
On the Representation of Probabilities

over Structured Domains�

Marius Bozga and Oded Maler

Verimag� Centre Equation� �� av� de Vignate� ����� Gi	eres� France�
bozga�imag�fr maler�imag�fr

Abstract� In this paper we extend one of the main tools used in veri
�
cation of discrete systems� namely Binary Decision Diagrams �BDD
� to
treat probabilistic transition systems� We show how probabilistic vectors
and matrices can be represented canonically and succinctly using proba�
bilistic trees and graphs� and how simulation of large�scale probabilistic
systems can be performed� We consider this work as an important con�
tribution of the veri
cation community to numerous domains which need
to manipulate very large matrices�

� Introduction

Many problems in discrete veri�cation can be reduced to the the following one�
given a non�deterministic �nite�state automaton A � �Q� �� and a set P � Q of

states� �nd the set P � of all the states reachable from P � One common way to
do this calculation is to let P � � P and P i�� � ��P i� until P i is included in
the union P � � � � � � P i��� Here P i is the set of states reachable from P after
exactly i steps�

This method can be formulated using Boolean state�vectors and transition
matrices� Each subset P of an n�element set of states can be written as an
n�dimensional Boolean row vector p �a function from Q to f	� 
g� and any tran�
sition relation � as an n � n Boolean matrix A� �a function from Q � Q to
f	� 
g�� Thus� the calculation step P i�� � ��P i� is equivalent to the multipli�
cation of a vector by a matrix� pi�� � pi � A�� For example� consider Figure 

where a ��state automaton is depicted along with its corresponding � � � ma�
trix A� � The reader can verify that calculating the states reachable in one step
from P � f
� 
g is done via the multiplication �
� 
� 	� 	� 	� � A� � �	� 
� 
� 	� 
�
where logical conjunction and disjunction replace multiplication and addition�
respectively�

Probabilistic transition systems� such as discrete Markov chains� operate in
a similar but di�erent fashion� At any given stage of the system�s evolution the
state is given by a probability function p � Q� �	� 
� such that

P
q�Q p�q� � 
�

The transition structure is probabilistic as well and is represented by a function

� This work was partially supported by the European Community Esprit�LTR Project
����� VHS �Veri
cation of Hybrid systems
 and the French�Israeli collaboration
project ���maefut� �Hybrid Models of Industrial Plants
�



1

5

3

2 4

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Fig� �� A non�deterministic automaton and its transition matrix�

� � Q � Q � �	� 
� where ��q� q�� denotes the conditional probability of being
in q� in the next�state given that the current state is q� The evolution from
one probabilistic state vector to another is captured by the vector by matrix
multiplication pi�� � pi �A� � this time over the reals�

The state�explosion problem� also known as the curse of dimensionality� arises
when the system under consideration is composed of many sub�systems� The
size of the global state�space is exponential in the number of components and
veri�cation by explicit enumeration of states and transitions becomes impossible�
Symbolic methods provide an alternative to explicit state enumeration� They are
based on the following observation� the global state�space of a composed system
can be encoded naturally using state�variables �a variable for the local state
of each component�� The evolution of each variable usually depends on a small
subset of the other variables and the corresponding transition law can be written
concisely as a formula in some adequate formalism �e�g� propositional logic when
the variables are Boolean� and the global transition relation is a conjunction of
such formulae� Similarly� sets of states can be written down as formulae� With the
aid of appropriate data�structures� a symbolic version of the basic computation
P i�� � ��P i� can be performed� calculating a �hopefully concise� representation
of P i�� from a representation of P i and ��

In veri�cation of systems modeled as automata this technique is called sym�

bolic model�checking �McM���BCM���� and it had a great success� In fact it can
be seen as one of the breakthroughs in veri�cation� facilitating the analysis of
systems with hundreds of state variables� far beyond the capabilities of explicit
enumeration on current and future computers� The most popular representa�
tion scheme used in symbolic veri�cation is the binary decision diagram �BDD��
which is a formalism for representing Boolean functions� admitting the following
properties �B���MT����


� It is canonic � given an ordering of the variables� a unique BDD corresponds
to every Boolean function�


� There are relatively�e�cient algorithms for manipulating BDDs� in particu�
lar for the operations needed to compute P i�� � ��P i��

�� It performs well in the analysis of many structured systems� the size of the
BDD remains small relative to the size of the state�space�

The goal of the paper is to apply this recipe to probabilistic systems� that
is� to de�ne a representation formalism for probabilistic vectors and transition



functions such that the operation pi�� � pi �A� could be performed for systems
for which it is impossible to do so using currently existing methods� To this end
we de�ne probabilistic decision graphs �PDG�� � a data�structure for representing
probabilities over structured domains which enjoys the nice properties of BDDs�

The rest of the paper is organized as follows� In section 
 we present proba�
bilistic decision trees and graphs and show they constitute a canonic represen�
tation for probabilities� In section � we rephrase the basic de�nitions of Markov
chains� Section � is devoted to the representation of probabilistic transition func�
tions by conditional probabilistic graphs and sketch the PDG structure of some
generic classes of probabilistic systems� The calculation of next�state proba�
bilities on PDGs via the projection operation described in section � and some
preliminary experimental results are reported in section �� Finally we discuss the
signi�cance of this work and mention some of the previous relevant applications
of BDD technology outside the Boolean realm�

� Probabilistic Decision Graphs

Let B � f	� 
g� We assume an underlying set Q � B
n � and a probability distribu�

tion on Q� i�e� a function p � Q� �	� 
� such that
P

q�Q p�q� � 
� Such a function
can be extended naturally to subsets of Q by letting p�Q�� �

P
q�Q� p�q� for ev�

ery Q� � Q� We will abuse strings from B
�n �the set of binary strings of length

not greater than n� to denote certain subsets of Bn � A string u � x�x� � � �xn
will stand for the singleton f�x�� � � � � xn�g while a string x�x� � � �xi� i � n will
stand for the set f�x�� � � � � xi� xi��� � � � � xn� � �xi��� � � � � xn� � B

n�ig� This can be
de�ned recursively by associating with u the union of the sets associated with u	
and u
� Note that the empty string � denotes the whole Bn � To avoid additional
symbols we use the same notation for a string and for the set it denotes� The set
B
�n has a binary tree structure and every level B i corresponds to a partition of

B
n � The next de�nition is the essence of this paper�

De�nition � �Probabilistic Decision Trees�� A probabilistic decision tree

�PDT� of depth n is a tuple P � �S� 	� 
� v� where S � B
�n � 	 and 
 are

respectively the left�successor and right�successor partial functions on S� and

v � S � �	� 
� is a function satisfying v��� � 
 and for every non�leaf node s�
v�s	� � v�s
� � 
�

Theorem � �Unique Representation�� There is a one�to�one� correspon�

dence between probabilities on B
n and PDTs�

Proof� First we assign probabilities to nodes by letting p��� � 
 and

p�sx� � p�s� � v�sx� x � B �
�

It is not hard to see that all p values are in �	� 
� and that their sum at each level of
the tree is 
� Conversely� given a probability on the leaves� it is straightforward to

� We say �graphs� instead of �diagrams� to avoid yet another xDD acronym�
� In our de
nition there is an implicit ordering on the �variables��



calculate the probability of the sets associated with the upper nodes by letting
p�s� � p�s	� � p�s
� and then compute v via normalization� i�e� the inverse
of �
�� v�sx� � p�sx��p�s�� In the case when p�s� � 	 we can put any number in
v�sx� � 	�	� and a convention such as 
�
 can be used�

PDTs are nothing but the presentation of probabilities using the so�called
�chain�rule�� the probabilistic analogue of Shannon factorization of Boolean
functions which underlies BDDs�

p�x�x� � � �xn� � p�x�� � p�x�x�jx�� � � � p�x�x� � � �xnjx� � � �xn���

where p�rjs� is the conditional probability of r given s� We will replace this
unfortunate �but very common� notation with ps�r� such that the above rule
will be written as

p�x�x� � � �xn� � p�x�� � px��x�x�� � � � px����xn��
�x� � � �xn��

Decision trees are exponential in the number of variables and� by themselves�
do not solve the state explosion problems� However� when there is some structure
in the objects they represent� di�erent nodes may have identical sub�trees and
the tree can be represented concisely by a directed acyclic graph �DAG� carrying
the same information� The transformation of a tree into a DAG is a variation of
the classical procedure for minimizing automata� and can be phrased as follows�

De�nition � �Probabilistic Decision Graphs�� Let P � �S� 	� 
� v� be a

PDT and let � be a congruence relation� on S de�ned as s � s� if v�s� � v�s��
and both s	 � s�	 and s
 � s�
� The associated probabilistic decision graph

�PDG� is G � �S� �� 	� 
� v��

In other words� the nodes of G are the equivalence classes of �� Graphically
speaking� the process starts from the bottom of the tree by merging leaves sx
and s�x� which have identical v�s� Then the edge from s labeled by x and the
edge from s� labeled by x� are redirected toward the merged node and the process
continues recursively upward� Note that sx � 	 for a leaf s� hence s � s� only if
both belong to the same level of the tree�
Example� Consider the following probability function over B � �

��� ��� ��� ��� ��� ��� ��� ���

�
�

� �
��

�
��

�
��

�
��

�
��

�
��

Figure 
��a� shows the probabilities of all subsets in B
�� � The PDT in Figure 
�

�b� is obtained via the normalization v�sx� � p�sx��p�s�� The reduction modulo
� into a PDG starts in Figure 
��c� by merging identical leaves and terminates
in Figure 
��d� by merging some of their parents�� Like in BDDs� when there is

� Congruence with respect to the � and � operations�
� Unlike BDDs we do not go further and eliminate nodes whose left and right successors
are identical� we restrict ourselves to balanced DAGs where all paths from the root
to the leaves are of the same length� otherwise we cannot satisfy the requirement
that the sum of the leaves at every level is ��



a lot of independence between the variables� the size of the PDG is much smaller
than the size of Q� In the rest of the paper we describe algorithms in terms of
full trees� bearing in mind that the actual implementation reduces every tree
into its corresponding minimal DAG�

0

0

0 0 0 11

1

1

11 0

0 1

1/6 1/3

1

1/6 0 2/15 1/30 4/15 1/15 1/15 4/15

1/31/6

1/3 2/3 1/3

1/2 1/2 1/2 1/2

0

0

0 0 0

1

1

1

1 10 1 1

0

1 0 4/5 1/5 4/5 1/5 1/5 4/5

2/3

1

�a� �b�

1/3

1/2 1/2 1/2 1/2

0

0 0 1

1

1

10

1/54/5

2/3

1

01

0
11

0

10

1/3

1/2 1/2

0

0 11

10

1/2

1/54/5

00 1 1

0

1
1

2/3

1 0

�c� �d�

Fig� �� Transforming a probability function �a
 into a PDT �b
 and successively via
�c
 into a PDG �d
�

� Markov Transition Functions

Having de�ned a canonical representation for probabilistic state vectors� we now
move to the representation of transition matrices� In a non�probabilistic setting
there is not much di�erence between sets �subsets of Bn � and relations �subsets
of B �n � and both can be represented by BDDs of the same type� For probabilistic
systems� we must be more careful�

De�nition � �Markov Transition Function�� A Markov transition function

on Q is a function � � Q� �Q� �	� 
�� such that for every q � Q� �q � Q� �	� 
�
is a probability function on Q�



In 
	th century mathematics� such functions used to be written as jQj � jQj
matrices such as

A� �

����� ����� � � � ���n�
����� ����� � � � ���n�
� � � � � � � � � � � �

�n��� �n��� � � � �n�n�

where each line represents a particular �q� The action of � on a probabilistic
state�vector p can be decomposed into two stages� The �rst can be viewed as
applying a function �� � �Q � �	� 
�� � �Q � Q � �	� 
�� where �p � ���p� if for
every q� q� � Q� �p�q� q�� � p�q� � �q�q

��� In other words� given that the current

state probability is p� ���p� denotes the probability of any transition to happen�

Matrix�wise� when p is written as a vector �p�� � � � � pn�� calculating ���p� amounts
to multiplying every element of p by the elements of its corresponding row in �
to obtain

A	��p� �

p� � ����� p� � ����� � � � p� � ���n�
p� � ����� p� � ����� � � � p� � ���n�
� � � � � � � � � � � �
pn � �n��� pn � �n��� � � � pn � �n�n�

Note that unlike �� ���p� is a probability function on Q�Q�
The probability of being in the next step at a state q� is then the sum of the

probabilities of the form �p�q� q��� i�e� those leading to q�� This can be captured by

a function� w � �Q�Q� �	� 
��� �Q� �	� 
�� de�ned as w���� �
P

i
��i� Matrixly

speaking� this is equivalent to summing up every column of A	��p� to obtain a

vector p�� Hence the composition w 
 �� � �Q � �	� 
�� � �Q � �	� 
�� gives the
evolution of the system as the action of a probabilistic transition matrix on a
probabilistic state vector�


Next we de�ne a data�structure for representing � whenQ � B
n and a natural

way to transform it� given a PDG�represented probability p� into a PDG of depth

n for ���p�� After that we de�ne the basic operation on PDGs� the projection

which is used in the calculation of w�

� Conditional Probabilistic Decision Graphs

The basic idea is to extend PDTs such that nodes at certain levels of the tree
are empty �with v unde�ned� to denote undetermined variables�� To this end we
will use somewhat more elaborate notations�

LetX � f
x� 
x� � � � � nxg and Y � f
y� 
y� � � � � nyg be two copies of f
� � � � � ng�
An order relation � on X � Y can be written as a bijection J � f
� 
� � � � � 
ng �

� For those familiar with BDDs� we mention that these operations resemble the non�
probabilistic ones� ���q� q�
 � p�q
 � ��q� q�
 and w�q�
 � �q ���q� q�
 �

W
q
���q� q�
�

� In fact we could have started the paper by de
ning data�structures for conditional
probability functions� with a partition of variables into two types� This way we could
obtain probability functions as the special case where all the variables are determined�
and Markov transition functions as a special case where the sizes of the two sets of
variables are the same and certain restrictions are imposed on variable dependencies�
However� we prefer clarity over generality�



X �Y � Without loss of generality we assume that � is compatible with the nat�
ural ordering of X and of Y � i�e� 
x � 
x � � � � � nx� Given J � any binary string
s � B

��n can be mapped into a pair of strings Jx�s� and Jy�s� from B
�n � For ex�

ample� if J � 
x � 
x � 
y � �x � 
y � �y then for a string s � x�x�y�x�y�y��
Jx�s� � x�x�x� and Jy�s� � y�y�� We also extend our string notation for sets�
a string of the form xi�xi� � � �xim with 	 � i� � i� � � � � � im � n will denote
a subset of Bn with the obvious meaning� i�e� the set of n�tuples such that the
value of every ij�coordinate is xij �

A Markov transition function over Bn is a function � � Bn � �Bn � �	� 
��
whose instances are written as �x����xn�y� � � � yn�� For every x� � � �xn� �x����xn is
a probability function which can be written using the chain rule just as as any
other probability�

�x����xn�y� � � � yn� � �x����xn�y�� � �x����xny��y�y�� � � � �x����xny����yn��
�y� � � � yn��

We restrict our attention to Markov chains in which every coordinate of the
state�space behaves causally� i�e� it depends only on the previous values of the
state variables�� This means that for every x� � � � xn and every yi� yj we have
�x����xnyi�yj� � �x����xn�yj�� Hence � can be written as�

�x����xn�y� � � � yn� � �x����xn�y�� � �x����xn�y�� � � � �x����xn�yn�� �
�

We say that jy is independent of ix if for every x�� � � � � xi��� xi��� � � � xn�

�x����xi���xi�����xn�yj� � �x����xi���xi�����xn�yj��

In this case we can use the notation �x����xi��xi�����xn�yj�� When this is not the
case we say that ix in�uences jy and denote it by ix � jy�

An order relation � on X�Y is compatible with a Markov transition function
� i� for every ix � X� jy � Y � ix � jy implies ix � jy� The default ordering


x � � � � � nx � 
y � � � � � ny is compatible with any � and is the only one
compatible with a � for which every jy depends on all X �

De�nition 	 �Conditional PDT and PDG�� A conditional probabilistic

decision tree �CPDT� of depth n is a tuple P � �S� 	� 
� J� v� where S � B
��n � 	

and 
 are as in a PDT� J is the ordering bijection and v � S� �	� 
� is a partial

function� de�ned only on nodes s such that J�jsj� � Y � satisfying v��� � 

and for every node s� v�s	� � v�s
� � 
 whenever it is de�ned� A conditional

probabilistic decision graph �CPDG� is G � �S� �� 	� 
� J� v� where � is the

congruence relation of De�nition ��

Theorem � �CPDT
Markov Transition Function�� There is a one�to�one
correspondence between Markov transition functions and CPDTs�

� Note that one can write Markov transition functions over Q which do not admit
such a causal decomposition� and this observation might be a source of interesting
investigations in the theory of stochastic processes� In fact� the above implies that
everym�state Markov chain which admits a causal decomposition can be represented
in space O�m logm
 instead of O�m�
�



Sketch of Proof� Similar to that of Theorem 
� We assume a �xed ordering
bijection J compatible with �� For every Y �node syi of the CPDT we associate
v�syi� with the conditional probability �Jx�s��yi�� for example v�x�x�y�x�y�� �
�x�x�x��y��� To reconstruct � from a tree we go down the tree until we calculate
� for the lowest Y �nodes� To build a CPDT from � we climb�up starting from
the Y �leaves and construct the tree�

�a� �b� �c�

Fig� �� Schematic CPDGs for Markov transition function which consist of� �a
 Inde�
pendent Bernoulli trials �b
 Independent Markov chains �c
 A cascade with k � �� The
dark nodes indicate Y �nodes�

Fig� �� A schematic CPDG for an arbitrary �but causal
 Markov transition function�

We mention some classes of probabilistic transition systems such that the
pattern of interaction between their components alone su�ces for giving an
upper�bound on the size of their CPDGs� Consider �rst the degenerate case
of n independent Bernoulli trials� It can be modeled as a direct product of n
memory�less automata� for which the probability of the next state is independent
of the current state� Thus� �x����xn�y� � � � yn� can be written as ��y�� � � � ��yn� and
represented by a CPDG without empty nodes� which is in fact a PDG� like in
Figure ���a��

As a slightly less trivial example consider a direct product of n independent

�state Markov chains� In this case each iy depends only on ix and the transi�
tion function can be represented by the CPDG of Figure ���b�� More generally�



consider a cascade A�� � � � �An of probabilistic automata where the transition
probabilities of each automaton Ai depends on the states of its k predecessors
�including itself� Ai�k��� � � � �Ai���Ai� Such systems will have a CPDG of size
O�n
k� similar to the one appearing in Figure ��c for k � 
�

When there are no such constraints on variable dependencies� the default
order needs to be used and no a�priori lower�bound better than n
n can be
stated �although some independencies might make the corresponding CPDG
smaller�� We repeat that even this bound is better than the 
�n size implied
by a straightforward encoding of the transition matrix� The general structure of
such a CPDG is depicted in Figure ��

Going from p and � to ���p� is straightforward� take v�s� from the PDT for p
and put it in any nodes s� of the CPDT of � such that Jx�s�� � s� This way the

whole tree becomes full and represents the probability ���p� over B �n �

� Projection

The basic operation on probabilities �and PDGs� is the probabilistic analogue of
the elimination of a quanti�ed variable in Boolean functions �and BDDs�� This

is what is needed to transform ���p� into ��p��

De�nition � �Projection�� Let p � Bn � �	� 
� be a probability� The k�projection
of p� is a function p�k � B

n�� � �	� 
� de�ned as

p�k�x� � � �xk��xk�� � � �xn� �
p�x� � � �xk��	xk�� � � �xn�

�
p�x� � � �xk��
xk�� � � �xn�

���

Using conditional probabilities� ��� can be rewritten as

p�x� � � � xk��� �

�
�
px����xk��

�	xk�� � � �xn�
�

px����xk��
�
xk�� � � � xn�

�
�

and further as

p�x� � � �xk��� �

�
�
v�x� � � �xk��	� � px����xk����xk�� � � �xn�

�
v�x� � � �xk��
� � px����xk����xk�� � � �xn�

�
�

As one can see� performing a k�projection on the PDT representation of p consists
of copying the �rst k 
 
 levels of the tree and then plugging at each branch
x� � � �xk�� a sub�tree which encodes the weighted sum of the functions px����xk���

and px����xk���� This is the main computational burden in the manipulation of
PDGs� The transformation of a PDT P � �S� 	� 
� v� for p with S � B

n into a
PDT P�k � �S�k� 	� 
� v�k� for p�k with S�k � B

n�� is performed as follows� For
any node s � B

�k�� we have p�k�s� � p�s�� For the other nodes we have

p�k�x� � � �xk��s� � p�x� � � �xk��	s� � p�x� � � �xk��
s�



These values are calculated from the top down and every calculation of p�k�sx�
is followed by calculating v�k�sx� as v�k�sx� � p�k�sx��p�k�s�� which in the �rst
k 
 
 levels reduces simply to v�k�s� � v�s�� Aplying this procedure n times


we transform a probability on B
�n to a probability on B

n and complete the
computation of p� � p � A�� While working with PDGs� one can avoid part of
the computation whenever there is an equivalence of the form ps� � ps�� In that
case the weighted sum r � ps� � �

 r�ps� is equal to both�

� Implementation and Experimental Results

The treatment of the mathematical real numbers by computer involves an addi�
tional dimension of problematics absent from traditional applications of veri��
cation methodology� The continuum is approximated by a very large �but �nite�
subset of the rationals� the �oating point numbers� Practitioners seem to be sat�
is�ed with this approximation� It turns out that for exploiting the advantages of
PDGs we had to go further and round node values to multiples of 
�m �for m
ranging between � to 
	�� otherwise the size of non�trivial PDGs becomes expo�
nential after few iterations because of the low probability of two nodes having
exactly the same �oating�point value� With this discretization� systems with lim�
ited interaction among variables usually converge to vectors with a small PDG
description� As for the semantic price of the approximation� if we re�ect a bit on
the empirical source of probability estimations in models� we realize that these
numbers are not sacred and an initial �imprecision� of 
�m does not make any
di�erence�

We have implemented these data�structures and algorithms and tested their
performance on some generic examples� The implementation is preliminary and
does not yet employ all the optimizations one can �nd in BDD packages� Let us
�rst mention the trivial cases� For n randomly�generated mutually�independent
Markov chains we can treat almost any n� This is� of course� not so impressive if
one realizes that each chain could be simulated separately� Yet someone unaware
of BDDs will be rather surprised to see how fast you can multiply a 
�
 � 
�


transition matrix void of any apparent structure or sparseness �see table 
�� A
slightly less trivial example is a chain of noisy communication channels where
each component copies the value of its predecessor with probability 

 	� Such
a chain converges to a uniform probability vector where p�q� � 
�
n for every
state� Here again we could iterate for very large n with a linear growth in the
size of the PDGs�

Next� we have tested randomly�generated cascades of communication depth

� which using the previously mentioned discretization� usually converge to vec�
tors with small PDGs� although exponential ones are� of course� still possible�
We demonstrate the time and space behavior of the algorithm on a family con�
sisting of a cascade of noisy AND gates such that each component becomes the
conjunction of its previous value and that of its predecessors �Figure �� with

� Like in BDDS� this procedure can be extended naturally to a procedure that elimi�
nates several variables in a single pass�



�������� ������	� �������� �������
 ������	� �������� �������
 �������� �������� �������� � � �

�������� �������� �������� �������� �������
 �������� �������	 �������� �����
�� �������� � � �

�����
�� �������� �������� �������� �������� �������� �������� �������� �������� �������� � � �

�����	�� �������� �������� �������� �������
 �������� �������	 �������� �������	 �������� � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Table �� An initial fragment of a ��� � ��� matrix which can be iterated until conver�
gence within less than a second�

probability 	��� The performance results are depicted in Figure � and although
space behaves nicely� computation time still grows exponentially� reaching almost
� hours for n � ��� The reason lies in the fundamental di�erence between BDDs
and PDGs� in the former� when an algorithms encounters a node� it does not
need to remember via which branch the node is reached� and thus the hashing
mechanism prevents duplicate calls� On the other hand� in PDGs� each time the
projection procedure is called with a node� it has� as an additional parameter�
the probability associated with its parent� Hence procedure calls with identical
arguments are rather rare and the current implementation needs to do exponen�
tial work on linear�sized PDGs� We are currently investigating improvements of
the implementation�

Fig� �� A chain of noisy AND gates�

10 20 30 40 50 60

n

100

1000

pd
d 

si
ze

 (
no

de
s)

delta = 1 / 1024
delta = 1 / 512

10 20 30 40 50 60

n

1

60

3600

ti
m

e 
(s

ec
on

ds
)

Fig� 	� The PDG size and time until convergence as a function of the number of
variables� for discretizations of ������ and ������



� Discussion

We have introduced and implemented a new method for manipulating large
probabilistic transition systems� We hope that this technique will improve the
performance of probabilistic simulation tools� In addition� the investigation of the
structure of PDGs might contribute to a better understanding of the structure
of probabilistic functions� The application domains which might bene�t from
such a technique are numerous and include performance and reliability analysis�
probabilistic veri�cation� planning under uncertainty �P���BDH���� calculation
of equilibria in economics� statistical mechanics and more�

This work is built on what we consider to be the main insight of the BDD
experience� in many situations the indices of rows and columns in matrices are
the outcome of ��attenning� of much more structured domains� This �atten�
ing� which is unavoidable if one wants to draw a matrix on a two�dimensional
sheet of paper� hides the structure of the problem� or at least makes it very
hard to retrieve�� BDDs and PDGs suggest a way of maintaining this structural
information and exploiting it in e�cient computations�

Among previous extensions of BDD technology to represent functions from
B
n to N �motivated chie�y by arithmetical circuits�� R and other domains we

mention the structure called Multi�terminal BDDs �MTBDD� in �CFM���� and
Algebraic Decision Diagrams �ADD� in �BFG����� This is a straightforward ex�
tension of BDDs with leaves having values in non�Boolean domains� Algorithms
for performing matrix multiplications and other operations on these representa�
tions have been proposed and applied� for example� to probabilistic veri�cation
�BCG����� The main drawback of MTBDDs�ADDs is that they yield a succint
representation only if the corresponding vectors and matrices have a lot of iden�
tical entries� e�g� sparse matrices having many zeros� In contrast many generic
examples of functions with no interaction between the variables will lead to ex�
ponential MTBDDs� for example it is not hard to create probabilities on Bn with
all variables mutually�independent� and yet no two elements will have the same
probability� In fact� the ability to represent functions concisely as decision graphs
without putting any information on the non�leaf nodes is a special property of
Boolean algebra�

The above observation has led some researchers in the hardware veri�cation
community �VPL���TP��� to consider extending BDD with values on their edges
�which is practically the same as putting values on the nodes� as we do here��
This structure is called Edge�valued BDD �EVBDD� and it has been used to
encode the so�called Pseudo�Boolean functions which are essentially functions
from f	� 
gn to N� EVBDDs contain both additive and multiplicative constants
and in some cases overcome the limitations of MTBDDs� However� since the
class of functions treated by EVBDDs is much less constrained than the class of

	 Just compare the non�intuitive de
nition of the Kronecker product �also known
as Tensor product
 of two matrices with the straightforward Cartesian product of
automata�



probabilistic functions� normalization and matrix multiplication are much more
complicated than the ones reported in this paper�

Finally� let us mention another formalism� related to PDGs� the Bayesian

Networks which are used extensively in AI �P���J���� Like PDGs� Bayesian net�
works consist of a graphical representation of variables and their probabilistic
dependencies� The comparison between the two formalisms is outside the scope
of this paper� but it seems that PDGs can be viewed as a constrained and well�
behaving sub�class of networks� with a special emphasis on the dynamic aspects
�next�state probabilities� which makes them� perhaps� more suitable for treating
large�scale Markov decision processes�
Acknowledgements� We are grateful to Moshe Tennenholz for raising the pos�
sibility of applying some veri�cation techniques to AI problems of planning under
uncertainty� His visit in Grenoble� in fact� triggered this work� We thank Amir
Pnueli for many fruitful discussions at various stages of this work� and in partic�
ular for the observations concerning causal Markov chains and weighted sum of
identical sub�trees� Eugene Asarin reminded us of certain facts concerning the
convergence of probabilistic matrix multiplications�

References

�B��� R�E� Bryant� Graph�based Algorithms for Boolean Function Manipulation�
IEEE Trans� on Computers C���� �������� �����

�BCM
��� J�R� Burch� E�M� Clarke� K�L� McMillan� D�L� Dill� and L�J� Hwang� Sym�
bolic Model�Checking� ���� States and Beyond� Information and Computa�

tion ��� ������� �����
�BDH��� C� Boutilier� T� Dean and S� Hanks� Decision Theoretic Planning� Structural

Assumptions and Computational Leverage� J� of AI Research �to appear
�
�BFG
��� R�I� Bahar� E�A� Frohm� C�M� Ganoa� G�D� Hachtel� E� Macii� A� Pardo

and F� Somenzi� Algebraic Decision Diagrams and their Applications� Proc�
ICCAD���� �������� �����

�BCG
��� C� Baier� E� Clarke� V� Garmhausen�Hartonas� M� Kwiatkowska and M�
Ryan� Symbolic Model Checking for Probabilistic Processes� in P� Degano�
R� Gorrieri and A� Marchetti�Spaccamela �Eds�
� Proc� ICALP���� ��������
LNCS ����� Springer� �����

�CFM
��� E� M� Clarke� M� Fujita� P� C� McGeer� K� L� Mcmillan and J� C��Y� Yang�
Multi�terminal Binary decision Diagrams� An E�cient Data�structure for
Matrix Representation� Proc� ILWS���� ����� �����

�J��� F�V� Jensen� An Introduction to Bayesian Networks� Springer� �����
�McM��� K�L� McMillan� Symbolic Model�Checking� an Approach to the State�

Explosion problem� Kluwer� �����
�MT��� C� Meinel and T� Theobald� Algorithms and Data Structures in VLSI De�

sign� OBDD � Foundations and Applications� Springer� �����
�P��� J� Pearl� Probabilistic Reasoning in Intelligent Systems� Morgan Kaufmann�

�����
�P��� M�L� Puterman� Markov Decision Processes� Wiley� �����
�TP��� P� Tafertshofer and M� Pedram� Factored Edge�Valued Binary Decision Di�

agrams� Formal Methods in system Design ��� �������� �����
�VPL��� S� B� K� Vrudhula� M� Pedram and Y��T� Lai� Edge�valued Binary Decision

Diagrams� in T� Sasao and M� Fujita �Eds�
� Representations of Discrete

Functions� �������� Kluwer� �����


