
Effective Synthesis of Switching Controllers for
Linear Systems

EUGENE ASARIN, OLIVIER BOURNEZ, THAO DANG, ODED MALER,AND

AMIR PNUELI, MEMBER, IEEE

Invited Paper

In this paper, we suggest a novel methodology for synthesizing
switching controllers for continuous and hybrid systems whose dy-
namics are defined by linear differential equations. We formulate
the synthesis problem as finding the conditions upon which a con-
troller should switch the behavior of the system from one “mode”
to another in order to avoid a set of bad states and propose an ab-
stract algorithm that solves the problem by an iterative computation
of reachable states. We have implemented a concrete version of the
algorithm, which uses a new approximation scheme for reachability
analysis of linear systems.

Keywords—Control synthesis, hybrid systems, switched systems.

I. INTRODUCTION

“The purpose of control is to alter the dynamical behavior
of a physical system in accordance with man’s wishes”[1].
In other words, control theory is concerned with finding sys-
tematic ways to influence the behavior of systems by ob-
serving their state and injecting appropriate control signals
(see, e.g., [2] for a modern exposition). Classically, both the
system to be controlled (“plant” in the control terminology)
and the controller were modeled as continuous dynamical1

systems, and the control signal was “computed” continu-
ously over time. This was a natural model when control was
implemented using analog devices.

The introduction of digital control (and in particular, con-
trol by general-purpose computers) gave rise to models based

Manuscript received December 20, 1999; revised April 10, 2000.
E. Asarin, T. Dang and O. Maler are with VERIMAG, Gieres

38610, France (e-mail: Eugene.Asarin@imag.fr; Thao.Dang@imag.fr;
Oded.Maler@imag.fr).

O. Bournez is with LORIA, Nancy 54602, France (e-mail:
Olivier.Bournez@loria.fr).

A. Pnueli is with the Weizmann Institute of Science, Rehovot 76100, Is-
rael (e-mail: amir@wisdom.weizmann.ac.il).

Publisher Item Identifier S 0018-9219(00)06461-6.

1Throughout this paper, the term “continuous dynamical system” is used
in the narrow sense of a system whose behaviors are solutions to differential
equations, e.g., [3].

on discrete-time and sampling [4]. In this setting, time is dis-
cretized into fixed intervals. During every interval the values
of the state variables are measured and digitized, and the
values to be delivered by the feedback function are com-
puted and converted back to analog signals. The nature of
the continuous process underlying the plant dictates which
sampling rate is sufficient so that the sampled control can be
viewed as a good approximation of the “ideal” continuous
controller. If the computer is fast enough for computing the
feedback function within the sampling period, sampled con-
trol can be treated by techniques similar to classical ones.
This might explain why some control theorists do not always
understand immediately what novelty there is in these hybrid
“discrete-continuous” systems.

We argue that the major motivation for hybrid systems is
not necessarily the introduction of computers into the feed-
back loop but rather the inadequacy of models based on con-
tinuous mathematics for describing certain classes of com-
plex systems. Notwithstanding the mathematical beauty of
the calculus, smooth functions, differential equations, etc.,
and their effectiveness in predicting stellar and missile mo-
tion and much more than that, theydo notconstitute a uni-
versal modeling language. A decision of a robot to go left
or right, a command of a process control system to open a
valve, shifting gears in a car—all are phenomena whose most
natural and useful models contain discrete components, and
attempts to express them exclusively using the tools of clas-
sical continuous mathematics are, perhaps, as adequate as
epicycles (similar arguments can be found in [5]). Note that
this is not an argument about the “real” nature of the world
but rather about the utility of certain classes of mathematical
models.

People designing real control systems have always known
these facts, and control by switching (i.e., discrete change
in the dynamics) has been used since the early days of con-
trol. This practice was sometimes accompanied by serious at-
tempts of mathematical formalization, e.g., [6]. However, the

0018–9219/00$10.00 © 2000 IEEE

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000 1011

feeling is that in all these attempts, the discrete dynamics was
a second-class citizen,2 a kind of hacking to glue together
several respectable continuous models. The reason for this
seems obvious: the existence of a rich and beautiful theory
of continuous systems, a product of several centuries, and
the lack of a similar theory in the discrete side.3 There was
some theoretical recognition of the existence of dynamical
systems whose nature cannot be captured in a useful way by
continuous models, and this led eventually to the theory of
discrete-event dynamical systems (DESs), for which a con-
troller synthesis methodology, essentially based on automata
theory, has been developed by Ramadge and Wonham [8].
However, these models, (with some exceptions; see [9]) were
kept apart from continuous models. It was only within com-
puter science (in particular in the domains of verification and
semantics) that discrete nonmetrical dynamical systems were
studied as a primary object, deserving the attention of both
(software and hardware) engineers and computer scientists.4

Now the time is perhaps ripe for a real theory of hybrid con-
trol that can pick useful ingredients from both theories of dy-
namical systems and pass on the rest with silence (a primal
sketch of a basis of such a theory can be found in [10]).

In addition to the theory of automata, an important poten-
tial contribution of computer science to control is in the em-
phasis oncomputationin both design and implementation of
control systems. Computations during the design phase are
those performedoff-line by the control engineer in order to
predict the behavior of the controlled system. Those might
be analytical manipulations of formulas, “experiments” with
simulations, etc. Like in any other engineering domain, com-
puter-aided design systems are crucial for designing com-
plex and reliable control systems, and the major contribution
of this paper is in automating part of the design process of
switching controllers. The outcome of the design stage in-
cludes the feedback map, a function to be computed by the
controlleron-line during its operation each time it samples
the state of the plant. This computation falls into the category
of “real-time” computation, a domain where there is still a lot
to be done in terms of clean formalization and bridging the
gap between the views of control and software engineers, but
this is not the subject of this paper.

A feature of hybrid systems that makes controller design
harder is that discrete transitions break down the possibility
of finding nice analytical solutions of the control problem.
Consider, for example, a linear system for

2As exemplified by the term “differential equation with discontinuous
right-hand side.” See also an interesting recent survey of results on
switched systems [7], which treats similar problems without mentioning an
automaton.

3This does not mean that discrete mathematics did not exist before, but the
development of a decent notion of a function over nonmetric domains was
initiated only in the nineteenth century by Boole. The development of an
explicit mathematical model of a discrete nonmetric dynamical system (the
automaton) had to wait to the works of Turing, Kleene, and von Neumann.

4In computer science, due to various factors, the distance between engi-
neers, applied, and pure theoreticians is much smaller than in other disci-
plines. It is not uncommon to find researchers of the foundations of com-
puting who also have experience in building real systems. It is less likely to
see, for example, a Lie algebraist actually involved in the control of a phys-
ical system of the type his mathematics is supposed to describe.

which one can, at least in an idealized setting, compute a sta-
bilizing feedback function directly by looking at and .
The introduction of nontrivial switching into the dynamics
spoils all this beauty, and one has to resort, sometimes, to
brute-force approaches of exploring the state space, inspired
by algorithmic verification of automata where an analytic so-
lution has never been a dominant option.

In this paper, we introduce a simple framework for
studying control by switching, using the commonly ac-
cepted model of a hybrid automaton [11], [12]. In this
model, a system can be in one of several “modes,” in each
of which its behavior is governed by a distinct continuous
dynamical law. At certain parts of the continuous state
space, the system can switch from one mode to another. We
formulate the problem of controller synthesis as determining
these switching surfaces so that all trajectories generated by
the system satisfy some performance criteria. We present
an abstract algorithm to solve this problem, which uses
as a major component a procedure for computing sets of
reachable states (sometimes called “flow pipes” or “tubes of
trajectories”) of continuous systems. In order to make this
algorithm concrete, we use a novel technique of approxi-
mating such sets for linear differential equations [13] to give
a switching controller with guaranteed correctness. This al-
gorithm has been implemented. The bottom line of this work
is that if you have a plant modeled as a piecewise-linear
dynamical system and you design a controller capable
of switching between modes, you can suggest potential
switching regions in the state space and our (implemented)
algorithm will synthesize safe switching surfaces in afully
automaticmanner.

The rest of the paper is organized as follows: in Section II,
we introduce the minimal necessary definitions concerning
discrete and continuous behaviors and hybrid automata. A
special effort is made to relate the definitions to those used
in the control literature. In Section III, we formulate the con-
troller synthesis problem and give the abstract algorithm that
solves it. In Section IV, we discuss computability issues and
our approximation scheme, and in Section V, we illustrate the
approximation with two concrete examples. In the last sec-
tion, we discuss the location of this work within the hybrid
systems literature on controller synthesis and on approximate
computation of reachable sets.

II. SWITCHED SYSTEMS AND HYBRID AUTOMATA

We start with a control-oriented presentation of the setting
before introducing hybrid automata. The system depicted in
Fig. 1 is defined over a continuoustime domain and
a continuous state space , whose elements we write
as . The system can be in several modes,
each with a distinct continuous dynamics. The origin of these
modes can be of various sorts: they can be identified with dif-
ferent structural configurations of a continuous system such
as gears in a car or combinations of open and closed valves in
a liquid container; they can represent several continuous reg-
ulators, each used at a different range of operation; they can

1012 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 1. A switching controller.

be used to approximate continuous–valued control by a finite
discretization or nonlinear systems by piecewise-linear ones.
The choice between the modes is done by a discrete con-
troller (supervisor, decision-maker), which observes contin-
uously the state of the plant and decides continuously which
mode to select out of a discrete (and usually finite) set.

Some features distinguish our treatment of this setting
from the way it is approached in some of the control
literature.

1) Hybrid State Space:We are looking closely at the
structure of the discrete switching controller and model it
as an automaton with a set of states, where each state is
identified with the value sent by the controller to the plant.
Hence, the domain of the feedback map is and not
only , and the controller may react differently to the same

according to its current mode. In other words, we
consider as the state space of the combined system
to which we apply all our analysis and synthesis techniques.
In this context, the hybrid automaton model is most natural
and phenomena such as certain types of hysteresis are easy
to model.5

2) Nondeterminism:This feature might seem strange to
some control theorists—we do not insist (at least not all the
time) that the controller is deterministic, but are rather sat-
isfied with a feedback map of the form .
This means that at some parts of the state space there is more
than one possibility for the continuous trajectory to evolve,
either according to the current mode or by switching to one of

5In fact,differential automatahave been used to model hysteresis already
in [14].

several other modes. Unlike control, where differential inclu-
sions [15] are not considered a mainstream topic, in computer
science such a set-valued6 nondeterminism is commonplace,
and the archaic “uniqueness of solutions” is traded for higher
expressive power. Nondeterminism can express uncertainty
in models, sensors, actuators, and disturbances. It can also
be used to specify the possible behaviors under all potential
controllers before synthesis is done. Synthesis itself can then
be viewed as replacing an underspecified controllerwith a
more restrictive one such that all the behaviors induced by

satisfy the required properties. Hopefully, this will become
clearer in the sequel.

3) Properties: In formal verification of discrete (soft-
ware and hardware) systems, one is interested in showing
that all possible behaviors of the system in question satisfy
properties such as “the system will never reach a set of bad
states” or “every occurrence of eventwill be followed
by an occurrence of event,” etc. These properties can be
expressed in formalisms such as temporal logic [16]. Per-
formance criteria used in control have similar yet somewhat
different flavor, partly due to historical reasons, partly due
to the different nature of the time domains and state spaces
(in discrete spaces it is hard to talk about getting “closer”
to a point). For example, convergence to an equilibrium is
roughly the temporal property “eventually always” where

is a small open ball around the equilibrium point. In this
paper, we concentrate on thesafetyproperty, namely, the
avoidance of a set of forbidden states (“avoid states where

6By “set-valued” we mean nondeterminism, which specifies a set of pos-
sibilities but doesnot define probabilities on this set.

ASARIN et al.: EFFECTIVE SYNTHESIS OF SWITCHING CONTROLLERS FOR LINEAR SYSTEMS 1013

the altitude of the airplane is very low and its downward
velocity is very high”).

In order to speak about the behavior of a switched dynam-
ical systems over time, we need a language to express both
the evolution of the continuous variables as well as the evolu-
tion of the discrete state. Atemporal behavioris the general
concept that unifies them.

Definition 1 (Temporal Behavior):A temporal behavior
over a set is a partial function whose domain
of definition is an interval for some .

We call the metric length of , denote it by , and say
that is infinite if . Restrictions of to points and
intervals are denoted by or .

Definition 2 (Piecewise-Constant Non-Zeno Be-
havior): A temporal behavior of length is piece-
wise-constant if it admits a strictly increasing sequence

of time points such that for every,
is constant on the interval . A behavior is

non-Zeno if is finite for every .
The definition of a piecewise-constant temporal behavior

already excludes infinitely many switchings occurring at the
samepoint in time (e.g., when a thermostat model has the
same threshold for moving fromON to OFF and vice versa).
The definition of a non-Zeno behavior excludes more sophis-
ticated ways to “stop” the passage of time, by prohibiting in-
finitely many switchings from occurring in finite time, as do
Achilles and the tortoise in the famous paradox attributed to
Zeno of Elea.

We denote the sequence of intervals , by .
The untimed abstractionof a piecewise-constant behavior

is the partial function defined as
iff for every . The number of intervals is
called thelogical lengthof . Examples of continuous and
piecewise-constant behaviors appear in Fig. 2.

Definition 3 (Hybrid Automaton):A hybrid automaton
(HA) is a system where:

• is the discrete state space;
• is the continuous state space, a bounded subset of

;
• are the staying conditions (“invariants”);
• are the switching conditions (“tran-

sition guards”);
• assigns to every discrete state a

continuous (and Lipschitz) vector field on.

While the definition allows arbitrary subsets of the Euclidean
space as staying and switching conditions, in practice we use
much simpler subsets of , with limited topological com-
plexity and some geometrical restrictions,e.g., convex poly-
hedra. A hybrid automaton is depicted in Fig. 3. We will use
the notation for , for , for and

for . A pair is called a configura-
tion of .

The set is the subset of the continuous state space
where the dynamics can be applied. Such a restriction can
come from physical modeling considerations (a plane cannot
be in a flight mode in altitude zero) or from the decision of
a particular controller (e.g., a good train controller will not

Fig. 2. A continuous behavior� and a piecewise-constant behavior
� of logical length 4 with� = q ; q ; q ; q .

Fig. 3. A three-state hybrid automaton.

stay in an acceleration mode when the train is close to another
train). Similarly, the set is the subset of the state space
where the controller can switch from modeto . These sets
can be expressed in terms of the nondeterministic feedback
map where and

.
The hybrid automata defined here are slightly more re-

stricted than others appearing in this issue, e.g., [17] and [18],
as there are no jumps or resets in the values of the contin-
uous variables when transitions are taken. These more gen-
eral models include also a reset map ,
which decomposes into reset maps with

for each . Our models
correspond to the special case where each is the identity
map. For this reason, we may assume that because
a transition from a discrete state to itself without updating
the continuous variables does not really change the configu-
ration of the system. The results of this paper can be easily

1014 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

extended to systems with jumps at the price of additional no-
tation.

The possible behaviors of such a hybrid automaton are
those satisfying the following intuitive definition: when the
HA is in a configuration such that , the contin-
uous state can evolve according to the differential equation

, for which we assume existence and uniqueness of
solution for every initial condition in . Whenever a point

is reached, the automatoncanmake a transition to
and switch the dynamics accordingly to . We

assume that transitions can be made only to states where con-
tinuous evolution can be continued, i.e., . When-
ever this is not the case, can be replaced by ,
i.e., for every . All this can be
formalized as follows.

Definition 4 (Continuous Evolution):Let
be the solution of the differential equation with

, and let be a subset of . We say that:

• The dynamics is enabled from for time if
for every . This is denoted by .

If, in addition, the trajectory stays within be-
tween 0 and, we write it as .

• A point is -reachable from in time if ,
and . This is denoted by . If,

in addition, for every , we write it as
.

• A set is -reachable from in time if
for some . This is denoted by . If, in
addition, for every , we write it as

(until in mode).

Equipped with these definitions we can define thesemantics
of hybrid automata, i.e., the set of behaviors they can gen-
erate from any initial state.

Definition 5 (Semantics of HA):A trajectory of a hybrid
automation , starting from a configuration is a be-
havior , which can be written as a pair of
behaviors and such that is contin-
uous, is piecewise-constant, and:

1) initiality: and ;
2) differential evolution: for every interval

such that ,
for every ;

3) transition conditions: for every , such that
and , .

Note that our definitions of piecewise-constant behaviors
imply strict monotonicity of the jump points and for any
step , the interval has duration and a
nontrivial continuous evolution. Other models allow steps
of zero duration and, hence, several jumps in one time point.

A behavior of a three-state HA is sketched in Fig. 4, which
can be viewed as drawing the behavior in Fig. 2 on the state
space. Recall that typically there is more than one possible
trajectory starting from a given configuration because

and may overlap. Such “margins” can be useful for
representing uncertainty both in physical modeling and in

the delay between the initiation of a transition and its ac-
tual execution. Uniqueness of solutions is not part of the
prerequisites of verification methodology. It can be restored
by insisting ondeterministicHA where for every the sets

are mutually disjoint and have an empty intersec-
tion with the interior of . The set of all trajectories starting
from is denoted by and the set of
trajectories starting from any such that is de-
noted by .

Some anomalies may occur under these definitions. It may
happen that a trajectory leaves without entering any .
Such a trajectory becomes “blocked.” One way to fix it is
to “complete” the automaton by adding a new discrete state
to which the systems enters when it goes out of the staying
conditions of all dynamics. We will not do it because there
will be an explicit notion of the “good” and “bad” states in
the formulations of the synthesis problem.

The other anomaly is that of a Zeno behavior (a term first
coined in [19]), namely, a trajectory that switches infinitely
often between discrete states during a bounded time interval.
Similar phenomena have been studied extensively under the
title sliding mode control[6]. One should be very careful to
prevent the synthesis algorithm from producing controllers
that can avoid bad states only by generating such behaviors
which “stop” Time. Our approach to this problem is to de-
fine HA that are non-Zeno by construction (as we did for
timed automata in [20]) and, hence, any synthesized con-
troller cannot generate Zeno behaviors.

Definition 6 (Non-Zeno Hybrid Automata):A Zeno cycle
in a HA is a sequence of states such that

where is the closure operator.
An HA is non-Zeno if it has no Zeno cycle.

Claim 1 (Trajectories of Non-Zeno Automata):All the be-
haviors of a non-Zeno HA are non-Zeno.

Proof: For any three states in a non-Zeno
HA, the distance between the sets and is bounded
below by some , and, hence, there is a positive lower
bound on the time duration of evolution within. Let
be the minimal such number over all triples of states. Then
every trajectory of logical length greater than or equal to
satisfies .

The lack of Zeno cycles is a sufficient (but not necessary)
condition for preventing Zeno behaviors, which is easy to
check. Finding more precise conditions is an interesting topic
that is irrelevant here.

Given two HA and
, we say that is more restrictive than

, denoted by , if and in the
natural sense of inclusion between such functions, i.e.,

and for every . Clearly
implies , and if is non-Zeno, so

is .

III. T HE PROBLEM AND THE SOLUTION

We formulate the simplest control problem of avoiding bad
states in a non trivial way (a trivial solution would be to block
completely the evolution of the system by letting).

ASARIN et al.: EFFECTIVE SYNTHESIS OF SWITCHING CONTROLLERS FOR LINEAR SYSTEMS 1015

Definition 7 (Safety Synthesis for Hybrid Automata):Let
be an HA, and let be a subset

of . The safety controller synthesis problem is: find
the maximal nonblocking HA such that for every

and every , .
In order to solve this problem, we make use of the fol-

lowing operator.
Definition 8 (Predecessors):The predecessor operator

is defined for every set of configurations

as

Essentially, is in if either there is an infinite tra-
jectory without switching starting from and always
staying in or it is possible to stay in for some time and
then make a transition to another configuration which is still
in . For those who do not feel comfortable with quantifiers,
we give the following alternative definition of . Let
and be two subsets of . For every , we define the fol-
lowing two operators.

• The unbounded time predecessor , de-

fined as , i.e., the points from

which it is possible to continue indefinitely with dy-
namics while staying in .

• The until operator defined as

, i.e., points from which

it is possible to continue with dynamicsand stay in
until is reached.

Then can be written as

where for every

as illustrated in Fig. 5.
The high-level algorithm for solving this problem is pre-

sented below. It works by computing the setof “winning”
states and can be viewed as a specialization of dynamic pro-
gramming value iteration to 0–1 cost functions.

Algorithm 1
(Safety Controller Synthesis for HA)

repeat

until

Fig. 4. A sketch of a behavior of the HA of Fig. 3 withX = .

Fig. 5. Computation ofF from F and F . Point xxx is in
� (F). Pointxxx is inU (F ; (G \F)). Pointxxx is in neither;
hence, it is not inF .

Claim 2 (Properties of the Algorithm):For every , the
state belongs to iff contains a trajec-
tory that remains invariantly in , which is either of logical
length smaller than and infinite metric length, or else of
logical length not less than.

Proof: The proof concerning the length of trajectories
is done by induction. For the base case, all points atadmit
empty runs of length zero and all points outside(and out-
side) do not admit such runs. Going fromto is
easy because if , it can take one transition
to and transitions from there. On the other direction, if

, the automaton cannot take from it a transi-
tion to nor an infinite run, and, hence, it can take at most

transitions.
The algorithm produces a decreasing sequence of

sets, and if the algorithm terminates, it returns the fixed point
.
Claim 3: The automaton ,

where for every and
is the solution of the safety

controller synthesis problem.
Proof: The limit is the set of all points that have

either a run of finite logical length whose last interval is in-
finite or a run of infinite logical length, which implies (for

1016 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

non-Zeno HA) an infinite metric length. Hence, is the
maximal subset of from which all trajectories can be
extended to infinity without leaving . Any automaton larger
than will contain points outside , which do not admit
infinite trajectories inside .

A feedback map can be derived from
by letting

As mentioned above, this controller is not deterministic, sim-
ilar to the “least restrictive supervisor” in the theory of dis-
crete-event control [8]. A deterministic controller can be de-
rived from it by reducing and so that the feedback
map becomes a function . In general, there is
no “canonical” way to do this reduction, and we consider it
an implementation issue.

Mathematicians might stop here: is characterized as
the maximal fixed point of the equation , and

is the solution of the synthesis problem. Those interested
in actuallycomputingthe controller need to proceed further.
While the notion ofeffective computation7 is central in com-
puter science, it is less familiar within control theory, so some
introductory remarks are in order.

Algorithm 1 involves the computation of the following
functions oversubsets of :

• intersection, ;
• predecessors, ;
• equivalence checking, .

The latter is needed to detect the termination of the algorithm
when and can be reduced to checking emptiness
of the set difference .

In order for a function to be computable by a discrete de-
vice, the elements in its domain and its range must have a
finite syntactic representation, and there must be an effective
and terminating procedure, which takes as input a represen-
tation of an element of the domain and returns as output a
representation of the value of the function applied to that el-
ement. For example, functions over the integers can be com-
puted by applying well-known algorithms for addition and
multiplication to unary, binary, or decimal representations of
numbers. In this paper, we focus on the problem of com-
puting functions oversubsetsof . Subsets of the mathe-
matical real numbers can be very weird objects and, unlike
the finite sets encountered in discrete verification, they do not
admit an explicit (enumerative) representation. Instead, they
can be expressed symbolically by finite syntactical objects
(e.g., formulas of some logic). To take a concrete example,
the subclass ofpolyhedralsets consists of sets which can be
represented by Boolean combinations of linear inequalities,
and the membership of any point in a given set can be deter-
mined using a finite number of arithmetical and logical op-
erations. Similarly, thesemi-algebraicsets are those that can
be written as combinations of polynomial inequalities. While

7The theory of computability, also known asrecursion theory, can be seen
as a kind of pure mathematics of computer science, and it has deep connec-
tion with logic and set theory. The notions that we borrow from there are
only the tip of the iceberg and the exposition is not meant by any means to
be a serious introduction to the domain.

these sets admit effective Boolean operations, easy member-
ship testing, and more involved equivalence checking algo-
rithms, they are usually not closed under flows of linear sys-
tems, and, hence, even if a setbelongs to a well-behaving
class, may not belong to that class.

We illustrate the problem using a HA with one discrete
state and a simplified version of defined as

, namely, the points from which it is possible
to reach some time in the future. Suppose thatitself is
characterized by a formula whose truth value is 1 iff

. Suppose further that the equation has
a closed-form solution8 of the form for every initial
condition . In this case, can be characterized by the
formula

The process of transforming into an equivalent quanti-
fier-free formula is calledquantifier eliminationby lo-
gicians. If and are part of a theory that admits a quantifier
elimination algorithm, then the operator is computable,
i.e., there is an effective way to transform a formula for

into a formula for . If in the logic in question,
the satisfiability problem for nonquantified formulas is de-
cidable, questions such as the inclusion of in another
set are decidable as well (see [18] for a survey of logic no-
tions).

In the simple case whereis constant, i.e., , and
is a polyhedral set written as a formula , which is a

combination of linear equalities, we get

and quantifier elimination can be performed using elemen-
tary linear algebra. This is the basis for reachability algo-
rithms for timed automata and other hybrid systems with con-
stant derivatives implemented in tools such as Kronos [21]
and HyTech [22]. In the less trivial case of linear systems,
the definition reduces to

In this case, quantifier-elimination techniques fail except for
some special classes of matrices (recent results concerning
the applicability of algebraic manipulation techniques for the
reachability analysis of linear hybrid systems appear in [23],
[24], and [17]). The geometry of for constant and non-
constant dynamics is illustrated in Fig. 6(a) and (b).

Even if we were equipped with an effective precise pro-
cedure to compute , Algorithm 1, more often than not,
will not terminate in a finite number of steps, even for the
most trivial forms of continuous dynamics. In such cases, for
every step of the iteration, there will be some part of
that cannot stay within itself and the fixed point will not be
reached in a finite number of iterations. This phenomenon is
illustrated in Fig. 7 using a PCD system (a special class of de-
terministic HA where all vector fields are constant; see [25]).

8An assumption which, by itself, restricts the scope of the approach sig-
nificantly.

ASARIN et al.: EFFECTIVE SYNTHESIS OF SWITCHING CONTROLLERS FOR LINEAR SYSTEMS 1017

Fig. 6. (a) The predecessors of a polyhedral setF under constant derivative. (b) The predecessors of
F under nonconstant derivative.

Given this state of affairs, we resort to a classical solution
of continuous mathematicians and use numerical methods to
compute approximately predecessors (and successors) in the
continuous state space.

To overcome the effectiveness and termination problems
we propose an approximate variant of Algorithm 1, special-
ized for piecewise-linear systems, i.e., for every

(similar systems have been introduced in [26] for dis-
crete time), and which uses a restricted class of subsets of

, orthogonal “griddy” polyhedra (unions of unit boxes de-
fined by a fixed grid [27]). The approximation technique, de-
scribed in the next section (and in more detail in [13]), when
plugged into Algorithm 1, yields a sequence of poly-
hedra, which converges after finitely many steps and which
satisfies for every . The obtained solution
is included in , and, hence, the resulting HA satisfies the
same required properties of except, of course, being max-
imal.

IV. THE APPROXIMATION TECHNIQUE

The approximation technique developed in [13] treats var-
ious other problems related to the automatic analysis of hy-
brid systems. While the synthesis algorithm requiresunder-
approximationof thebackwardreachability operator, other
tasks such asverification of reachability properties (com-
puting all states reachable from a given setof initial con-
ditions under all admissible inputs) requireover-approxima-
tion of the forward analysis operator, which is a bit more
intuitive to explain.

Definition 9 (Successors):Let be a dynamical system
defined by and let be a time interval. The
successor operator is defined for any subset
of as

Fig. 7. A simple hybrid system with piecewise-constant derivatives
for which the computation ofP� does not terminate.

We use the notation for (states reachable afterexactly
time), for (states reachable after any nonnegative

amount of time), and for . Note that satisfies
the semigroup property, i.e.,
where is the
Minkowski sum of two intervals, and that, in particular,

. Hence, the computa-
tion of , which is the basic operation in verification
algorithms [as is for algorithm 1], can be reduced to
the following iterative numerical algorithm for some time
step .

Algorithm 2
(Exact Computation of Using Time
step):

repeat

1018 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 8. (a) A setF over- and underapproximated by polyhedra. (b) The same set approximated by
griddy polyhedra.

until

The exact application of Algorithm 2 suffers from two
problems. The computation of is not more feasible than
the computation of the whole, and even if was com-
putable, the algorithm usually does not terminate after a fi-
nite number of steps. The first problem can be resolved by
approximating subsets of by polyhedral sets. Any open or
closed set can be over- or underapproximated ar-
bitrarily closely by a set consisting of a finite union of
convex polyhedra with rational vertices [see Fig. 8(a)]. An
effective approximation of Algorithm 2 can thus be imple-
mented by replacing all the operations (Boolean operations,
equivalence testing, and computation of) by their ap-
proximated versions. Note that if the class is closed under
Boolean operations, only needs to be approximated
(this is true for arbitrary polyhedra but neither for convex
polyhedra nor for ellipsoids). If the approximate algorithm
terminates, the result is an overapproximation of .

The termination of the procedure, however, cannot be
guaranteed since there are infinitely many polyhedral sets.
Moreover, the implementation is very complicated because
the sets can be very complex nonconvex polyhedra
for which there is no useful canonical form and the test

is very expensive. To overcome this problem,
we restrict further the class of sets which are used to
approximate to be what we callgriddy polyhedra, i.e.,
sets that can be written as unions of closed unit hypercubes
with integer vertices. When the continuous state space
is bounded, there are only finitely many griddy polyhe-
dral subsets and Algorithm 2 is guaranteed to terminate.
Moreover, the restriction to griddy polyhedra allows us to
benefit from a relatively efficient canonical representation
for both convex and nonconvex sets [27], supported by an
experimental software package. The price, however, for
using griddy polyhedra is that the quality of the approx-
imation they provide in terms of Hausdorff distance per
vertex is poorer than that of arbitrary polyhedra9 but such a
compromise seems unavoidable.

9For anm-vertex approximation of a figure with piecewise-smooth
boundaries in , the worst case error isO(m) for griddy and
O(m) for arbitrary approximating polyhedra.

Some aspects of the technique take advantage of special
properties of linear systems. Let be
the convex hull of a set of points, i.e.,

for nonnegative whose sum is 1. For linear
systems, we have and the matrix exponential,
as a linear operator, preserves convexity, i.e.,

This means that for a convex set where
, and for every , the states reachable

from can be determined by the states reachable from
[see Fig. 9(a)]. We exploit this property to approximate

based on the set of points
where is computed from by a finite number of
matrix exponentiations or numerical integration steps. Our
approximation scheme consists of three steps.

1. Compute [see Fig. 9(b)]. This
set is an approximation of but neither
an overapproximation nor an underapproximation.
The convex-hull algorithm provides us with informa-
tion concerning the orientation of the faces, which is
used in the next step.

2. Push the faces of outward to obtain a bloated convex
polyhedron that is guaranteed to contain the re-
quired set [Fig. 9(c)]. The amount of pushing is de-
termined by the time stepand the matrix (see the
analysis in [13]). Pushing inward will result in an un-
derapproximation.

3. Overapproximate by a griddy polyhedron
[Fig. 9(d)].

The approximate algorithm for computing for
is defined below.

Algorithm 3
(Approximate Computation of for
Linear Systems)

; ;
repeat

;
;

;
;

until

ASARIN et al.: EFFECTIVE SYNTHESIS OF SWITCHING CONTROLLERS FOR LINEAR SYSTEMS 1019

Fig. 9. (a) A setF = conv(fxxx ; xxx g) and its exact successors for time intervals[0; r] and
[r; 2r]. (b) Approximating � (F) by convex hull. (c) Bloating the convex polyhedron to
obtain a polyhedral overapproximation. (d) Rectangulating the polyhedron into� (F). (e)
Repeating the same procedure in the next time step to obtain� (F). (f) The accumulated states
� (F) = � (F) [� (F).

The algorithm is guaranteed to terminate because
is a monotone increasing sequence over the finite set of
griddy polyhedra. There are two types of errors accumulated
in the process of computing : from the actual set to its
bloated convex hull and from there to the griddy polyhedron.
However, these errors do not propagate to the next step,
which computes based on and not on
[Fig. 9(e)]. Note that our orthogonal polyhedra package [27]
maintains as asinglecanonical object andnot as
a union of convex polyhedra or ellipsoids [Fig. 9(f)]. The
algorithm can be fine-tuned by changing the time stepand
the size of the hypercubes.

Result 1 (Computation of Reachable States for Linear Sys-
tems): There exists an implemented algorithm for over-ap-
proximating the reachable sets of systems defined by linear
differential equations.

This result is not a theorem due to the following facts.

1. There is always a trivial overapproximation of any
subset of : itself.

2. The smallest polyhedral or griddy set that contains
is as impossible to compute as .

3. The best upper bounds that can be easily proved on the
approximation error are much larger than what hap-
pens in practice.

Doing underapproximation is almost symmetric, and for
computing backwards, one needs to invert the system. With
some additional modification, one can underapproximate
the operator and, hence, Result 2 follows.

Result 2 (Effective Controller Synthesis for Linear Sys-
tems): There exists an implemented algorithm for underap-
proximating the least restrictive safety controller for piece-
wise-linear systems.

In the framework described so far, we assumed no adver-
sary (disturbances) and that all the transitions are control-
lable, i.e., initiated by the discrete controller. These assump-
tions can be relaxed but a detailed description is beyond the
scope of this paper, so only a sketch is given below. Uncon-
trolled transitions, i.e., transitions initiated by the plant, can
serve several modeling purposes. They can model a discrete
transition of a physical system (such as a collision), an adver-
sary that is modeled using a switching controller (a human
operator that pushes a button) or, when a nonlinear system is

1020 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

approximated by a piecewise-linear one, a passage from one
region of the state space to another. There is a standard adap-
tation of the operator for such situations (see, e.g., [28]).
For continuous disturbances, we have extended our system to
treat dynamics of the form where ranges over
a convex set. Using a modification of the procedure proposed
in [29], based on the maximum principle, we can compute an
appropriate variant of and solve the synthesis problem in
the presence of such disturbances, as Example 1 will show.
Our techniques can be adapted, via discretization of control
values, to construct strategies for linear differential games of
the form , and it remains to see whether
this approach has advantages over known techniques.

V. EXAMPLES

We illustrate the behavior of the algorithm on several ex-
amples. Recall that the results are obtained in a fully auto-
matic manner once the model has been written.

Example 1 (Thermostat with Delay and Distur-
bances): Consider a thermostat having two states
(OFF) and (ON). The corresponding dynamics are

and

Note that these are equivalent to differential inclusions due
to uncontrolled (but bounded) disturbances. Similarly to
[30], we augment the system with an additional “clock”
variable , such that in every state , every transition
is guarded by the condition and is reset to zero
after a transition is taken. This construction guarantees that
the guards are separated and the automaton is non-Zeno.
The price is having an additional dimension and a slight
modification of to take clock resetting into account.

Our goal is to keep within the interval ; hence,
. The synthesis is done in the two-

dimensional space and converges after three iterations into
the safe sets shown in Fig. 10. After removing the fictitious
clock variable by intersection with , we obtain

and . From this we can
derive a deterministic switching controller that starts heating
when and stops heating when for any
and satisfying .

Example 2 (Two Spirals):Consider a system with two
discrete states and where the dynamics is defined by

so that in each state there is an expanding spiral (see a sketch
of the phase-portrait on top of Fig. 11). In order to stay within

, the controller
must switch between the orthogonal spirals. The initial tran-
sition guards are

The algorithm starts with as the safe set and terminates
after three iterations (Fig. 11).

Fig. 10. The safe sets for the thermostat in thex –x plane. The
safe sets forx are those obtained by intersection withx = 0.

VI. RELATED WORK

In this section, we discuss the relationship between our
work and some other results on controller synthesis for hy-
brid systems. This is by no means an exhaustive survey; the
reader is also referred to [31], [9], and [18] in this special
issue.

Albeit under different names, many verification and
controller synthesis problems can be viewed as instances of
the more general concept of finding or evaluating strategies
in games. For example, the typical question of verification,
“Will the system behave correctly in the face of all behaviors
of the environment?” can be rephrased as asking whether
a particular given strategy is winning. Similarly, many
problems in control can be viewed as simple instances of
finding winning strategies in differential games [32]. For
finite-state discrete systems, all variants of these problems
are algorithmically solvable, and we survey various attempts
to extend such results to deal with continuous and hybrid
dynamics. These works can be classified according to the
following interdependent criteria.

1) What is the complexity of the discrete and continuous
dynamics considered? Different degrees of continuous
complexity exist, starting from clocks, via constant
derivatives, linear differential equations up to arbitrary
continuous dynamics. Of course, the more complex the
dynamics, the weaker the computational content of the
results.

2) Direct versus indirect approach: does the synthesis
procedure work directly on the continuous state space
or is the system reduced first, via abstraction, into a
finite-state automaton?

3) Computational content and generality: does the ap-
proach attempt to solve the problem for aclassof sys-
tems or does it focus on a particular system originating
from an application? Is the solution really effective or
is there an implicit notion of an “oracle” that solves the
hard computational problems?

The first and simplest class of hybrid systems for which
controller synthesis has been applied is the class of timed
automata [33] where all continuous variables are clocks fol-
lowing the same dynamics, , in all discrete states.
Wong-Toi and Hoffmann [34] were the first to consider the
application of supervisory control methodology to this class.
In [35] (see also [20] and [28]), we have defined an algo-
rithm similar to Algorithm 1 and have shown that theexact
computation of can be performed over the set of zones

ASARIN et al.: EFFECTIVE SYNTHESIS OF SWITCHING CONTROLLERS FOR LINEAR SYSTEMS 1021

Fig. 11. The phase portrait of the two spiral system and the results
of the algorithm. The evolution ofF andG \F is shown on the
left and that ofF andG \F on the right. The final results show
for each state the safe region where the system can spiral and then
make a transition to the safe region of the other state.

(a restricted class of polyhedra underlying the verification
of timed automata). Another class of systems for which a
controller synthesis procedure always terminates are the ini-
tializedrectangularhybrid automata, systems where the dy-
namics in each state is of the form for every
variable and for which controller synthesis was proved
to be solvable for discrete [36] and continuous [37] time by

Henzingeret al.In the rest of the constant slope world, exact
verification and synthesis problems are undecidable, algo-
rithms such as Algorithm 1 are not guaranteed to terminate,
yet operators such as and can be computed exactly at
every step using linear algebra (polyhedra are closed under
these operations). A controller synthesis procedure for fixed
slope hybrid automata, which also treats the problem of Zeno
controllers, was given by Wong–Toi in [38] and implemented
in HyTech. Earlier work concerning controller synthesis for
such systems was reported in [39].

Moving to nontrivial continuous dynamics, one faces
the problems mentioned in this paper, and the class of
systems for which results on synthesis can be given an exact
computational content is extremely limited. The works of
Lygeroset al. using a game-theoretic approach [40], [31]
are very close in spirit to ours. They attempt to solve the
controller synthesis problem using an abstract algorithm
similar to Algorithm 1, for arbitrary continuous dynamics
with time-varying piecewise-continuous control and distur-
bance inputs. The computational burden of computing the
operator is delegated, in the spirit of differential games, to
the solution of a Hamilton–Jacobi–Bellman–Isaacs partial
differential equation. In fact, all problems of tracking the
evolution of a subset of under differential flows can be
rephrased as an initial-value problem for PDE [41], but
no evidence has been given so far of the computational
advantages of this point of view. In [24], it has been shown
that for the subclass of linear systems where the matrices
are either diagonal or nilpotent, the synthesis problem is
solvable, in principle, using computer algebra. Beyond this
limit, we believe there is not much hope for exact answers.

Another distinguishing feature of computational ap-
proaches to these problems is whether they workdirectlyon
subsets of the continuous state space (as in this paper) or
indirectly by using a finite-state abstraction of the original
system. Without getting into technical details (see [17] for
exact definitions), this approach consists in finding a dy-
namics-preserving homomorphism (such as the one known
asbisimulations) from the continuous or hybrid system into
a finite-state automaton. These homomorphisms result in a
finite partition of the state space such that the continuous
reachability between partition blocks is faithfully reflected
in the finite-state automaton transition relation.

The indirect approach is very tempting to use because
once the finite abstraction has been constructed, we can
apply standard discrete algorithms, some of which are
already implemented in tools. The danger of this approach
is that it may lead to sweeping the hard parts under the
carpet and proving results that assume already the existence
of a well-behaving partition or prove theexistenceof such
a partition for certain systems, without explaining how to
actually compute it or use it in practice (such partitions
might have very complex boundaries, whose crossing cannot
be detected by any realistic controller).

The work of [34] is an example of the rigorous application
of the indirect approach to timed automata by using the finite
quotient, also known as the “region graph,” on which a su-
pervisory control problem a la Ramadge–Wonham is solved.

1022 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Our work in [35] solves the same problem in a direct manner.
In verification of systems with constant slopes, the indirect
approach is represented by papers like [42] and [17], which
prove that for certain classes of systems such reductions are
possible. The verification procedure in [12] and in [25] (the
latter proves decidability for a class of systemsnot having
a finite quotient) and the synthesis algorithm of [38] are ex-
amples of the direct approach. More complex continuous dy-
namics were treated by [43] and [44], which tried to compute
approximate discrete abstractions for electrical circuits mod-
eled at the transistor level.

We believe that in practice, except for timed automata,
very few interesting hybrid systems admit a finite quotient,
and that in any case, trying to compute or approximate such
a partition is at least as hard as solving any verification
problem. For example, in order to show that a given partition
is a bisimulation, one needs to compute successors for every
block of the partition. Moreover, the size of the quotient
might be prohibitively large for discrete verification and
synthesis. A direct algorithm, which explores the state space
“on-the-fly,” might, in the worst case, do all this exploration,
but in many practical cases the exploration will terminate
without traversing the whole state space. Nevertheless,
proving the existence of a finite bisimulation for a class
of systems is an important step in tackling its verification
and synthesis problems. For example, the termination of
Algorithm 1 for timed automata is implied by the existence
of the region graph [33]. If the system is to be subject to
many different queries, it might be worthwhile to compute
its finite-state abstraction as a preprocessing step.

Other works based on a mixture of direct and indirect ap-
proaches have been proposed by various authors from the
control and DES communities (see the tutorial [45] and the
survey in [9]). Some of these works try to relate continuous
and hybrid models to the supervisory control framework.
Since the dynamics treated by these authors is nontrivial, they
do not look for exact finite quotient but rather forapproxi-
matingautomata (e.g., [46]). In more recent works [47], [48],
backward methods similar to ours are used for computing and
refining finite partitions of such systems. In [9], the problem
of interface design, i.e., defining a mapping from the contin-
uous state space to a finite observation alphabet that can serve
as a basis for feedback control, has been investigated. In fact,
modern DES methods for hybrid systems can be viewed as
combining preliminary direct analysis with indirect synthesis
of the supervisory controller.

Our approximation scheme is among a class of new tech-
niques for computing reachable states of continuous systems,
e.g., [44], [49]–[51], [29], [47], [52], [30], [53], and [54].
Among these, the work of Chutinan and Krogh [47], also cen-
tered on linear differential equations, is the closest to ours.
Their goal is to find discrete abstractions, and they use the ap-
proximate “flow pipes” as means to achieve this goal. Their
approach differs from ours in some technical aspects, most
notably their different way of computing and our use of
griddy polyhedra for storing the reachable states.

One cultural difference between the different communities
is manifested in the computer science tendency toward gen-

erality: a controller synthesis algorithm works (if complexity
is ignored) forall finite-state automata or forall timed au-
tomata. On the other hand, in the study of continuous sys-
tems, it is sometimes hard enough to treat one instance of a
problem. For example, the work of Zhaoet al. in [55] com-
bines knowledge of dynamics with computation-geometrical
algorithms in order to synthesize controllers that navigate in
the phase space of one particular nonlinear system. In our
work, we have tried to follow the more general (and, per-
haps, naive) approach, offering an approximate solution for
the whole class of piecewise-linear dynamical systems. To be
fair, our tool is not yet as general-purpose as we would like
and some user intelligence is required in order to tune the
system parameters and adapt them to each problem instance.
We hope that further experience in applying this technique to
real-life case studies will inspire more development and will
determine whether it has a place among the useful techniques
for computer-aided control system design.

ACKNOWLEDGMENT

The authors would like to thank an anonymous referee
for a thorough reading of the manuscript and for comments
which improved significantly the quality of the presentation.
Additional useful comments were contributed by J. H. van
Schuppen and B. Krogh.

REFERENCES

[1] R. E. Kalman, P. L. Falb, and M. A. Arbib,Topics in Mathematical
System Theory. New York: McGraw-Hill, 1968.

[2] E. D. Sontag,Mathematical Control Theory—Deterministic Finite
Dimensional Systems. Berlin, Germany: Springer, 1990.

[3] M. W. Hirsch and S. Smale,Differential Equations, Dynamical Sys-
tems and Linear Algebra. New York: Academic, 1974.

[4] K. J. Astrom and B. Wittenmark,Computer Controlled Sys-
tems. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[5] E. D. Sontag, “Interconnected automata and linear systems: A
theoretical framework in discrete-time,” inHybrid Systems III:
Verification and Control, T. A. Henzinger, R. Alur, and D. Sontag,
Eds. Berlin, Germany: Springer-Verlag, 1996, no. 1066, Lecture
Notes in Computer Science, pp. 436–448.

[6] A. F. Filippov, Differential Equations with Discontinuous
Right-Hand Sides. Norwell, MA: Kluwer, 1988.

[7] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systems,”IEEE Contr. Syst. Mag., vol. 19, 1999.

[8] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proc. IEEE, vol. 77, 1989.

[9] X. D. Koutsoukos, P. J. Antsaklis, M. D. Lemmon, and J. A. Stiver,
“Supervisory control of hybrid systems,”Proc. IEEE, vol. 88, pp.
1026–1049.

[10] O. Maler, “A unified approach for studying discrete and continuous
dynamical systems,” inProc. CDC’98, 1998.

[11] O. Maler, Z. Manna, and A. Pnueli, “From timed to hybrid sys-
tems,” in Real-Time: Theory in Practice, W. P. de Roever, J. W.
de Bakker, C. Huizing, and G. Rozenberg, Eds. Berlin, Germany:
Springer-Verlag, 1992, no. 600, Lecture Notes in Computer Science,
pp. 447–484.

[12] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,”Theoret. Comput. Sci., vol. 138, pp.
3–34, 1995.

[13] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Reachability analysis
of piecewise-linear dynamical systems,” inHybrid Systems: Com-
putation and Control, B. Krogh and N. Lynch, Eds. Berlin, Ger-
many: Springer-Verlag, 2000, no. 1790, Lecture Notes in Computer
Science, pp. 20–31.

ASARIN et al.: EFFECTIVE SYNTHESIS OF SWITCHING CONTROLLERS FOR LINEAR SYSTEMS 1023

[14] L. Tavernini, “Differential automata and their simulators,”
Non-Linear Anal., Theory, Methods and Applicat., vol. 11, pp.
665–683, 1987.

[15] J. P. Aubin and A. Cellina,Differential Inclusions: Set-Valued Maps
and Viability Theory. Berlin, Germany: Springer, 1984.

[16] Z. Manna and A. Pnueli,Temporal Verification of Reactive Systems:
Safety. Berlin, Germany: Springer, 1995.

[17] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,”Proc. IEEE, vol. 88, pp. 971–984.

[18] J. M. Davoren and A. Nerode, “Logics for hybrid systems,”Proc.
IEEE, vol. 88, pp. 985–1010.

[19] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,”
in Real-Time: Theory in Practice, W. P. de Roever, J. W. de Bakker,
C. Huizing, and G. Rozenberg, Eds. Berlin, Germany: Springer-
Verlag, 1992, no. 600, Lecture Notes in Computer Science, pp. 1–27.

[20] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis
for discrete and timed systems,” inHybrid Systems II, P. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, Eds. Berlin, Germany:
Springer-Verlag, 1995, no. 999, Lecture Notes in Computer Sci-
ence, pp. 1–20.

[21] S. Yovine, “Kronos: A verification tool for real-time systems,”Soft-
ware Tools Technol. Transfer, vol. 1, pp. 123–133, 1987.

[22] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model
checker for hybrid systems,”Software Tools Technol. Transfer, vol.
1, pp. 110–122, 1997.

[23] G. Pappas, G. Lafferriere, and S. Yovine, “A new class of decid-
able hybrid systems,” inHybrid Systems: Computation and Con-
trol, F. Vaandrager and J. van Schuppen, Eds. Berlin, Germany:
Springer-Verlag, 1999, no. 1790, Lecture Notes in Computer Sci-
ence, pp. 29–31.

[24] O. Shakernia, G. J. Pappas, and S. Sastry, “Decidable controller syn-
thesis for classes of linear systems,” inHybrid Systems: Computa-
tion and Control, B. Krogh and N. Lynch, Eds. Berlin, Germany:
Springer-Verlag, 2000, no. 1790, Lecture Notes in Computer Sci-
ence, pp. 407–420.

[25] E. Asarin, O. Maler, and A. Pnueli, “Reachability analysis of dy-
namical systems having piecewise-constant derivatives,”Theoret.
Comput. Sci., vol. 138, pp. 35–66, 1995.

[26] E. D. Sontag, “Nonlinear regulation: The piecewise linear ap-
proach,”IEEE Trans. Automat. Contr., vol. 26, 1981.

[27] O. Bournez, O. Maler, and A. Pnueli, “Orthogonal polyhedra:
Representation and computation,” inHybrid Systems: Computation
and Control, F. Vaandrager and J. van Schuppen, Eds. Berlin,
Germany: Springer-Verlag, 1999, no. 1569, Lecture Notes in
Computer Science, pp. 46–60.

[28] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis
for timed automata,” inProc. IFAC Symp. System Structure and Con-
trol, 1998, pp. 469–474.

[29] P. Varaiya, “Reach set computation using optimal control,” inProc.
KIT Workshop, Verimag, Grenoble, 1998, pp. 377–383.

[30] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi,
“Beyond hytech: Hybrid system analysis using interval numerical
methods,” inHybrid Systems: Computation and Control, B. Krogh
and N. Lynch, Eds. Berlin, Germany: Springer-Verlag, 2000, no.
1790, Lecture Notes in Computer Science, pp. 130–144.

[31] C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game-theoretic ap-
proach to controller design for hybrid systems,”Proc. IEEE, vol.
88, pp. 949–970.

[32] R. Isaacs,Differential Games: A Mathematical Theory With Appli-
cations to Warfare and Pursuit, Control and Optimization. New
York: Wiley, 1965.

[33] R. Alur and D. L. Dill, “A theory of timed automata,”Theoret.
Comput. Sci., vol. 126, pp. 183–235, 1994.

[34] H. Wong-Toi and G. Hoffmann, “The control of dense real-time dis-
crete event systems,” Stanford University, Tech. Rep. STAN-CS-92-
1411, 1992.

[35] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems,” inProc. STACS’95, E. W. Mayr and
C. Puech, Eds. Berlin, Germany: Springer-Verlag, 1995, no. 900,
Lecture Notes in Computer Science, pp. 229–242.

[36] T. A. Henzinger and P. W. Kopke, “Discrete-time control for
rectangular hybrid automata,”Theoret. Comput. Sci., vol. 221, pp.
369–392, 1999.

[37] T. A. Henzinger, B. Horowitz, and R. Majumdar, “Rectangular hy-
brid games,” inProc. CONCUR’99, J. C. M. Baeten and S. Mauw,
Eds. Berlin, Germany: Springer-Verlag, 1999, no. 1664, Lecture
Notes in Computer Science, pp. 320–335.

[38] H. Wong-Toi, “The synthesis of controllers for linear hybrid au-
tomata,” inProc. CDC’97, 1997.

[39] M. Tittus and B. Egardt, “Controllability and control-law synthesis
of linear hybrid systems,” inProc. Int. Conf. on Analysis and Opti-
mization of Systems, G. Cohen and J.-P. Quadrat, Eds. Berlin, Ger-
many: Springer-Verlag, 1994, no. 199, Lecture Notes in Computer
Science, pp. 377–383.

[40] C. Tomlin, J. Lygeros, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,”Automatica, vol. 35, 1999.

[41] P. Caspi, “Global simulation via partial differential equations,” Ver-
imag, unpublished note, 1993.

[42] T. A. Henzinger, “Hybrid automata with finite bisimulations,” in
Proc. ICALP’95, Z. F. Fülöp and F. Gécseg, Eds. Berlin, Germany:
Springer-Verlag, 1995, no. 944, Lecture Notes in Computer Science,
pp. 324–335.

[43] R. P. Kurshan and K. L. McMillan, “Analysis of digital circuits
through symbolic reduction,”IEEE Trans. Computer-Aided Design,
vol. 10, pp. 1350–1371, 1991.

[44] M. R. Greenstreet, “Verifying safety properties of differential equa-
tions,” inProc. CAV’96, R. Alur and T. A. Henzinger, Eds. Berlin,
Germany: Springer-Verlag, 1996, no. 1102, Lecture Notes in Com-
puter Science, pp. 277–287.

[45] M. D. Lemmon, K. X. He, and I. Markovsky, “Supervisory hybrid
system,”IEEE Contr. Syst. Mag., vol. 19, 1999.

[46] J. E. R. Cury, B. H. Krogh, and T. Niinomi, “Supervisory controllers
for hybrid systems based on approximating automata,”IEEE Trans.
Automat. Contr., vol. 43, pp. 564–568, 1998.

[47] A. Chutinan and B. H. Krogh, “Verification of polyhedral invariant
hybrid automata using polygonal flow pipe approximations,” in
Hybrid Systems: Computation and Control, F. Vaandrager and J.
van Schuppen, Eds. Berlin, Germany: Springer-Verlag, 1999, no.
1569, Lecture Notes in Computer Science, pp. 76–90.

[48] T. Moor and J. Raisch, “Discrete control of switched linear systems,”
in Proc. ECC’99, 1999.

[49] M. R. Greenstreet and I. Mitchell, “Reachability analysis using
polygonal projections,” inHybrid Systems: Computation and
Control, F. Vaandrager and J. van Schuppen, Eds. Berlin, Ger-
many: Springer-Verlag, 1999, no. 1569, Lecture Notes in Computer
Science, pp. 76–90.

[50] T. Dang and O. Maler, “Reachability analysis via face lifting,” in
Hybrid Systems: Computation and Control, T. A. Henzinger and
S. Sastry, Eds. Berlin, Germany: Springer-Verlag, 1998, no. 1386,
Lecture Notes in Computer Science, pp. 96–109.

[51] A. Kurzhanski and I. Valyi,Ellipsoidal Calculus for Estimation and
Control. Boston, MA: Birkhauser, 1997.

[52] J. Preussig, O. Stursberg, and S. Kowalewski, “Reachability analysis
of a class of switched continuous systems by integrating rectangular
approximation and rectangular analysis,” inHybrid Systems:
Computation and Control, F. Vaandrager and J. van Schuppen,
Eds. Berlin, Germany: Springer-Verlag, 1999, no. 1569, Lecture
Notes in Computer Science, pp. 210–222.

[53] O. Botchkarev and S. Tripakis, “Verification of hybrid systems with
linear differential inclusions using ellipsoidal approximations,” in
Hybrid Systems: Computation and Control, B. Krogh and N. Lynch,
Eds. Berlin, Germany: Springer-Verlag, 2000, no. 1790, Lecture
Notes in Computer Science, pp. 73–88.

[54] A. Bemporad, F. D. Torrisi, and M. Morari, “Optimization-based
verification and stability characterization of piecewise affine and
hybrid systems,” inHybrid Systems: Computation and Control, B.
Krogh and N. Lynch, Eds. Berlin, Germany: Springer-Verlag,
2000, no. 1790, Lecture Notes in Computer Science, pp. 45–58.

[55] F. Zhao, S. C. Loh, and J. A. May, “Phase-space nonlinear con-
trol toolbox: The maglev experience,” inHybrid Systems V, P.
J. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry,
Eds. Berlin, Germany: Springer-Verlag, 1999, no. 1567, Lecture
Notes in Computer Science, pp. 429–444.

1024 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Eugene Asarin received the degree in mathe-
matics from Moscow State University, Moscow,
Russia, in 1984, and the Ph.D. degree in system
analysis from the Institute for Control Science,
Moscow, in 1988.

He was a Senior Researcher at the same insti-
tute and at the Institute for Information Transmis-
sion Problems, Moscow. Since 1999, he has been
a Professor of Computer Science at the Univer-
sity of Grenoble, France, and a Member of VER-
IMAG laboratory, Gieres, France. His research

interests include the theory of hybrid and timed systems.

Olivier Bournez received the “Magistère”
degree in computer science and the Ph.D.
degree in computer science from Ecole Normale
Superieure of Lyon, France, in 1995 and 1999,
respectively.

Since 1999, he has been an INRIA Researcher
at the LORIA laboratory, Nancy, France. His re-
search interests include modeling and verification
of hybrid systems.

Thao Dang received the French graduate
engineer degree in electrical engineering and the
DEA (M.Sc.) degree in automatic control from
the National College of Electrical Engineering,
Grenoble, France, in June and October 1996,
respectively. She is currently pursuing the Ph.D.
degree from VERIMAG, Gieres, France.

Her research interests are the modeling, verifi-
cation, and synthesis of hybrid systems.

Oded Maler received the B.A. degree in com-
puter science from the Technion, Haifa, Israel, in
1979, the M.Sc. degree in management science
from Tel-Aviv University, Israel, in 1984, and the
Ph.D. degree in computer science from the Weiz-
mann Institute of Science, Israel, in 1991.

Since 1994, he has been a CNRS Researcher at
the VERIMAG laboratory, Gieres, France, where
he leads the hybrid systems group. His research
interests include the modeling and verification of
discrete, timed, and hybrid systems, as well as the

theoretical foundations of these topics.

Amir Pnueli (Member, IEEE) received the
B.Sc. degree in applied mathematics from
the Technion, Haifa, Israel, in 1962, and the
Ph.D. degree in applied mathematics from the
Weizmann Institute, Rehovot, Israel, in 1967.

He founded the Department of Computer Sci-
ence, Tel Aviv University, Israel, where he was a
Professor from 1973 to 1980. He has been a Pro-
fessor of Computer Science at the Weizmann In-
stitute since 1980. His research interests include
formal verification and synthesis of reactive, real-

time, and hybrid systems, using temporal logic and similar formalisms.
Prof. Pnueli is the recipient of the ACM Turing award for 1996 and the

Israel prize in exact sciences for 2000. He is a foreign member of the (Amer-
ican) National Academy of Engineering and holds honorary doctorates from
Universite Joseph Fourier, Grenoble, France, and the University of Uppsala.

ASARIN et al.: EFFECTIVE SYNTHESIS OF SWITCHING CONTROLLERS FOR LINEAR SYSTEMS 1025

