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Abstract. In this paper we discuss the practical difficulty of analyzing
the behavior of timed automata and report some results obtained using
an experimental BDD-based extension of KRONOS. We have treated exam-
ples originating from timing analysis of asynchronous boolean networks
and CMOS circuits with delay uncertainties and the results outperform
those obtained by previous implementations of timed automata verifica-
tion tools.

1 Introduction

The computational burden associated with the verification of discrete systems
consists in representing and calculating the set of reachable states of a transi-
tion system, usually described as a product of small interacting systems. Timed
systems were introduced in order to provide a more detailed level of modeling
in which it is possible to refine a statement such as “a is followed by b” into
“a is followed by b within t time wnits”. Timed formalisms for describing sys-
tems (timed automata [AD94], [D89], timed Petri nets [BD91], timed transition
systems [HMP92a] or real-time process algebras [NS92]) and for specifying be-
haviors (real-time temporal logics [AH92], timed regular expressions [ACM96])
allow the intuitive expression of real-life phenomena. Among these is the hard
fact that it takes some time between the initiation and a completion of a change
and that quantitative timing information may matter in the future evolution of
a system.

In fact, after playing with timed models for some time, one starts wondering
about the underlying assumptions that make “classical” untimed reasoning valid
and useful. What class of real-timed systems is hiding behind each and every
untimed automaton? How are discrete transitions embedded in the real time
axis? Without getting too much into the details one can suggest two kinds of
answers:

Asynchronous answer: we assume that changes in various system components
may take arbitrary amount of time to be accomplished. From this perspective
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an untimed system can be viewed as a timed system with trivial [0, co] bounds
on the duration of a transition. Clearly, such an abstraction will create much
more executions than a real system would.

Synchronous answer: certain assumptions are made and certain precautions
are taken in order to ensure that most of the timing information can be ignored.
This is the principle underlying clocked realization of sequential machines: we are
not interested in the intermediate states of the next-state logic, nor whether one
state variable has changed before the other. What is important is that everybody
has stabilized until the next time their values are sampled.

When one is not satisfied with the type of answers suggested by the abstract
untimed models or with the performance of clocked systems, timed models seem
to be the next logical step (see also [BS94]). It has been shown elsewhere ([D89],
[L89], [MP95]) how a very general model of non-clocked circuits with delays can
be translated into timed automata, on which one can ask all sorts of interesting
timing questions ([ACD93], [HNSY94] [AMP95]). The only problem with these
models is the amount of time (and space) that might elapse between posing
the question and obtaining the answer. Indeed, it is the performance bottleneck
that prevents the transfer of timing verification technology from theory to prac-
tice. In this paper we describe some attempts to push forward the performance
limitations of current timed automata verification tools by augmenting the tool
KRONOS [DOTY96] with an additional BDD-based capability.

The rest of the paper is organized as follows: in Section 2 we discuss, via
generic examples, the computational difficulty of timed automata analysis meth-
ods and present an alternative data-structure, NDD which is used to analyze the
examples in this paper. NDDs are essentially nothing more than BDDs over the
bits of discretized clocks. In Section 3 we show the performance of the NDD imple-
mentation on benchmark examples coming from asynchronous boolean networks
and compare them with other implementations, while in Section 4 we apply NDDs
to realistic (but small) examples of MOS circuits with up to 5 inputs and 16 tran-
sistors, in order to answer a question motivated by noise problems. We assume
that the reader is familiar with the basic definitions of timed automata and with
BDDs.

2 The Difficulty of Timing Analysis

Consider a system which can generate events out of a set 7 = {r,...,7,},
such that every two consecutive occurrences of 7; must be separated by [; time
units, while every occurrence of 7; must be followed by another one within wu;
units. Such a system can be modeled by the simple one-state timed automaton
A depicted in Figure 1-a having n clocks and n transitions. Calculating the
set of reachable clock configurations is needed in order to determine which 7 -
sequences are realizable by the system. An illustration of the calculation of the set
of reachable clock configurations for n = 2 is given in Figure 2. At the beginning,
Time progresses until it reaches the smallest lower-bound (in this case, l1). Since
then, until the first upper-bound is encountered (in this case, u;) the transition



71 can be taken while resetting C; to zero. After crossing the lower bound I,
transition 75 can be, as well, taken, and so on. Although it might look simple
for two clocks, this set can become rather complex in more dimensions!
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Fig. 1. (a) A one-state automaton A with n transitions and n clocks. (b) A two-state
automaton B for representing a set of input signals satisfying upper and lower bounds
on the distance between two switching points.
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Fig. 2. The initial sets of reachable clock configurations of the automaton in Fig-
ure 1-(a) starting from (0, 0).

In general, the sets of reachable clock configurations obtained this way can be
expressed as a union of zones, that is, convex polyhedra generated by half-spaces
of the form C; < k or C; — C; < k for k in some finite subset of the integers.?
Zones admit an efficient representation using difference-bounds matrices (DBM,
[D89]) on which it is easy to calculate intersection and the progress of time.
As it often happens in computational geometrical problems, the difficulty comes
from the need to manipulate non-convez sets. In this case the representation is
not canonical and a lot of work is needed in order to determine whether all the
reachable states have already been encountered. It may turn out, for example,

8 We ignore intentionally some technicalities concerning strictness of inequalities.



that a union of zones stored in memory is, in fact, convex and can be replaced by
a single zone, but testing this possibility at every iteration is costly. Some authors
([H93], [AIKY95] [B96], [WD94]) try to use various sorts of approximations, e.g.
to use convex hulls instead of unions, but these over-approximations often tend
to become too large and hence not useful.

The problem aggravates when the untimed state-space is non-trivial. Con-
sider the two-state automaton B of Figure 1-(b). Such automaton represents a
boolean input signal whose only constraint is that every two changes in its value
are separated by some time ¢t € [l;,u;). An array of such automata is an unavoid-
able component in any model for analyzing the behavior of circuits under all pos-
sible inputs. When two such automata work in parallel, the reachable clock con-
figurations are “distributed” among the discrete states {00,01, 10,11} as shown
in Figure 3. This raises several problems: there might be a lot of redundancy
if we represent reachable configurations for every state separately because two
states might share zones. In addition, if we use symbolic methods ([BCM*93],
[McM93]) to overcome the discrete state-explosion problem, how should they be
combined* with the DBM representation? Finally, the convergence of the set of
reachable configurations into a convex zone is usually slower than in the case of
a one-state automaton.

In order to overcome these problems we have devised and implemented an
alternative representation scheme for sets of clock configurations, the Numerical
Decision Diagrams (NDD, [ABK197]) and tested its performance on these and
other examples. This scheme has some major advantages over DBMs (canonicity,
natural combination with discrete symbolic representations) but, of course, has
its own disadvantages, most notably, the sensitivity to time granularity.

The idea behind NDDs is trivial. Suppose that each clock can take values in
the range [0, k), and consider a discretization of time such that the possible clock
values are K = {0,...,k — 1}. Each clock can be treated as a bounded integer
variable and any of its possible values can be encoded in binary using logk
bits. Consequently, any subset of K™ can be viewed as a subset of {0,1}"!08*
and represented by a BDD over nlogk boolean variables. Given a fixed variable
ordering, this representation is canonical regardless of convexity, and it offers
BDD-based boolean operations as well as the calculation of the passage of time
by simple arithmetical operations.

For dense time models, two discretization schemes has been proposed in
[GPV94]. They are based on taking a rational constant A, depending on the
number of clocks such that by cutting space and time into a A-grid, one obtains
a discrete-time automaton which is equivalent (for all interesting purposes) to
the given dense-time automaton. These two schemes require A =1/(n+ 1) and
A = (1/2n) respectively, and involve some distortion of the passage of time or of
the reset operator in order to preserve the properties of the original dense-time
system (a more detailed description appears in [GPV94] and [ABK97]).

* This problem has been addressed by Wong-Toi and Dill [WD94], who combined pBms
and BDDs and recently by Balarin [B96] who encoded matrices using BDDs. Both used
the representations for approzimate reachability analysis.
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Fig. 3. The initial sets of reachable clock configurations of the automaton in Fig-
ure 1-(b) starting from the discrete state 00 and the clock configuration (0, 0).

We have observed, however, that the special class of automata obtained from
circuits ([MP95]), where all the clock conditions are of the form C' > 1 or C < u,
admits a slightly simpler and coarser region graph (see also [HMP92]). For these
automata, a discretization with A = 1/n, where the passage of time is simply
the addition of A to all the clocks, is sufficient.

Consequently, although all the reported experiments have been performed
with respect to the discrete time interpretation, they can be viewed as if we used
a dense time interpretation with all the constants divided by n. Approximations
are used anyway in order to tackle the complexity of timing analysis ([AIKY95],
[H93], [WD94], [B96]), and we believe that playing with the granularity of time
might prove to be an alternative approximation strategy.

Note that the NDD-based method is different from calculating the region
graph of the timed automaton and then trying to encode its transition relation
using some choice of boolean state variables (see also [AK96] [CC95]). We build
a uniform discretized state-space which happens to contain one or more concrete
representative of every region, and on which the passage of time is calculated by
adding a time unit A to every clock variable simultaneously.

We have implemented NDD-based verification algorithms for timed automata
by using a system developed at VERIMAG for representing and manipulating
communicating automata augmented with bounded integer variables [BFK96].



This system takes such automata and translates them into BDDs using one of
several publicly-available BDD packages. We have used the CUDD package [S95]
of Colorado University. The experimental results are reported in the following

sections.

3 Asynchronous Boolean Circuits

With the NDD representation we were able to calculate within 12 hours all reach-
able states of the automaton A (Figure 1-a) with 18 clocks and transitions, while
a DBM-based implementation could not treat more than 5 clocks. The relative
weakness of DBM in this apparently-trivial example is due to the fact that the
set of reachable configurations of this automaton converges finally to the whole
clock space, by accumulating more and more zones. We were able to treat prod-
ucts of up to 9 B automata (Figure 1-b). The results® are illustrated in Figure 3.
It should be noted, for the fairness of the comparison, that we have used the
discrete time interpretation and have chosen clock values in the range {0,...,15}
— NDDs are much more sensitive to the granularity of time than DBMs.
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Fig. 4. Comparative performance of NDDs and DBMs for the automata A and B.

A more complicated example is the family of circuits depicted in Figure 5.
For every i € {0,...,n — 1} we let the XOR of z; and z;_; pass through a
non-deterministic inertial delay buffer (the exact definitions and the translation
procedure from circuits to timed automata are described in [MP95]). Every such
gate is modeled by the four-state timed automaton appearing in Figure 6. The
states are encoded using two Boolean variables v; and v;, the former denoting
the value observed at the exit of the delay element while the latter represents
the “hidden” value of the XOR. When both variables are equal we say that the
state is stable and that it is excited otherwise.

% Unless otherwise stated, all the results reported here were obtained using a SUN
Ultra-Sparc 1 with 256 MB of memory.
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Fig. 5. A cascade of XOR gates with delays.

vii] =0AC; < ug

vi_1 =O0A
1; <C; < u;

vi_1 =0A
1; <C; < uj

vi_1=1AC; <y

vi_1 =0/C;:=0

Fig. 6. The automaton for every XOR gate, ¢ € {0,...,n — 1}.

When n such automata are composed together we obtain a timed automaton
C with 4™ discrete states and n clocks, which we let range in {0,...,7}. Note
that the feed-back loops make this class of automata rather hard to analyze
as all the variables depend on each other. We have managed to calculate all
the states reachable from the unstable state (1,1,...,1) for a cascade of up
to 10 components in less than 2 hours. These results outperformed those of
the DBM implementation which could handle only up to 6 gates, using the clock



minimization techniques described in [DY96]. Note that in both implementations
it was easier to treat the more logically-involved XOR network C than the n
“independent” inputs of B. This can be explained by the fact that in timed
systems, independence of components is an illusion as there is a common shared
variable, Time, observed and manipulated by all the components. This explains
why the BDD results were more modest than initially expected. Nevertheless, the
ability to analyze such a non-trivial circuit is remarkable and we could verify that
under certain [ and u parameters, the stable state (0,0, ...,0) is never reached.

Concerning variable-ordering, we have found it most efficient to arrange the
variables by component such that every discrete variable is followed by the bits
of its associated clock with the most significant bit first.

4 MOS Circuits

The next example, motivated by problems related to noise and power consump-
tion, illustrates some pragmatic trade-offs between accuracy and efficiency as
well as the effect of other simplifying assumptions on verification performance.

Consider a 4-AND gate implemented by the MOS circuit of Figure 7. We
assume that the system is governed by a clock with a period ux and that the
inputs are static, or more precisely: each of the inputs can change its value at
most once in the sub-interval [0,lx) and remain constant in the sub-interval
[[x,ux). Concerning the transistors, we assume that they change their states ¢
pico-seconds after the change of their inputs where ¢t € [Ip,up) for the P-MOS
elements (A,B,I and J) and ¢ € [Ix,un) for the N-MOS elements (C,D,L and K).
A 4-state timed automaton, similar to the one of Figure 6 can be constructed to
model every such transistor.

Although such a circuit is supposed to work in a synchronous environment,
some practical problems motivate us to look at what happens on a smaller time
scale. A particular question one might want to ask is: “what is the maximal (over
all legal input patterns) number of transitions that may take place simultane-
ously?” By a transition we mean the opening or closing of a transistor, which is
the main energy consumer. When two many transitions occur simultaneously, it
might create noise affecting the behavior of the chip.

While this question might be answered manually for a small circuit, it is not
at all clear how to do it for a 8 AND made of 28 transistors, not to mention
a 16-AND with 60 transistors, where the internal elements can “change their
mind” several times within a clock cycle. It should be emphasized that unlike
commonly-used SPICE simulations, where the simulation is done once for each
input pattern, here the results of the calculations cover all possible legal input
patterns and all delay uncertainties.

We have transformed the 4-AND circuit into 16 timed automata: 12 for the
transistors and 4 for the inputs (the latter share the same clock in the range 0
to ux), and attempted to calculate the set of reachable clock configurations.

We have kept (In,un) = (8,16) throughout the experiments. By taking
(Ip,up) = (10,20) and dividing all the constants by lem{10,20,8,16} = 2 we
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Fig. 7. A MOS realization of the 4-AND function.

had to code all the transistor clocks using 4 bits. Changing Ip from 10 to 8§,
the lem becomes 4 and we could use only 3 bits for the clocks. Another factor
which influenced performance was the partition of the central clock period into
active and non-active phases. Not surprisingly, the results were much better for
(Ix,ux) = (20,60) than for (Ix,ux) = (40, 60).

We have constructed an auxiliary automaton for counting the number of
transitions taking place at the same time and could test whether there is an input
pattern generating more than a given number of simultaneous transitions. For
example, concerning the 4-AND circuit, under the parameters (Ip,up) = (8,20)
and (Ix,ux) = (40, 56) we asked whether 9 simultaneous transitions are possible
starting from the initial stable state where all the inputs are 0. The system gave
(in 1:15 hours) a positive answer and provided the following witness sequence:

(X2 1,0) = ({4}, D 1},8) = (X1 1,88) = (X2 1,96) — ({B 1, C 1},100) -
(D 1,104) — (I1,108) — (A 1,112) —» ({X1 |, X> 1, X5 1, X1 1},120) —
({A},B1,CL,D1,E |,F|,G1,H1,I1},128)

where each pair of the form (.5, ¢) indicates the occurrence of the event (or set of
events) S after ¢ pico-seconds since the beginning. The results of the experiments
with 3-AND, 4-AND and 5-AND circuits are given in Table 4.5

We have also detected the possibilities of short-cuts (a wire connected to
both 0 and 1) as we did in [MY96] for a simpler example of a MOS circuit

 The results for the 5-AND circuit (17 clocks!) were obtained on a 200MHz Pen-
tiumPro with 512MB of memory.



(Ip,up)=(8,20) (Ip,up)=(10,20)
# test (In,un)=(8,16) (In,un)=(8,16)
(lx,’u,x):(24,56)|(lx,uX)=(40,56) (lx,uX)=(20,60)|(lx,UX)=(40,60)
reach 31.7 1:09.9] 1:53.8 5:52.5
3| seq#6 (*) 3.7 (*)6.1

#7 1:09.8 (*) 2:21.0 3:23.4 (*) 8:57.7
#8 2:32.2 10:37.1
reach 5:24.7 18:39.4| 17:26.1 1:20:04.7
4| seq#8 (*) 25.3 (*) 43.0 (*) 56.4
#9 45:02.1 (*) 1:15:38.6 1:33:07.6 MO

#10 1:43:02.8
reach 28:24.5 1:45:36.2| 1:08:41.7 MO
5 [seq#10 (*) 2:09.6 (*) 3:02.5 (*) 4:15.3
#11 9:07:52.4 (*) 4:24:04.4 MO MO

#12 (*) 5:02:16.0

Table 1. A summary of the MOS results. The lines denoted by “reach” correspond to
the calculation of the reachable states. The lines of the form “seq#mn” correspond to
the time it takes to answer whether there exist a sequence of n simultaneous transitions
— a positive answer is indicated by (*) and MO denotes memory overflow.

using the DBM version of KRONOS. While some of the assumptions we made in
the modeling of transistors deviate from the physical reality (for example, we
have adopted a “lazy evaluation” approach concerning transistors whose input
becomes “floating”, that is, they maintain their previous status), we believe
that the approach presented here can be integrated into the design methodology
of MOS circuits. Once a suspicious input pattern has been detected by a tool
like ours, a full-fledged SPICE simulation, focused around that pattern, can be
invoked in order to determine whether or not the alarm is false.

5 Additional Examples

Other experimental results will be reported elsewhere due to lack of space.
They include Fischer’s mutual exclusion protocol which has become a traditional
benchmark for timed automata verification tools ([DOY94], [WD94], [LPY95],
[B96]). We managed to calculate the reachable states for 14 such processes. We
have also verified (in few minutes) the manufacturing example due to A. Puri,
described in [DY95], where timed automata are used as an abstraction of hybrid
systems.

6 Conclusions

We have suggested, implemented and tested an alternative method for efficient
verification of timed automata. The essence of this method is a canonical repre-



sentation of discretized sets of clocks configurations using BDDs. This method can
take advantage of the symbolic representation of the untimed state-space. We
were able to treat some examples that could not be treated by state-of-the-art
DBM-based tools. Looking more closely at the “bit-structure” of the clock-space
allows us to make an informed choice concerning the trade-off between model
accuracy and computational hardness, as was demonstrated in the CMOS case-
study.

Notwithstanding the achievements, this is still not the breakthrough in timed
verification. The main reason, as mentioned in this paper, is the hidden depen-
dency between “syntactically-independent” components, which makes the BDDs
of the clock part of a system rather big.

Acknowledgement: We have benefitted from the CMOS know-how of Israel
Wagner and Ken McMillan.
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