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Abstract

In this paper we consider a class of hybrid systems� namely dy�
namical systems with piecewise�constant derivatives �PCD systems��
Such systems consist of a partition of the Euclidean space into a ��
nite set of polyhedral sets �regions�� Within each region the dynamics
is de�ned by a constant vector �eld� hence discrete transitions occur
only on the boundaries between regions where the trajectories change
their direction�

With respect to such systems we investigate the reachability ques�
tion� Given an e�ective description of the systems and of two polyhe�

dral subsets P and Q of the state�space� is there a trajectory starting

at some x � P and reaching some point in Q� Our main results are a
decision procedure for two�dimensional systems� and an undecidability
result for three or more dimensions�

� Introduction

��� Motivation

Hybrid systems �HS� are systems that combine intercommunicating discrete
and continuous components� Most embedded systems belong to this class
since they operate and interact with a continuous environment� and are ex�
pected to provide real�time responses to continuously varying situations�

The introduction of HS models is motivated by a real practical concern�
with the decrease in the size and price of computing elements� more and more
computers �discrete state�transition systems� are embeddedwithin real�world
control loops such as in avionics� process control� robotics and consumer prod�
ucts � to mention a few application areas� The analysis and prediction of the
combined behavior of these embedded systems require formal tools that cut
across existing disciplinary boundaries� the real�world is usually modeled by
control engineers as a continuous dynamical system while computer scientists
investigate the dynamics of discrete systems�

The ultimate goal of the theory of HS is to build models of such embedded
systems� models which include the dynamics of an external environment and
the interface between the controller and the environment� Within these mod�
els� based upon a description of a discrete controller �such as a program or a
digital circuit� and upon its timing characteristics� it will be possible to prove

	



that the behavior of the controlled environment satis
es certain properties�
Even if we cannot realistically hope for fully algorithmic analysis techniques�
any progress along this line of research will enhance the quality of current
design methodologies� and will provide system developers with models and
with software tools that will result in a more e�cient� systematic and reliable
development process�

��� Models for Hybrid Systems

Hybrid systems generalize both discrete state�transition systems and continu�
ous dynamical systems� A HS consists of two types of state�variables� discrete
variables whose values change via discrete state�transitions� and continuous
variables which change continuously according to some dynamical law during
the interval between two consecutive state�transitions� These two types of
variables interact with each other in the following ways�

�� Some property satis
ed by continuous variables �e�g�� a variable crosses
a threshold� enables or disables a discrete state�transition�

	� A change in a discrete variable may change the dynamical law to which
some continuous variables are subject�

The 
rst formal model in the veri
cation literature linking continuous and
discrete dynamics was the phase transition systems introduced in ��
�� Sev�
eral� more or less similar� models for hybrid systems have been proposed
and investigated recently �see� for example� ����� ����� Various negative and
positive results concerning the decidability of veri
cation problems in these
models have been established� The positive results usually involved the spe�
cial case of timed automata ���� �
�� ����� whose introduction was motivated
by real�time systems� Timed automata can be viewed as hybrid systems
where the only continuous variables are timers� all varying at the same rate�
and possibly being reset by discrete transitions� Tests on values of those
timers serve as �guards� for performing the discrete transitions � usually
those tests are conjunctions of simple linear inequalities in one variable� or
linear inequalities on the di�erence between two clocks�

Similar to ��	� �Integration Graphs�� we are looking for decidable sub�
classes of Hybrid Systems with piecewise�constant derivatives �PCD sys�
tems�� The strategy taken in ��	� is based on placing restrictions on the






guards of transitions that may occur within loops� Here we take an alterna�
tive approach and allow arbitrary boolean combinations of linear inequalities
as transition guards� but place the following restrictions�

� The system is deterministic �this restriction is somewhat relaxed toward
the end of the paper��

� Transitions do not modify any of the continuous variables� Thus� there
are no resets or other assignment statements�

� The control component of a state is determined by the values of the
continuous variables� Thus� if the corresponding PCD system is rep�
resented as a state�graph� it is not possible to reach di�erent nodes
�possibly in di�erent computations� with the same set of values for the
continuous variables�

Using the terminology of ����� the guards for all the transitions outgoing from
a given location are mutually exclusive and their union is the complement of
the invariant condition for that location�

Due to the fact that the discrete �control� component of the state is fully
determined by the values of the continuous variables and that all changes are
continuous� we prefer to present the system without explicit reference to dis�
crete states� Instead� the system is viewed as a set of regions �corresponding
to discrete states in other presentations� with boundaries separating them�
Each region is associated with a constant vector �eld which identi
es the
rates at which the various variables change� Reaching a boundary and cross�
ing into another region is equivalent to taking a transition to another discrete
state in which the continuous evolution rule is di�erent�

Compared to classes of hybrid and real�time systems considered so far
in the veri
cation literature� the model investigated in this paper is in some
aspects� more general and in some aspects more restrictive� On one hand� we
drop the restriction of a uniform slope for all continuous variables� assumed
in timed automata� and allow each variable to have its own slope within a dis�
crete state� We also allow the continuous variables to appear in more general
guards for discrete transitions �combinations of arbitrary linear equalities��
On the other hand� our class of systems is more restrictive� mainly because
we do not allow discrete �jumps� in the values of the variables �such as those
caused by assignment statements�� Thus the trajectories of the system are
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continuous� but not smooth� Systems obeying such requirement are closer
to continuous dynamical systems and are more amenable to topological and
geometrical analysis� Some of the recent research in hybrid systems� may
appear to be too dominated either by continuous or by computer science
techniques� depending on the authors� origin� The model underlying this
paper can be seen as an attempt to balance the situation by generalizing the
continuous dynamics and simplifying the discrete component�

��� An Example� Hunter and the Hunted

In order to motivate the reader we will present a toy problem which is ana�
lyzable using the techniques developed in this paper�

The problem involves two players which move in an one�dimensional
space� Their respective positions are denoted by the state�variables x and y
and we assume that initially x � y� When x and y occupy certain positions�
party y is the pursuer while party x �ees away from y� However� when x and
y occupy di�erent positions� the roles may be reversed and x may assume the
role of a pursuer while y �ees away� Such a situation arises� for example� in
the video game Pacman in which� under normal circumstances� the Pacman
is pursued by one or more ghosts� However� when the Pacman eats a certain
fruit� the roles are reversed and the Pacman starts chasing the ghost� We
therefore may consider the position of the Pacman and its pursuing ghost to
be given by x and y� respectively�

The behavior of each of the players consists of running either left or right
at certain velocities depending on the relative location of their opponents�
The ghost runs to the left at velocity b� when x � � and runs to the right
at velocity b� when x � �� The Pacman runs to the left at velocity a� when
y � 	 and runs to the right at velocity a� when y � 	�

The con
guration of the two players is displayed in 
gure �� The precise
behavioral rules of Pacman and the ghost are depicted in table �� All the
parameters are positive and the entries in the table denote velocities�

Knowing all the parameters of the system we would like to answer ques�
tions such as� Given that Pacman starts at some position in the interval
�x�� x��� and that the ghost starts at some position in �y�� y��� will they ever
meet �x � y�� Is it possible that the distance between them will become
larger than some d�� Will Pacman ever reach some point x��

If we look at the positions of Pacman and the ghost as the coordinates
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Figure �� Pacman x and the ghost y�

x � �� y � 	 x � �� y � 	 x � �� y � 	 x � �� y � 	
VPacman �a� �a� a� a�
VGhost b� �b� �b� b�

Table �� The behavioral rules of Pacman and the ghost�

of our system� we obtain a planar �	�dimensional� PCD system �see exact
de
nitions below�� Each point in the x� y plane represents the joint positions
of Pacman and the ghost� Their corresponding rules of behavior induce a
partition of the plane into regions such that within every region the system
evolves with a constant slope of the form c � �VPacman � VGhost� as depicted in

gure 	� In this paper we show how for every system of this type� reachability
questions between polyhedral subsets of the state�space can be e�ectively an�
swered� On the other hand we show that for 
�dimensional systems �e�g�� by
adding a third player to the game� there is no general reachability algorithm�

The rest of the paper is organized as follows� In section 	 we introduce
the necessary geometrical and topological prerequisites and de
ne the class
of systems we are dealing with� In section 
 we present planar systems and
prove some of their important properties which are crucial for the termina�
tion of our decision procedure� The computational framework for forward
simulation is developed in section �� culminating in the decision procedure
for reachability between points� which is extended in section � to reachability
between regions� In section � we demonstrate the computational power of
PCD systems and show that three dimensions are su�cient for simulating
two�stack machines� and hence the reachability problem for 
�dimensional
systems is undecidable�

The paper is a combination and elaboration of results presented in ����
and �	��
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Figure 	� Pacman x and the ghost y viewed as a planar PCD system�

� Preliminaries

Throughout this paper� we deal with the d�dimensional Euclidean space�

X � IRd� Points �vectors� inX are denoted by boldface letters such as x or a�
The expression a�x denotes the standard inner product� For x�� � � �xn � X an
a�ne combination is x �

P
�ixi such that

P
�i � �� A convex combination

is the same with �i � � for every i� The a�ne �resp� convex� hull of a
set A � X is the set of all a�ne �resp� convex� combinations of points in
A� They are denoted by a� �A� and conv�A�� A subset P of X is convex
if P � conv�P �� The dimension of P � dim�P � is the dimension of a� �P ��
Intuitively� the a�ne hull is the generalization of concepts such as �the line
connecting two points� or �the plane induced by 
 non�co�linear points�� etc�

The interior int�P � of P � X is the set of points x � P such that
there exist a neighborhood N��x� � X such that N��x� � P � The boundary
of P is bd�P � � cl�P � � int�P � where cl�P � denotes closure� If P is e�

�A readable introduction to convex and polyhedral sets can be found in ����
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dimensional for some e � d then it has no interior points because every
neighborhood in Xd is d�dimensional and thus contains parts outside P � On
the other hand we can de
ne the notion of relative�interior by relaxing the
above condition into �N��x� � a� �P �� � P � The set of all relative interior
points of P is denoted by ri�P �� Similarly the relative boundary of P is
de
ned as rb�P � � cl�P � � ri�P �� For example a closed segment in a 	�
dimensional space has no interior points� but its �open� sub�segment is its
relative interior and its endpoints constitute its relative boundary�

An open �closed� half�space in X is the set of all points x � X satisfying
a�x�b � � �a�x�b � ��� A convex polyhedral set is an intersection of 
nitely
many half�spaces� A time segment is any interval ��� r� � IR� including IR�

itself� A trajectory in X is a continuous function � � T � X where T is a
time segment�

De�nition � �Dynamical System� An �autonomous� dynamical system
is H � �X� f� where X is the state�space and f is a partial function from X
to X such that d�x

dt
� f�x� is the di�erential equation governing the evolution

of x� A trajectory of H starting at some x� � X is � � T � X such that
��� is a solution of the equation with initial condition x � x�� i�e�� ���� � x�

and for every t� f���t�� is de�ned and is equal to the right derivative of ��t��

A di�erential equation has a uniqueness property if for every x� there is
at most one solution� In this case the system is said to be deterministic�
This paper treats a sub�class of dynamical systems� namely those having
piecewise�constant �possibly discontinuous� derivatives�

De�nition � �PCD System� A piecewise�constant derivative �PCD� sys�
tem is a dynamical system H � �X� f� where f is a �possibly partial� function
from X to X such that the range of f is a �nite set of vectors C 	 X� and
for every c � C� f���c� is a �nite union of convex polyhedral sets�

In other words� a PCD system consists of partitioning the space into
convex polyhedral sets ��regions��� and assigning a constant derivative c
��slope�� to all the points sharing the same region� The trajectories of such
systems are broken lines� with the breakpoints occurring on the boundaries
of the regions� The example in the introduction �
gure 	� is a PCD system�

A description of a PCD system is simply a list of the regions �expressed
as intersections of linear inequalities� and their corresponding slope vectors�
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From now on we assume that all the constants in the system�s de
nition are
rational� Note that� unlike more general dynamical systems� PCD systems
are e�ective in the following sense� Given a description of the system� and a
rational initial point x� there exists some positive � � � such that� for every
�t� � � �t � �� one can calculate precisely the point x� which a trajectory
starting at x will reach after time �t�

Given a description of a PCD system H� the reachability problem for H�
denoted by Reach�H�x�x�� is the following� Given x�x� � X� are there a
trajectory � and t 
 � such that ���� � x and ��t� � x�	 The region�to�
region reachability problemR�Reach�H� P� P �� is� Given two polyhedral sets
P�P � � X� are there two points x � P and x� � P � such that the answer to
Reach�H�x�x�� is positive	

� Planar Systems and their Properties

In the following sections we will concentrate on planar PCDs� i�e�� X � IR��
with the additional restriction that all the regions are 	�dimensional� For
every vector x � �x�� x�� � IR� we de
ne its right rotation as the vector
�x � �x���x��� Clearly x � �x � � and x � y � �x � �y�

De�nition � �Polyhedral partition� A �nite polyhedral partition of X is
a family P � fP�� � � � � Pkg of open full�dimensional polyhedral sets such thatSk
i�� cl�Pi� � X and for every Pi� Pj � P� Pi � Pj � ��

We will denote by bd�P� the set of all points in X which are in bd�P � for
some P � P and by E�P� the set of edges of P� namely non�empty subsets of
X of the form e � ri�cl�Pi��cl�Pj�� for some Pi� Pj � P� Similarly the set of
vertices of P� V �P� consists of points x � X such that fxg � cl�ei��cl�ej� for
some ei� ej � E�P�� We call the elements of B�P� � E�P� � V �P� boundary
elements� One can easily see that X is decomposed into a disjoint union
P � E�P� � V �P�� For example� the polyhedral partition in 
gure 
 has �
regions� 
 vertices and � edges�

Suppose e is an edge such that e � bd�P � � bd�P ��� Let P � fx �V
i�I ai � x � bi � �g and P � � fx �

V
i��I � ai� � x � bi� � �g� Then for e to

be non�empty there must be some j � I� k � I �� such that aj � �ak and
bj � �bk and every x � e satis
es aj � x � bj � �� We call aj and ak the
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Figure 
� A polyhedral partition of the plane�

characteristic vectors of e relative to P and P �� One can see that they are
two opposite normals to e�

De�nition 	 �Planar PCD systems� A planar PCD system is given by
H � �P� 	� 
� where P is a polyhedral partition of X � IR�� 	 � P � X is
a function which assigns to each region a slope vector in X� and a function

 � B�P� � P satisfying b � cl�
�b�� for every boundary element �edge or
vertex� b � B�P��

The function 
 simply associates every boundary element with one of its
neighboring regions� One can easily see that by letting f�x� � 	�P � when
x � P � P and f�x� � 	�
�b�� when x � b � B�P� we obtain the more
general de
nition 	� We denote 	�Pi� by ci�

Orientation and Ordering of Boundaries

For b � B�P� such that 	�P � � c� we say that b is an entry boundary element
of P if for every x � b� we have fx� ct � � � t � �g � int�P � for some � � ��
This implies that the vector c taken at any entry boundary point of P points
into the interior of P � Similarly b is an exit element if the same condition
holds for some � � � and for all t� � � t � ��
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Figure �� The possible orientations between a region and its borders� �a� e
is an exit� a tangent or an entry to P according to whether 	�P � is c�� c� or
c� respectively� �b� x is an exit� an entry� or neutral with respect to P �

Note that we may have an edge e and a vertex x � cl�e� such that 
�e� 
�

�x�� For example� in the partition of 
gure 
� we may have 
�e�� � P��
while 
�x�� � P��

Consider a region P and one of its edges e with a characteristic vector a
relative to P �i�e�� a points from e into P �� and let c � 	�P �� Then� by simple
calculation one can see that e is an entry to P i� a �c � �� e is an exit from P
i� a �c � �� and e is neutral �neitehr entry nor exit� if a �c � �� For simplicity
of presentation we assume that the system is not degenerate� i�e�� no edge is
neutral with respect to a neighboring region� If e is on the boundaries of Pi

and Pj � it is required that e be an entry to one of them �say Pi� and an exit
to the other� and be a�liated with the region to which it is an entry� i�e��

�e� � Pi� From now on� we adopt the convention that the characteristic
vector of an edge e is the one pointing into the region P � 
�e�� i�e�� the
region to which e is an entry edge�

For every vertex x � bd�P � there are exactly two edges e� e� � bd�P � such
that x � cl�e��cl�e��� Then one can see that x is an entry point to P if both
e and e� are entry edges� Symmetrically it is an exit point if both e and e�

are exit edges� Otherwise� when one of fe� e�g is an entry edge and the other
is an exit edge we say that x is neutral w�r�t� P � We require that 
�x� � P
i� x is an entry point of P � Thus we have completed the classi
cation of
all boundary points according to their orientation relative to the region �see

gure ��� We will denote the set of all entry points of P by In�P � and set of
all exit points by Out�P ��

Next we prove some fundamental properties of planar systems which ap�
ply to an even more general class than the PCD systems considered in this
paper� A su�cient condition for these properties to hold is that any straight
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Figure �� Ordering on the boundary� x� � x��

line can be divided into 
nitely many segments� each of which can be tra�
versed by any trajectory in at most one direction�

Consider a region P with 	�P � � c whose boundary is partitioned into
In�P � and Out�P �� The mapping � � X � IR� de
ned as ��x� � x ��c� assigns
to every x � X a value proportional to the length of the projection of the
vector x on the right rotation of c� One can easily see that the relation ��
de
ned as x� � x� if ��x�� � ��x��� is a dense linear order on In�P � and
Out�P � �see 
gure ���

The fact that In�P � and Out�P � are ordered allows us to speak of bound�
ary intervals of the form �x��x�� denoting all the points x � In�P � �or
Out�P �� satisfying x� � x � x�� We use � to denote the strict variant
of � and say that e� � e� if x� � x� for every x� � e��x� � e�� For example�
in 
gure � we have e� � e� � e� � e��

Claim � �Fundamental property of planar systems� Let � be any tra�
jectory that intersects In�P � �or Out�P �� in three consecutive points� x�� x�

and x�� Then� x� � x� implies x� � x� and x� � x� implies x� � x��

Proof� If x� � x� then due to determinism x� � x�� So we assume x� � x�

and show that x� � x� implies an intersection of � with itself in the segment
between x� and x�� which contraditcs x� � x�� Let � be some line separating
In�P � and Out�P �� Suppose� without loss of generality� that the trajectory
from x� to x� circumvents P from the left �i�e�� its last intersection with
line � before re�entering P is some y � x�� �see 
gure ��� Consider now
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Figure �� Illustration of the fundamental property� �a� Circumvention from
the left� �b� Circumvention from the right�

the closed set S bounded by the closed curve consisting of the trajectory
from x� to x� and the boundary interval �x��x��� In order that there will
be a trajectory from x� to x� there must be two points� x�� �above� x� and
x�� �below� x� such that there is a trajectory x� � x�� � x�� � x� and
in particular we can choose x�� outside S and x�� inside S �if we cannot�
then x� and x� coincide�� Consequently� according to Jordan�s theorem� the
trajectory x�� � x�� must intersect the boundary of S� Since it cannot do
it on �x��x��� � must intersect itself and this contradicts determinism unless
x� � x�� This is true independent of whether the trajectory from x� to x�

circumvents P from the left �
gure ��a�� or from the right �
gure ��b��
This topological property has many consequences concerning the set of

possible trajectories� It implies that the sequence of consecutive intersection
points of a trajectory with In�P � or Out�P � is monotone with respect to ��
In fact� the relation between x�� x� and y determines two classes of possible
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Figure �� �a� A contracting spiral� �b� An expanding spiral�

�quasi�cycles�� if x� is between x� and y we have a �contracting spiral�
�
g ��a� while if x� is between x� and y we have an �expanding spiral�
�
g ��b�� Once a trajectory has performed a contracting spiral� it will never
reach any point �outside� the spiral �i�e�� outside the closed curve formed
by the trajectory x� � y � x� and the boundary interval �x��x��� and�
symmetrically� after performing an expanding spiral� a trajectory will never
reach a point �inside� the spiral�

Traces and Signatures

Let � � T � X be trajectory de
ned on a polyhedral partition P� The trace
of � is the sequence  � � x��x�� � � � of the intersection points of � with B�P��
We use the notation  �
i��j� to denote the subsequence xi� � � � �xj of  �� We say
that xi�� is the immediate successor of xi�

Note that the 
niteness of  � is not necessarily determined by the bound�
edness of the time interval T � a trajectory � de
ned over the whole IR� may
reach some �terminal� region and hence will stop crossing boundaries and  �
will be a 
nite sequence� On the other hand� a contracting spiral can cross
boundaries in
nitely many times during a 
nite real�time interval�

The qualitative behavior of a trajectory � such that  � � x��x�� � � �� is
captured by its signature� which is the sequence of boundary elements �edges
and vertices�� 
 ��� � b�� b�� � � � such that for every i� xi � bi� The sequence
���� � P�� P�� � � � is the corresponding region signature of � satisfying the
obvious relation bi � In�Pi�� Since vertices can be seen as a degenerate case
of edges� we will henceforth refer to signatures as to sequences of edges�
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Figure �� Irreversibility of abandonment�

A sequence w � w�� � � � � wn over some 
nite alphabet is called a �prim�
itive� cycle if w� � wn and fwi� � � � � wn��g are pairwise di�erent� A trace
 �
i��j� � xi�xi��� � � � �xj forms a region cycle if its corresponding region signa�
ture� Pi� � � � � Pj is a cycle� It forms an edge cycle if its signature ei� � � � � ej is
a cycle� Note that if  �
i��j� is an edge cycle it is also a region cycle but not
vice versa�

An edge e is said to be abandoned by a trajectory after position i� if ei � e
and for some j� k� i � j � k�  �
j��k� forms a region cycle and e 
� fei��� � � � � ekg�

Claim � �Abandonment is Irreversible� An edge e abandoned after po�
sition i will not appear in the signature at any position m � i�

Proof� Let  �
j��k� be the trace that forms the relevant region cycle� We assume
without loss of generality that xj � xk and that the cycle circumvents Pj

from the left �expanding spiral�� Consider the case of i � j� Then� another
intersection of � with ei must happen at some xm � xk and this will violate
the monotonicity property �see 
gure ��a�� For the case i � j� ei is an
edge not belonging to In�Pj� and xi must be inside the set enclosed by
the trajectory from xj to xk� If ei is completely contained within this set�
it cannot be reached from xk without self�intersection of �� If ei is not
fully contained� then it must intersect the trajectory from xj to xk and will
appear in the signature at some position m� j � m � k and contradict the
assumption of abandonment �see 
gure ��b�� A similar argument holds for
the case of a contracting spiral�
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Corollary � Every trajectory has an ultimately�periodic signature� i�e�� a
signature of the form e�� � � � � ei� �ei��� � � � � ei�j�� for some �nite i� j where j
is at most the number of regions�

Proof� Because of the 
nite number of edges every in
nite signature contains
a subset E of edges appearing in
nitely often� Due to claim �� this subset
may contain at most one entry edge per region� Let i be a position in the
signature after all elements of E have already occurred and all the elements
of E�P� � E have already disappeared� Let e � ei� then the remaining
signature can be factorized into e� ��� e� ��� e � � � where �j � �E � feg�� for
every j � �� All the elements of E � feg must appear in every �j� otherwise
they are abandoned� In addition every �j is cycle�free� otherwise e must be
abandoned� Finally it is impossible for an edge e� to appear before e�� in �j
and after e�� in �j�� as in the sequence

e � � � e� � � � � e�� � � � � e � � � � e��� � � � � e�� � � � � e

because otherwise e� will be abandoned due to the cycle e�� � � � � e � � � � e��� Con�
sequently� all the �j must be identical and the sequence is ultimately�periodic�

Equipped with this nice qualitative property �which does not hold in
higher dimensions�� we turn to the actual calculation of trajectories of a
given PCD system�

� Point�to�point Reachability

In this section we devise a framework for representing edges and vertices that
will provide for the exact characterization and calculation of the set of points
reachable by a trajectory starting at a given point�

De�nition 
 �Representations� Let e � In�P � be an edge with charac�
teristic vector a �pointing into P �� A representation for e consists of two
vectors v � cl�e�� u � �a �the right rotation of a�� and two numbers l� h� such
that l is a rational or the special value ��� h � l is a rational or �� and

e � fv � �u � l � � � hg
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The choice of v implies� of course� the values of l and h� Having 
xed v
and u for every edge we can uniquely represent every non�vertex boundary
point x by a pair �e� �� identifying the edge e and the parameter �� Ev�
ery open boundary interval �x��x�� contained in e is represented by some
edge interval �e� ���� ����� l � �� � �� � h� Vertices are represented by
themselves�

De�nition � �Successor Function� Let e and e� be two edges with �u�v��
and �u��v���representations� The partial function fe�e� � �l� h� � �l�� h�� is
de�ned as follows
 fe�e���� � �� i� x� � �e�� ��� is the immediate successor of
x � �e� ���

Claim 	 Given a representation� the successor function is well�de�ned and
computable�

Proof� Obviously if there is no P such that e � In�P � and e� � Out�P �
then fe�e� is nowhere de
ned� Consider now �e� �� � In�P � and its successor
�e�� ��� � Out�P � for some region P having a slope c� For �e�� ��� to be indeed
the successor of �e� ��� the following vector equation must be satis
ed for
some t � ��

v� � ��u� � v � �u� tc�

by rearranging� we obtain

��u� � �u � �v� v�� � tc�

Multiplying both sides by �c� the right rotation of c� and observing that
�c � c � �� we obtain

����c � u�� � ���c � u� � �c � �v� v��

from which we get
�� � Ae�e���Be�e� �

where

Ae�e� �
c � a

c � a�
and Be�e� �

�c � �v � v��

c � a�

To obtain these expressions for Ae�e� and Be�e�� observe that �c �u � �c ��a � c �a
and� similarly� �c � u� � c � a��
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By the assumption of nondegeneracy� c is not parallel to e� and therefore
the denominator is never zero� If �� is outside the interval �l�� h�� then the
trajectory starting at �e� �� intersects another border element and fe�e���� is
unde
ned�
Similarily we can de
ne a predecessor function and compute it by

� �
�� �Be�e�

Ae�e�

Claim 
 If e � In�P � and e� � Out�P � then Ae�e� � ��

Proof� Since e is an entry edge of P � c � a � �� where a is the characteristic
vector of e which� according to our convention� points into P � As e� is not
an entry edge of P � its characteristic vector a� points away from P � and the
normal to e pointing into P is given by �a�� Since e� � Out�P �� c � ��a�� � ��
leading to c � a� � �� It follows that Ae�e� �

c�a
c�a�

� ��

The one�step successor function can be generalized naturally to signatures�

De�nition � �Signature Successor Function� Let � � e�� � � � � ek be a
signature� The signature successor is a partial function f� � �l�� h��� �lk� hk�
such that �k � f����� i� a trace x�� � � � �xk with x� � �e�� ��� has the signa�
ture � and xk � �ek� �k�� We denote the interval on which f� is de
ned by
dom�f���

It can be easily veri
ed that f� can be computed from fei�ei�� � i � � � � � k���
yielding

f����� � A��� �B�

with
A� � Ae��e� �Ae��e� � � � Aek���ek

and

B� � �� � � ��Be��e� �Ae��e� �Be��e�� �Ae��e� �Be��e�� � � �� �Aek���ek �Bek���ek

Of particular interest are the successor functions associated with cyclic sig�
natures � � e�� � � � � ek where ek � e��

Suppose  � � x��x�� � � � with xi � �ei� �i� for every i � f� � � � kg� has a
periodic signature �e�� � � � � ek���� and let � � e�� � � � � ek� Then the sequence
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of intersection points of � with e� is represented by �e�� ���� �e�� ���� � � � with
�� � �� and �i�� � A� � �i � B�� It is straightforward to solve this linear
di�erence equation and obtain the following expression for �n�

�n �

���
��

�� �B� � n if A� � �

�� �A
n
� �B� �

An
� � �

A� � �
otherwise

We can compute the limit of �n as n tends to in
nity� The possible cases are
listed in table 	�

Case Limit

A� � �� B� � � ��
A� � �� jB�j � � �

A� � �� jB�j � � ��

A� � �
B�

��A�

A� � �� �� �
B�

��A�
��

A� � �� �� �
B�

��A�
�

A� � �� �� �
B�

��A�
��

Table 	� The limits of the intersection sequence �n�� � A��n � B� as a
function of A�� B� and ���

For every ei� i � f�� � � � � k��g in the signature we de
ne its limit point ��i
by letting ��� � �� and ��i � fei���ei��

�
i���� Clearly the signature e�� � � � � ek��

can repeat forever only if for every i� i � f�� � � � � k � �g all its intersection
points with the edge ei are contained in the interval �ei� �li� hi��� We can now
formulate a criterion for a cycle being repeated in
nitely many times �see

gure ���
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Figure �� A non�ultimate spiral� the limit of the sequence of intersection
points with e is beyond the endpoint�

Criterion � �In�nity test� A trajectory starting with the cycle �e�� ���� � � � � �ek� �k�
such that e� � ek� has a periodic signature �e�� � � � � ek���� i�

li � ��i � hi for every i � f�� � � � � k � �g

This criterion is based on the 
rst occurrence of the cycle and enables us to
decide in advance whether this cycle will repeat forever or some of its edges
will be abandoned after 
nitely many iterations�

Theorem � �Point
to
Point Reachability� The problemReach�H�x�x��
is decidable�

Proof� We 
rst show that it is decidable when x and x� are boundary points�
x � �e� �� and x� � �e�� ���� All we need is to calculate the successors and
compare them with x�� During the generation of the trajectory we keep track
of the non�abandoned edges �
nitely many�� When a cycle is detected the
in
nity test tells us whether or not this is the terminal cycle� If it is not we
continue generating the successors� If it is the terminal cycle we can check
whether e� is not in the cyclic signature or �� is beyond the limit � in that
case the answer is negative� Otherwise� after 
nitely many iterations we
either reach x� or bypass it� This also implies that the problem is solvable for
arbitrary points� because it is straightforward to compute the forward and
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backward intersections of trajectories passing through an interior point of a
region with the boundaries�
If the target �� is exactly the limit of the sequence� the reachability problem
becomes an instantiation of Zeno�s paradox� and the answer is a matter of
de
nition�

� Reachability Between Edges

The results so far allow us to compute the set of all points reachable by a
single trajectory� Now we will show how reasoning about a non�countable
number of trajectories departing from an edge interval can be reduced to
reasoning about a 
nite number of trajectories�

Successor Trees

Claim � Let �e�� l�� and �e�� h�� be the successors of �e� l� and �e� h� respec�
tively� Then for every �� l � � � h the successor of �e� �� is some �e�� ����
l� � �� � h��

Proof� Follows from the monotonicity of the successor function and the
convexity of the regions�

Consequently� for any edge interval �e� �l� h��� if the trajectories start�
ing from �e� l� and �e� h� have identical signatures� so does every trajectory
starting at �e� ��� for some l � � � h�

Next� we generalize the notion of a successor from single points to inter�
vals�

De�nition � �Edge Successors Set� Let �e� �l� h�� � In�P � be an edge
interval� The successor set of e is a set of edges and vertices

Succ�e� �l� h�� � f�e�� �l�� h����x�� �e�� �l�� h����x�� � � � � �en� �ln� hn��g

such that the elements are mutually disjoint� and their union is a connected
boundary interval being in one�to�one correspondence with �e� �l� h�� via the
successor�predecessor functions� �See 
gure ����

Claim � The set of edge�successors is �nite and computable�
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e�

e�

x�

l e h

Figure ��� The successors of �e� �l� h���

Proof� Because of the computability of the single point successor and pre�
decessor functions� Moreover� for every i� all the points in �ei� �li� hi�� are the
fe�ei �images of some sub�interval of �e� �l� h���

Clearly the set of all points in Out�P � which are immediate successors of
points in �e� �l� u�� is exactly the union of all elements in Succ�e� �l� u���

De�nition � �Successor Tree� A successor tree rooted at �e� �l� h�� is con�
structed by calculating recursively the successors of every node starting at the
root �see 
gure ���� A path along the tree is called a successor chain��

The notion of signature is generalized naturally to successor chains� If a
chain has a signature � then there must be at least one trajectory having
this signature� Hence every in
nite successor chain must have an ultimately
periodic signature�

The idea behind the edge�to�edge reachability algorithm is that all trajec�
tories starting in some edge�interval �e� �l� h�� and having the same signature
are characterized by the behavior of two trajectories� the �leftmost� trajec�
tory starting at l and the �rightmost� trajectory starting at h� By this we
mean that

�� For trajectories with a 
nite signature � � e� � � � � e�� the existence of a
trajectory from some x � �e� �l� h�� to some x� � �e�� �l�� h��� is exactly

�For the sake of simplicity we ignore here the simpler case where one of the successors
is a vertex � in this case a successor chain is simply a trace�
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l� h�

e� l� h�

e� l� h�

l� h�
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Figure ��� A �nite portion of a successor�tree with a chain
�e�� �l�� h���� �e�� �l�� h���� �e�� �l�� h���� �e�� �l�� h���� All the trajectories start�
ing at some point in �e�� �l��� u

�
��� have the same signature e�� e�� e�� e��

the existence of a non�empty intersection between the intervals �l�� h��
and �f��l�� f��h��

	� The criterion for a given cyclic signature to repeat forever is based on
the convergence of the sequences associated with l and h�

For an edge interval �e� �l� h�� and a cyclic signature � � e� � � � � e� we de
ne

f���l� h�� � f�� � �� � f���� for some � � �l� h�g

Claim � �Decidability for Periodic Chains� Consider the cyclic successor�
chain �e�� �l�� h���� � � � � �ek� �lk� hk��� �e� � ek�� and let � � e�� � � � ek��� It is
decidable whether this �nite successor�chain can be extended to an in�nite pe�
riodic chain with the signature ��� and if it is periodically extensible� whether
there exists a trajectory among all those which share the same chain� reaching
a point in an edge�interval �e�� �l�� h����

Proof� Consider the sequence of intervals ���� ���� ���� ���� � � � de
ned by
���� ��� � �lk� hk� and ��n��� �n��� � �A��n � B�� A��n � B��� In table 
�

	




we present the di�erent cases that may arise� For each of them� we specify
the conditions for in
nite periodic extension of the cyclic successor chain and
the set of points on edge e� which are reachable by such an extension if it
exists� If no in
nite extension exists� the third column is irrelevant� In this
table� �� denotes B���� �A��� and we assume that e� is represented by the
interval �L�H��

Case
Extensibility
Condition

e��reachability
set

a�� A� � �� B� � � Always ���� ���

a	� A� � �� B� � � ������ � dom�f��
�
n��

��n� �n�

b�� A� � �� �� � �� Always ���� ���

b	� A� � �� �� � �� �� � dom�f��
�
n��

��n� �n�

c�� A� � �� �� � �� Always f������H��

c	� A� � �� �� � �� ������ � dom�f��
�
n��

��n� �n�

Table 
� Extensibility conditions and reachability sets�

Note that the condition ������ � dom�f�� implies that all the edges in
� are unbounded from the right�
The cases

A� � �� B� � � A� � �� �� � �� A� � �� �� � ��

are treated symmetrically to the cases
A� � �� B� � � A� � �� �� � �� A� � �� �� � ��

The cases A� 
� �� �� � �� � �� are treated by splitting the cyclic successor
chain

�e�� �l�� h���� � � � �ek� �lk� hk��

into the two chains

�e�� �l�� �
���� � � � �ek� �lk� �

��� and �e�� ��
�� h���� � � � �ek� ��

�� hk��
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and considering each of them separately�
Without loss of generality� we may assume that e� � e�� i�e�� that we

wish to check for the reachability of an interval which lies on the initial edge
e�� To check that some point in �e�� �l�� h�� is reachable� we have to check
whether �l�� h�� intersects the interval ���� ��� �cases a� and b�� or the interval
f������H�� �case c��� For cases a	� b	� and c	� it is necessary to check whether
�l�� h�� intersects any of the intervals ��n� �n�� for some n 
 �� Since� in all
three cases� the two sequences ��� ��� � � � and ��� ��� � � � are monotonically
increasing� and have closed form expressions� it is straightforward to check
for the necessary intersection�

De�nition �� �Non�redundant Successor Tree� A non�redundant suc�
cessor tree is obtained from a successor tree via the following recursive trans�
formation
 if �e� �l�� h��� is a cyclic successor of �e� �l� h�� then replace it by
�e� �l�� h���� �e� �l� h���

Usually� the modi
ed successor will be a single interval� but in the case
of A� � � and l � B�

��A�
� h the result might be two non�connected intervals

of the same edge � see 
gure �� Clearly� in terms of reachable states the
non�redundant tree carries the same information as the original tree� namely
the union of the edges is still the set of reachable boundary points�

A node in a tree is called a branching node if it has more than one suc�
cessor�

Claim �� �Finitely Many Chains� Every in�nite chain in a non�redundant
successor tree� has only �nitely many branching nodes� Hence this tree con�
tains only �nitely many chains�

Proof� Since all in
nite chains are ultimately periodic it su�ces to con�
sider the periodic part of such chains� Let �e�� �l�� h��� �e�� �l�� h���� � � � be
an in
nite successor chain with a periodic signature ��� � � �e�� � � � � ek����
Let ���� ���� ���� ��� � � � � denote the intervals in the successor chain that cor�
respond to successive visits at the edge e�� starting at the second� Thus�
���� ��� � �lk� hk�� ���� ��� � �l�k� h�k�� etc�

We consider each of the six cases of table 
 and show that each of them
contains only 
nitely many branching nodes� under the in
nite extensibility
condition� Note that the chains we consider here obey the non�redundance
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Figure �	� An illustration of cases a		c	 of table 
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Figure �
� Transforming a successor�tree �left� into a non�redundant one
�right�� the non�split case �up� and the split case �down��

condition� In particular� the intervals ��i� �i� and ��j � �j� are disjoint for every
i 
� j� Also note that branching can arise between the nodes �e�� ��i� �i��
and �e�� ��i��� �i���� only if there exists some � � ��i� �i� such that f���� is
unde
ned�

We consider several cases together�

� Cases a� � A� � �� B� � � and b� � A� � �� �� � ���
In these two cases� f���� is de
ned for every � � ���� ��� and f������ ���� �
���� ���� Consequently� all the e��points reachable after one round of �
are redundant and the non�redundant chain cannot be in
nite�

� Case a	 � A� � �� B� � �� case b	 � A� � �� �� � ��� and case
c	 � A� � �� �� � ���
It can be shown that� under the in
nite extensibility condition� f����
is de
ned for every � � ��k� �k� and ��k��� �k��� � f����k� �k��� for
every k 
 �� It follows that this chain cannot have a branching node
following the second visit to e��
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� Case c� � A� � �� �� � ���
As �� � ��� there is a su�ciently small � � � such that f������ �� �
��� � ���� ���� By non�redundancy� this implies that �� � �� which
shows that from the second ��round on� this case behaves like case
c	 � A� � �� �� � ���

It follows that every chain in the non�redundant tree has 
nitely many
branching points� By a K!onig�like argument� this implies that the tree has
only 
nitely many chains� some of which may still be in
nite�

Consequently we have�

Theorem �� �Edge�to�edge Reachability� For every deterministic pla�
nar PCD system it is decidable whether an edge interval �e��l�� h��� is reachable
from an edge interval �e� �l� h���

Proof� The algorithm develops top�down the non�redundant successor tree
starting at �e� �l� h�� where along every chain it keeps track of unabandoned
ancestors� Using this information we can detect edge�cycles and calculate
their successor functions and limits� All the in
nite chains are ultimately
periodic and there are only 
nitely many of them� Once� it is realized� using
the criteria of Claims � and ��� that the currently examined chain has a non�
branching in
nite periodic non�redundant continuation� we need not expand
it any longer� but can use the methods of Claim � to decide whether it ever
intersects �e�� �l�� h����

As an immediate result we have�

Corollary �� �Region to Region Reachability� Let R and R� be two ��
nite unions of polygonal sets� Then the problem Reach�H� R�R�� is decid�
able�

Proof� Inside the regions we have two�sided determinism so every region�to�
region reachability problem can be reduced to a 
nite number of edge�to�edge
reachability problems�

� Undecidability for Three Dimensions

The particular topological properties of the plane played a major role in the
convergence of our decision procedure� In this section we show that one
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additional dimension renders the reachability problem undecidable� This
negative result will be based on demonstrating the computational power of
PCD systems� We will show that 
�dimensional PCD systems can simulate�
in a sense described below� arbitrary Turing machines�

A deterministic transition system is A � �Q� �� where Q is a countable
set of states and � � Q � Q is the transition function� A run of A starting
at some q is a �
nite or in
nite� sequence 
 � q���� q���� � � � where q��� � q
and q�i� � ��q�i� ��� for every i � �� The set of all such sequences�runs�
starting at some q � Q� � Q is denoted by L�A� Q��� We use �i�q� to denote
���i���q�� with ���q� � ��q��

De�nition �� �Simulation� Let A � �Q� �� be a deterministic transition
system and let Q� be a subset of Q� We say that A is Q��simulated by a PCD
system H � �X� f� if there exists a subset Y of X and a bijection � � Y � Q�

�state�mapping� such that for every x�x� � Y � there is a trajectory in H from
x to x� �not intersecting Y except in x and x�� i� for some i �i���x�� � ��x��
and for every j� � � j � i� �j���x�� 
� Q��

By transitivity a trajectory between any x and x� in Y exists i� there is
a run 
 � q���� � � � q�m� � L�A� Q�� such that ��x� � q��� and ��x�� � q�m��
WhenQ� � Q we say simply thatH simulatesA and in this case an algorithm
for solving the reachability problem for H solves the reachability �and in
particular� the halting� problem for A�
Remark� There is a variety of other notions of simulation between discrete
and continuous dynamical systems� but these semantical issues are subject
of an independent ongoing research �see �	�� ����� The simple de
nition we
use here is su�cient for the purpose of proving undecidability�

��� Simulation of Finite�State Machines

Here we show how every 
nite�state automaton can be simulated by a 
�
dimensional PCD system� A 
nite automaton without input is a rather
trivial object and the construction is presented here just because it underlies
the more complicated constructions for in
nite�state machines�

Claim �� �Simulation of Finite Automata� Every �nite deterministic
automaton can be simulated by a 
�dimensional PCD system�

	�



Proof� Suppose the automaton has n states� The simulating system is
de
ned over the subset ��� n�� ��� ��� ��� n� of IR�� It consists of the following
regions �we call the state variables x� y� and z��

Region De
ning conditions c � � "x� "y� "z�
F �z � �� � �y � �� ��� �� ��
Uij �x � i� � �y � �� � �z � j� ��� �� ��
Bij �z � j� � �x� �j � i�y � j� � �y � �� �j � i���� ��
D �z � �� � �y � �� ��� �����

The regions Uij and Bij are de
ned for every i� j such that ��qi� � qj� As a
state�mapping we take ��x� y� z� � qi i� �x � i� � �y � z � ��� An example
of this construction appears in 
gure ��� It can be veri
ed that the system
goes from �i� �� �� to �j� �� �� i� ��qi� � qj� At F the system advances y until
�i� �� ��� then at Uij it goes �up� until it reaches the surface z � j at �i� �� j��
On that surface in region Bij it goes diagonally to �j� �� j� and 
nally in D it
goes down to �j� �� ��� Note that all the regions leading to �j� �� j� are located
on the same plane�
Remark� This technique can be applied to the simulation of non�deterministic
automata by non�deterministic PCD systems� All we have to do is to modify
the de
nition of a PCD system to allow non�determinism on the �relative�
boundaries of the regions� Then if both �qi� qj� and �qi� qk� are possible tran�
sitions� j � k� the system will bifurcate in �i� �� j� between Bij �going to qj�
and Uik �going up until z � k and then to Bik�� In �	� we have shown that
deterministic PCD systems can simulate �in a richer sense� non�deterministic
automata�

��� Push�Down Automata

The results concerning in
nite�state transition�systems will be based on stack
machines� A pushdown stack is an element of #��� where� # � f�� � � � � k��g�
We de
ne the following two functions� push� #� #� � #� and pop� #� �
#� #� as push�v� S� � v � S and pop�v � S� � �v� S��

De�nition �� �PDAs� A deterministic pushdown�automaton �PDA� is a
transition system A � �Q � #���� �� for some Q � fq�� � � � qng such that �

�It is more convenient to de�ne the set of all stacks as a countable subset of �� although
it is isomorphic to ���
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Figure ��� Simulating a 
�state automaton with ��q�� � ��q�� � q� and
��q�� � q��

is de�ned using a �nite collection of statements of one of the following two
forms


qi
 S ��push�v� S��
goto qj

qi
 �v� S� ��pop�S��
if v � � goto qi��
� � �
if v � k � � goto qik���

The contents of a stack is denoted by S � s�s� � � � where s� is the top of the
stack� We de
ne the standard encoding function r � #� � ��� �� as r�S� �P�

i�� sik
�i� Clearly r is injective on #���� It is easily veri
ed that the stack

operations have arithmetic counterparts that operate on the representation�

S� � push�v� S� i� r�S�� � �r�S� � v��k
�S�� v� � pop�S� i� r�S�� � kr�S�� v

Claim �	 �Simulation of PDAs� Every PDA can be simulated by a 
�
dimensional PCD system�


�



Proof� For simplicity we assume k � 	 and # � f�� �g� Consider the three
planar sub�systems depicted in 
gure �� and a trajectory segment starting
at x � �x� ��� x � ��� �� and ending at x� � �x�� ��� It can be veri
ed that
either�

x� � �x� ���	 push �
x� � x�	 push �
x� � 	x� ��	 pop

�

��	 
�	��	 ��	 ���	

� � � � ��	 �
push � push � pop

Figure ��� The basic elements�

If x � r�S� at the �input port� �y � �� of a push element� then x� � r�S��
at the �output port� �y � �� of that element where S� is the resulting stack�
For the pop element we have two output ports ���	 � x � ��	 and ��	 �
x � 
�	� If the top of the stack was � the trajectory reaches the left port with
x� � r�S �� � ��	� otherwise it goes to the right port with x� � r�S�� � ��	�
In both cases the value of x� �relative to the �origin� of the port� encodes
the new content of the stack� Thus� in order to simulate a PDA we pick
for every qi an element corresponding to its stack operation� place it with
the origin in position� say� �	i� �� �� and use the third dimension in order to
connect the output ports back to the input ports according to the goto�s
�see 
gure ���� This is similar to the previous construction except for the fact
that the connections are via two�dimensional �bands� and thus two families
of trajectories going to the same state qi cannot be merged on the same plane
�z � j� but only while going �down�� Finally the state�mapping is de
ned
as ��x� y� z� � �qi� S� i� y � z � �� 	i � x � 	i� � and S � r���x� 	i��


	



z

��� �� �� q� q�
x

y

Figure ��� Simulating a PDA with 	 states� de
ned by� q� � S ��push��� S�$
goto q�$ q� � �v� S� ��pop�S�$ If v � � then goto q� else goto q�� Note
the place where the two gotos to q� merge�

��� Simulating Two�stack and Turing Machines

The construction of claim �� generalizes naturally to automata having two
stacks �	PDAs�� We can de
ne an encoding function  r � #� � #� � ��� ���
��� �� by letting  r�S�� S�� � �r�S��� r�S���� This way every con
guration of the
two stacks can be encoded by a point x � �x�� x�� �� in a two�dimensional
input port� The elements that simulate the stack operations push�v� S���
push�v� S��� pop�S�� and pop�S�� operate on the appropriate dimension�
according to the stack involved� and leave the other dimension intact� As
an example� an element corresponding to push��� S�� appears in 
gure ���
From this we can immediately conclude�

Claim �
 Every 
PDA �and hence any Turing machine� can be simulated
by a ��dimensional PCD system�

Proof� As in claim �� we pick n elements� arrange them along a line and
connect output ports to input ports� The connections should now �carry�







yx�

x�

�x�� x��

�x��� x��

Figure ��� An element simulating the operation push��� S��

two�dimensional information about the con
guration� and thus consist of
three�dimensional �tubes�� Several tubes going to the same state can be
merged by employing a fourth dimension �no 
gure� in the same way as
two�dimensional �bands� were merged in the case of one�stack PDAs�

But we can do better� First� recall from the standard proof of the equiv�
alence of Turing machines and 	PDAs that some constraints can be imposed
on the type of 	PDAs used�

De�nition �� �Normal �PDA� Let # � f�� �� 	g� A con�guration �S�� S�� �
#� �#� is normal if both S� and S� belong to f�� 	g���� A 
PDA is normal
if it never pushes � to any of the stacks�

It can be easily veri
ed that normality of the con
gurations is preserved by
normal 	PDAs and that normal 	PDAs can simulate Turing machines �see
the proof of equivalence of Turing machines and 	PDAs� e�g�� ������

De�nition �	 Let A � �Q�#����#���� �� be a 
PDA and let C� be a set
of con�gurations� With every qi� qj � Q we associate the set

S�C�� i� j� � f�S�� S�� � #� � #� � ��
 � L�A� C����k � ��

 �k� � �qi� S��� S

�
�� � 
 �k � �� � �qj� S�� S��g

In other words� S�C�� i� j� is the set of all 	�stack con
gurations with which
a transition from qi to qj can take place in any run of A starting at C��
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De�nition �
 �Separated and Flat States� Regular �PDAs� A state
qk of a 
PDA is separated if for every qi 
� qj � Q� if both qi and qj have a
goto qk instructions� they are preceded respectively by push vi and push vj
�into the same stack� for vi 
� vj� A state qk of a 
PDA is C���at if for
every j� S�C�� j� k� � f��g � #�� A 
PDA is C��regular if each of its states
is either separated or C���at�

A state qk is thus separated if� upon entering qk� the values on the tops of
the stacks are su�cient to tell whether we come from qi or qj� A state qk
is C���at if in all the runs starting at C� it is always entered with the 
rst
stack empty�

Claim �� �Simulation of Regular �PDAs� Let C� be a set of con�gura�
tions� Any C��regular 
PDA can be C��simulated by a 
�dimensional PCD
system�

Proof� In the proof of claim �� we needed the fourth dimension only in order
to merge two or more �tubes� entering the same input port associated with
a state q� If q is separated these tubes do not overlap on the input port and
the connections can be made� If q is �at� the relevant information at the
input port of q is one�dimensional and all incoming �bands� can be glued
together �see 
gure ����

Figure ��� Realizing entrances to input ports of separated �left� and �at
�right� states�

Note that the relativity of �atness and of simulation with respect to C�

is important� A trajectory starting at some con
guration outside C� might
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want to enter the input port of qk at some point with x� 
� �� but since we
are only interested in C��simulation we do not care�

What we are going to show is� informally speaking� that every normal
	PDA can be transformed into an N �regular 	PDA where N is the set of
normal con
gurations� The idea is simple� each time after performing a
stack operation� we empty one stack while pushing its contents into the
other� Then we perform the goto�s� that is� merge several �bands� that
contain one�dimensional information� Before entering the new input port we
decode the one�dimensional representation back into two stacks�

For every i� j � f�� � � � � ng� we de
ne a machine Encoderij and a ma�
chine Decoderj � An encoder takes two normal stack con
gurations S� �
��� � � � �l�� and S� � ��� � � � �m�� ��i� �i � f�� 	g� and converts them into
S� � �� ��empty� stack� and S� � �l � � � ����� � � � �m��� The decoder does
the reverse operation� These two machines are described below�

Encoderij Decoderj

E�Entryij� S� ��push��� S�� D�Entryj� S� ��push��� S��
goto E�Loopij goto D�Loopj

E�Loopij � �S�� v� ��pop�S�� D�Loopj � �S�� v� ��pop�S��
if v � � goto E�Exitij if v � � goto D�Exitj
if v � � goto E�Mov�ij if v � � goto D�Mov�j
if v � 	 goto E�Mov	ij if v � 	 goto D�Mov	j

E�Mov�ij � push��� S�� D�Mov�j � push��� S��
goto E�Loopij goto D�Loopj

E�Mov	ij � push�	� S�� D�Mov	j � push�	� S��
goto E�Loopij goto D�Loopj

E�Exitij� goto D�Entryj D�Exitj� goto qj

Claim �� �Normal � N�Regular� Let A � �Q � #��� � #���� �� be a
normal 
PDA and let N be the set of all normal con�gurations� Then there
is an N�regular 
PDA A� � ��Q�Q���#��� �#���� ��� such that for every
q� q� � Q and every �S�� S��� �S��� S

�
�� � N there is a run from �q� S�� S�� to

�q�� S��� S
�
�� in A i� there is such a run in A��

Proof� We let Q� be the union of the sets of states of the corresponding
encoders and decoders� The transition function �� is the union of the tran�
sitions of the encoders and decoders and the following variation of �� every
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original A�statement of the form qi� � � �goto qj is replaced by qi� � � �goto
E�Entryij� It can be easily veri
ed that every qj is now separated �it is en�
tered only from D�Exitj�� that E�Entryij is separated �it is entered only from
qi� and that D�Entryj is N ��at �all trajectories starting with a normal con�

guration will enter the encoder with a normal con
guration and will leave
the encoder with one stack empty�� The other states of the decoders and
encoders are obviously separated� This construction is drawn schematically
in 
gure ���

q�

q�

q�q� q�

q� q� q�

E�� E�� E��

D�D�

Figure ��� Augmenting a 	PDA with encoders and decoders�

Theorem �� �Simulation of �PDAs� Any normal 
PDA A can be sim�
ulated by a 
�dimensional PCD system�

Proof� We convert A into the N �regular 	PDA A� described above� This
	PDA can be N �simulated in 
 dimensions� By letting ��x� y� z� � �qi� S�� S��
i� y � �� 	i � x � 	i� �� S� � r���x� 	i�� S� � r���z� and both S� and S�

are normal� we obtain the desired simulation�

Corollary �� �Undecidability� The reachability problem for 
�dimensional
PCD systems is undecidable�

Proof� Otherwise we could translate every reachability problem of a Turing
machine� into a reachability problem between two rational points in a 
�
dimensional simulating system� and solve the halting problem�
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� Discussion

We have de
ned PCD systems� a class of simple dynamical systems� which is a
natural extension of real�time systems �such as timed automata or integration
graphs� whose trajectories can be computed e�ectively and precisely� The
class of behaviors exhibited by PCD systems is rather rich even without
exploiting the full power of the HS model� We have utilized the constraints on
behavior imposed by the topological structure of the plane in order to devise
a decision procedure for the reachability problem in the two�dimensional case�
We have shown that in higher dimensions� when these properties do not hold
anymore� the problem becomes undecidable�

The systems constructed for the undecidability results do not seem to be
�naturally occurring� and an open question that remains is what additional
restrictions on a PCD system will make the reachability problem decidable
regardless of dimensionality� Even for the undecidable cases� our techniques
can serve as a basis for semi�decidable symbolic simulation techniques as
advocated in ����� The idea is to start with a formula �� a region of possi�
ble initial conditions� and calculate successively formulas that characterize
reachable states� Then� if the process converges� a test for intersection be�
tween the region expressed by the obtained formula and the target region
should be performed� Our decidability result can be viewed as an �on�the�
�y� version of the approach suggested in ����� and it works even in the case
where no 
nite formula over the reals can characterize the reachable states
�as in the case of a spiral��

The applicability of these methods to more general hybrid systems� having
non�constant derivatives in every state� is currently under investigation� This
general case poses a new dimension of problems associated with the inability
to calculate trajectories and solve equations using exact methods and hence
the need for numerical approximations�

In addition to the undecidability result we have shown �in �	�� additional
interesting connections between topological properties of dynamical systems
and their computational expressiveness� For example� 	�dimensional PCD
systems cannot simulate non�deterministic automata having a non�planar
transition graph�

There have been other works on simulation of transition systems by dy�
namical systems� For example� in ��� the boolean transition function of an
automaton� de
ned over f�� �gm� is realized by its continuous extension to
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��� ��m using arithmetical operations� Similarly stacks have been simulated
by rational arithmetic in ���� In these works� however� the simulating system
is already de�ned over discrete time� i�e�� using iterated maps of the form
xn�� � f�xn�� Our construction� on the other hand� uses continuous�time
systems�

There have been various undecidability results for other variants of hybrid
systems with piecewise�constant derivatives �timed automata ��� or integra�
tion graphs ��	��� but those were obtained in a richer model where a transition
between regions is accompanied by a discrete change� and the trajectories are
discontinuous� In ��� automata were simulated �without a precise formal def�
inition of this term� by smooth dynamical systems de
ned over a state�space
of certain symmetric matrices� Those systems have high dimensionality that
grows with the size of the automaton� Recently Branicky ��� used di�erential
equations with continuous vector 
elds� as well as several models of hybrid
systems� to simulate Turing machines� The dynamical systems considered in
��� have� informally speaking� in
nitely many regions �or components� unlike
our PCD systems�

The closest work to ours has been reported in ���� where stack machines
were constructed from optical elements such as mirrors and lenses� These
constructions were used to prove undecidability of the ray tracing problem�
It should be noted� however� that optical systems� as well as billiard models�
require a richer model� where the phase�space is 	n�dimensional �the veloc�
ity in each spatial dimensions is also a state variable� and the trajectories
are discontinuous in this phase�space �the velocity goes through an abrupt
change�� Hence the equivalence between our PCD results and theirs is an
optical illusion�

Finally the philosopher Putnam ����� while attempting to �prove� the
thesis every open physical system realizes every automaton� uses a notion
of aimulation we 
nd implausible� Consider� for example a deterministic au�
tomaton without input� generating the sequence �q�q���� Then the dynamical
system dx

dt
� � �or any other system with a non�cyclic behavior� simulates

the automaton by letting ��x� � q� when 	i � x � 	i � �� and ��x� � q�
when 	i � � � x � 	i � 	 for any integer i 
 �� This simulation works only
if we consider a 
xed initial state �otherwise we need a di�erent abstraction
for each state� and� moreover� � is topologically rather complex� ����q� is
a union of in
nitely many disconnected sets� which contradicts our intuition
concerning abstractions�
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