, and approximations which keep the representation size small but may
accumulate errors to the point of becoming useless, a phenomenon also known in numerical analysis as
the “wrapping effect” [50, 51]. We illustrate this tradeoff using three approaches.

5.3.1 Using Vertices

Assume both P and V are convex polytopes represented by their vertices, P = conv(P̃) and V = conv(Ṽ ).
Then it is not hard to see that

AP⊕BV = conv({Ax+Bv : x ∈ P̃,v ∈ Ṽ}).

Hence, applying the affine transformation to all combinations of vertices in P̃× Ṽ we obtain all the
candidates for vertices of P′ (see Figure 4). Of course, not all of these are actual vertices of P′ but there
is no known efficient procedure to detect which are and which are not. Moreover, it may turn out that
the number of actual vertices indeed grows in a super-linear way. Neglecting the elimination of fictitious
vertices and keeping all these points as a representation of P′ will lead to |P̃| · |Ṽ |k vertices after k steps,
a completely unacceptable situation.

5.3.2 Pushing Facets

This approach over-approximates the reachable set while keeping its complexity more or less fixed. As-
sume P to be represented in (or converted into) inequality representation. For each supporting halfspace
H i defined by ai ·x≤ bi, let vi ∈V be the disturbance vector which pushes H i in the “outermost” way, that
is, the one which maximizes the product v ·ai with the normal to H i. In the discrete time setting described
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P⊕V

P

V

Figure 4: Adding a disturbance polytope V to a polytope P leads to a polytope P⊕V with more vertices.
The phenomenon is more severe in higher dimensions.

P′ ⊃ P⊕V

P
V

Figure 5: Pushing each face of P by the element of V which pushes it to the maximum. The result
will typically not have more facets or vertices but may be a proper superset of P⊕V (shaded triangles
represent the over-approximation error).

here, vi ∈ Ṽ for every i. We then apply to each H i the transformation Ax+Bvi and the intersection of the
hyperplanes thus obtained is an over-approximation of the successors (see Figure 5).

This approach has been developed first in the context of continuous time, starting with [81] who
applied it to supporting planes of ellipsoids and then adapted in [28] for polytopes. It is also similar in
spirit to the face lifting technique of [32]. In continuous time, the procedure of finding each vi is a linear
program derived from the maximum principle of optimal control. Recently is has been demonstrated that
by using redundant constraints [13] the error can be reduced dramatically for quite large systems.

5.3.3 Lazy Representation

The previous sections showed that until recently, the treatment of linear systems with input provided
two alternatives: either apply the linear transformation to an ever-increasing number of objects (vertices,
inequalities, zonotope generators) and thus slowing down the computation in each step, or accumulate
large over-approximation errors. The following observation due to Colas Le Guernic [57, 41] allows us
to benefit from both worlds: it can restrict the application of the linear transformation A to a fixed number
of points at each step while at the same time not accumulating approximation errors. Let us look at two
consecutive sets Pk and Pk+1 in the computation:

Pk = AkP0⊕Ak−1BV ⊕Ak−2BV ⊕ . . .⊕BV

and
Pk+1 = Ak+1P0⊕AkBV ⊕Ak−1BV ⊕ . . .⊕BV .



12 Algorithmic verification of continuous and hybrid systems

As one can see, these two sets “share” a lot of common terms that need not be recomputed (and this
holds also for continuous-time and variable time-steps). And indeed, the algorithm described in [41]
computes the sequence P0, . . . ,Pk in O(k(m0 +m)M(n)) time. From this symbolic/lazy representation of
Pi, one can produce an approximating polytope with any desired precision, but this object is not used to
compute Pi+1 and hence the wrapping effect is avoided.

A first prototype implementation of that algorithm could compute the reachable set after 1000 steps
for linear systems with 200 state variables within 2 minutes. This algorithm was first discovered for
zonotopes (a class of centrally symmetric polytopes closed under Minkowski sum proposed for reacha-
bility in [40]) but was later adapted to arbitrary convex sets represented by support functions [60, 58]. A
re-engineered version of the algorithm has been implemented into the SpaceEx tool [39]. Although one
might get the impression that the reachability problem for linear systems can be considered as solved,
the development of SpaceEx under the direction of Goran Frehse has confirmed once more that a lot
of work is needed in order to transform bright ideas into a working tool that can robustly handle large
non-trivial systems occurring in practice.4

6 Hybrid and Nonlinear Systems

Being able to handle quite large linear systems, a major challenge is to extend reachability to richer
classes of systems admitting hybrid or nonlinear dynamics.

6.1 Hybrid systems

The analysis of hybrid systems was the major motivation for developing reachability algorithms because
unlike analytical methods, these algorithms can be easily adapted to handle discrete transitions and mode
switching. Figure 6 shows a very simple hybrid automaton with two states, each with its own linear
dynamics (using another terminology we have here a piecewise-linear or piecewise-affine dynamical
system). An (extended) state of a hybrid system is a pair (s,x) ∈ S×X where s is the discrete state
(mode). A transitions from state si to state s j may occur when the condition Gi j(x) (the transition guard)
is satisfied by the current value of x. Such conditions are typically comparisons of state variables with
thresholds or more generally linear inequalities. Moreover, while staying at discrete state s, the value of x
should satisfy additional constraints, known as state invariants.5 Like timed automata, hybrid automata
can exhibit dense non-determinism in parts of the state-space where both a transition guard and a state
invariant hold. The runs/trajectories of such an automaton are of the form

(s1,x[0])
t1−→ (s1,x[t1])−→ (s2,x[t1])

t2−→ (s2,x[t1 + t2])−→ ·· · ,

that is, an interleaving of continuous trajectories and discrete transitions taken at extended states where
guards are satisfied. The adaptation of linear reachability computation so as to compute the reachable
subset of S×X follows the procedure proposed already in [5] for simpler dynamics and implemented
in the HyTech tool [45]. It goes like this: first, continuous reachability is applied using the dynamics
A1 of s1, while respecting the state invariant I1. Then the set of reachable states is intersected with
the (semantics of the) transition guard G12. The outcome serves as an initial set of states in s2 where
continuous linear reachability with A2 and I2 is applied and so on.

4Readers are encouraged to download SpaceEx at http://spaceex.imag.fr/ to obtain a first hand experience in
reachability computation.

5The full hybrid automaton model may also associate transitions with reset maps which are transformations (jumps) applied
to x upon a transition.

http://spaceex.imag.fr/
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ẋ = A1x+ v

G12(x)

G21(x)

ẋ = A2x+ v

s1 s2 I2I2

Figure 6: A simple hybrid system with two modes.

The real story is, of course, not that simple for the following reasons.

1. The intersection of the reachable states with the state invariant breaks the symbolic lazy repre-
sentation as soon as some part of the reachable set leaves the invariant. Likewise, the change of
dynamics after the transition invalidates the update scheme of the lazy representation and the set
has to be over-approximated before doing intersection and reachability in the next state.

2. The dynamics might be “grazing” the transition guard, intersecting different parts of it at different
time steps, thus spawning many subsequent computations. In fact, even a dynamics which pro-
ceeds orthogonally toward a single transition guard may spawn many such computations because
when small time steps are used, many consecutive sets may have a non-empty intersection with
the guard. Consequently, techniques for hybrid reachability such as [59] tend to cluster these sets
together before conducting reachability in the next state thus increasing the over-approximation
error. This error can now be controlled using the techniques of [38].

3. Even in the absence of these phenomena, when there are several transitions outgoing from a state
we may end up with an exponentially growing number of runs to explore.

All these are problems, some tedious and some glorious, that need to be resolved if we want to provide
a robustly working tool.

6.2 Nonlinear Systems

Many challenging problems in numerous engineering and scientific domains boil down to exploring
the behaviors of nonlinear systems. The techniques described so far take advantage of the intimate
relationships between linearity and convexity, in particular the identity A · conv(P̃) = conv(AP̃). For
nonlinear functions such properties do not hold and new ideas are needed. I sketch briefly two approches
for adapting reachability for such systems: one which is general and is based on linearizing the system at
various parts of the state-space thus obtaining a piecewise-linear system (a hybrid automaton) to which
linear reachability techniques are applied. Other techniques look for more sophisticated data-structures
and syntactical objects that can represent sets reached by specific classes of nonlinear systems such as
those defined by polynomial dynamics. Unlike linear systems, linear reachability is still in an exploratory
phase and it is too early to predict which of the techniques described below will survive.

6.2.1 Linearization/Hybridization

Consider a nonlinear system ẋ = f (x) and a partition of its state space, for example into cubes (see
Figure 7). For each cube s one can compute a linear function As and an error polytope Vs such that for
every x∈ s, f (x)−Asx∈Vs and hence we have a conservative approximation f (x)∈Asx⊕Vs. We can now
build a hybrid automaton (a piecewise-affine dynamical system) whose states correspond to the cubes,
and which makes transitions (mode switching) from s to s′ whenever x crosses the boundary between
them (see Figure 7). The automaton provides an over approximation of the nonlinear system in the sense



14 Algorithmic verification of continuous and hybrid systems

10

1101

00

x2 ≥ d2x2 ≤ d2x2 ≤ d2

x1 ≥ d1

x1 ≤ d1

x1 ≥ d1

x1 ≤ d1
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ẋ ∈ A01 · x⊕V01 ẋ ∈ A11 · x⊕V11

x2 ≥ d2

d1

x1
X10X00

X01 X11d2

x2

Figure 7: Hybridization: a nonlinear system is over-approximated by a hybrid automaton with an affine
dynamics in each state. The transition guards indicate the conditions for switching between neighboring
linearizations.

that any run of the latter corresponds to (a projection on X of) a run of the hybrid automaton. This
technique, initially developed for doing simulations, has been coined hybridization in [11]. An earlier
work [46] partitions the state-space similarly but approximates f in each cube by a simpler dynamics of
the form ẋ ∈C for a constant polytope C.

To perform reachability computation on the automaton one can apply the linear techniques described
in the preceding section using As and Vs, as long as the reachable states remain within cube s. When-
ever some Pi reaches the boundary between s and s′ we need to intersect it with the switching surface
(the transition guard) and use the obtained result as an initial set for reachability computation in s′ using
As′ and Vs′ . However, the difficulties previously mentioned concerning reachability for hybrid systems,
and in particular the fact that the reachable set may leave a cube and penetrate into exponentially many
neighboring cubes, renders hybridization impractical beyond 3 dimensions. A dynamic version of hy-
bridization, not based on a fixed grid, has been introduced in [31] and is illustrated in Figure 8. The idea
is quite simple: first a linearization domain around the initial set is constructed with the corresponding
affine dynamics. Linear reachability computation is performed until the first time the computed polytope
leaves the domain. Then the last step is undone, and a new linearization domain is constructed around the
current set and linear reachability is resumed. Unlike static hybridization, linearization domains overlap
and do not form a partition, but the inclusion of trajectories still hold by construction (see more details
in [31]). The intersection operation and the artificial splitting of sets due to the fixed grid are altogether
avoided.

The computation of the linear approximation of f and its error bound are costly procedures and
should not be done too often. Hence it is important to choose the size and shape of the linearization
domains such that the error is small and the computation stays in each domain as long as possible. This
topic has been studied in [34] where the curvature of f has been used to construct and orient simplical
linearization domains.

6.2.2 Specialized Methods

We mention a few other approaches for reachability computation for nonlinear systems. For polynomial
systems, the Bernstein form of polynomials is used to either enclose the image of a set by the polynomial,
or to approximate the polynomial by affine bound functions. The different representations using the
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Figure 8: Dynamic hybridization: (a) Computing in some box until intersection with the boundary; (b)
Backtracking one step and computing in a new box.

Bernstein form include the Bézier simplices [29] and the Bernstein expansion [35, 77]. A nonlinear
function can be over-approximated, based on its Taylor expansion, by a polynomial and an interval
which includes all the remainder values. Then, the integration of an ODE system can be done using the
Picard operator with reachable sets are represented by boxes [22]. Similarly, in [2] non-linear functions
are approximated by linear differential inclusions with dynamical error estimated as the remainder of the
Taylor expansion around the current set. As a set representation, “polynomial zonotopes” based on a
polynomial rather than linear combination of generators are used.

We may conclude that the extension of reachability computation to nonlinear and hybrid systems is
a challenging problem which is still waiting for several conceptual and algorithmic breakthroughs. We
believe that the ability to perform reachability computation for nonlinear systems of non-trivial size can
be very useful not only for control systems but also for other application domains such as analog circuits
and systems biology. In biological models, uncertainty in parameters and environmental condition is
a rule, not an exception, and set-based simulation, combined with other approaches for exploring the
uncertainty space of under-determined dynamical systems can be very beneficial.

7 Related and Future Work

The idea of set-based numerical integration has several origins. In some sense it can be seen as related
to those parts of numerical analysis, for example interval analysis [72, 47], that provide “robust” set-
based results for numerical computation to compensate for numerical errors. This motivation is slightly
different from verification and control where the uncertainty is attributed to an external environment not
to the internal computation. Set-based computations also underlie the abstract interpretation framework
[27] for static analysis of software.

The idea of applying set-based computation to hybrid systems was among the first contributions of
the verification community to hybrid systems research [5] and it has been implemented in the pioneering
HyTech tool [45]. However this idea was restricted to hybrid automata with very simple continuous
dynamics (a constant derivative in each state) where trajectories can be computed without numerical
integration. To the best of our knowledge, the first explicit mention of combining numerical integration
with approximate representation by polyhedra in the context of verification appeared in [43]. It was
recently brought to my attention6 that an independent thread of reachability computation, quite similar in
motivation and techniques, has developed in the USSR starting from the early 70s [62]. More citations
from this school can be found in [63].

6G. Frehse, personal communication.
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The polytope-based techniques described here were developed independently in [24, 23, 25] and in
[12, 28]. Among other similar techniques that we have not described in detail, let us mention again
the extensive work on ellipsoids [54, 53, 19, 55] and another family of methods [71, 79] which uses
techniques such as level sets, inspired by numerical solution of partial differential equations, to compute
and represent the reachable states. Among the symbolic (non numerical) approaches to the problem let us
mention [56] which computes an effective representation of the reachable states for a restricted class of
linear systems. Attempts to scale-up reachability techniques to higher dimensions using compositional
methods that analyze an abstract approximate systems obtained by projections on subsets of the state
variables are described in [44] and [10].

The interpretation of V as the controller’s output rather than disturbance transforms the reachabil-
ity problem into some open-loop variant of controller synthesis [67, 68]. Hence it is natural that the
optimization-based approach developed in [17] for synthesis, has also been applied to reachability com-
putation [18]. On the other hand, reachability computation can be used to synthesize controllers in the
spirit of dynamic programming, as has been demonstrated in [9] where a backward reachability operator
has been used as part of an algorithm for synthesizing switching controllers.

Another class of methods, called simulation-based, for example [49, 42, 33, 37, 36, 1], attempts
to obtain the same effect as reachability computation by finitely many simulations, not necessarily of
extremal points as in the methods described in this paper. Such techniques may turn out to be superior
for nonlinear systems whose dynamics does not preserve convexity and systems whose dynamics is
expressed by programs that do not always admit a clean mathematical model.

Alternative approaches to verify continuous and hybrid systems algorithmically attempt to approx-
imate the system by a simpler one, typically a finite-state automaton7 [52, 7, 78]. This can be done by
simply partitioning the state space into cubes and defining transitions between adjacent cubes which are
connected by trajectories, or by more modern methods, inspired by program verification, such as pred-
icate abstraction and counter-example based refinement [6, 26, 73]. It should be noted, however, that
finite-state models based on space partitions suffer from the problem of false transitivity: the abstract
system may have a run of the form s1→ s2→ s3 while the concrete one has no trajectory x1→ x2→ x3
passing through these regions. As a result, the finite-state model will often have too many spurious
behaviors to be useful for verification.

Finally let me mention some other issues not discussed so far:

• Disturbance models: implicit in reachability computation is the assumption that the only restriction
on the input signal is that it always remains in V . This means that it may oscillate in any frequency
between the extremal values of V . Such a non realistic assumption may increase the reachable set
and render the analysis too pessimistic. This effect can be reduced by composing the system with
a bounded-variability non-deterministic model of the input generator but this will increase the size
of the system. In fact, the technique of abstraction by projection [10] does the opposite: it projects
away state-variables and converts them into bounded input variables. A more systematic study of
precision/complexity tradeoffs could be useful here.

• Temporal properties: in our presentation we assumed implicitly that systems specifications are
simply invariance properties, a subclass of safety properties which are violated once a trajectory
reaches a forbidden state. It is, of course, possible to follow the usual procedure of taking a more
complex temporal property, constructing its automaton and composing with the system model.
This procedure will extend the discrete state-space of the system and will make the analysis harder
by virtue of having more discrete transitions with the usual additional complications associated

7In fact, hybridization is another instance of this approach.
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with detection of cycles in the reachability graph and extraction of concrete trajectories that realize
them.

• Adaptive algorithms: although we attempt to be as general as possible, it should be admitted that
different systems lead to different behaviors of the reachability algorithm, even for linear systems.
If we opt for general techniques that do not require a dedicated super-intelligent user, we need
to make the algorithms more adaptive to their own behavior and automatically explore different
values of their parameters such as time steps, size and shapes of approximating polytopes, quick
and approximate inclusion tests, different search strategies (for hybrid models) and more.

• Numerical aspects: the discourse in this paper treated real-valued computations as well-functioning
black boxes. In practice, certain systems can be more problematic in terms of numerical stability
or operate in several time scales and this should be taken into account.

• Differential-algebraic equations: many dynamical systems that model physical phenomena obey-
ing conservation laws are modeled using differential-algebraic equations with relational constraints
over variables and derivatives. In addition to the existing simulation technology for such systems,
a specialized reachability theory should be developed, see for example [3].

• Discrete state explosion: the methods described here focus on scalability with respect to the di-
mensionality of the continuous state-space and tacitly assume that the number of discrete modes is
not too large. This assumption can be wrong in at least two contexts: when discrete states are used
to encode different parts of a high dimensional state-space as in hybridization or in the verification
of complex control software when there is a relatively small number of continuous variables used
to model the environment of the software which has many states. The problem of combining the
symbolic representations for discrete and continuous spaces, for example BDDs and polytopes, is
an unsolved problem already for the simplest case of timed automata.

• Finally, in terms of usability, the whole set-based point of view is currently not the natural one for
practitioners (this is true also for verification versus testing in the discrete case) and the extraction
of individual trajectories that violate the requirements as well as input signals that induce them
will make reachability more acceptable as a powerful model debugging method.

Acknowledgments: This work benefitted from discussions with George Pappas, Bruce Krogh, Charles
Rockland, Eugene Asarin, Thao Dang, Goran Frehse, Anoine Girard, Alexandre Donzé and Colas Le
Guernic.
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