Approximating the Pareto Front of Multi-Criteria
Optimization Problems*

Julien Legriel"2, Colas Le Guernic!, Scott Cotton®, and Oded Maler!

1 CNRS-VERIMAG, 2, av. de Vignate, 38610 Gieres, France

@imag.fr
2 STMICROELECTRONICS
12, rue Jules Horowitz, 38019 Grenoble, France

Abstract. We propose a general methodology for approximating the Pareto front
of multi-criteria optimization problems. Our search-based methodology consists
of submitting queries to a constraint solver. Hence, in addition to a set of so-
lutions, we can guarantee bounds on the distance to the actual Pareto front and
use this distance to guide the search. Our implementation, which computes and
updates the distance efficiently, has been tested on numerous examples.

1 Introduction

Many problems in the design of complex systems are formulated as optimization prob-
lems, where design choices are encoded as valuations of decision variables and the
relative merits of each choice are expressed via a utility/cost function over the decision
variables. In most real-life optimization situations, however, the cost function is multi-
dimensional. For example, a cellular phone that we want to develop or purchase can be
evaluated according to its cost, size, power autonomy and performance, and a configu-
ration s which is better than s’ according to one criterium, can be worse according to
another. Consequently, there is no unique optimal solution but rather a set of efficient
solutions, also known as Pareto! solutions, characterized by the fact that their cost can-
not be improved in one dimension without being worsened in another. The set of all
Pareto solutions, the Pareto front, represents the problem trade-offs, and being able to
sample this set in a representative manner is a very useful aid in decision making.
Multiple-criteria or multi-objective optimization problems have been studied since
the dawn of modern optimization using diverse techniques, depending on the nature
of the underlying optimization problems (linear, nonlinear, combinatorial) [10,4, 5, 3].
One approach consists of defining an aggregate one-dimensional cost/utility function
by taking a weighted sum of the various costs. Each choice of a set of coefficients for
this sum will lead to an optimal solution for the one-dimensional problem which is
also a Pareto solution for the original problem. Another popular class of techniques is

* This work was partially supported by the French MINALOGIC project ATHOLE

" In honor of V. Pareto who introduced them in the context of economic theory [9] to express
the fact that different members of society may have different goals and hence social choices
cannot be optimal in the one-dimensional sense, a fact consistently ignored in most public
debates.

based on heuristic search, most notably genetic/evolutionary algorithms [1, 11], which
are used to solve problems related to design-space exploration of embedded systems,
the same problems that motivate our work. A major issue in these heuristic techniques
is finding meaningful measures of quality for the sets of solutions they provide [12].

In this paper we explore an alternative approach to solve the problem based on
satisfiability/constraint solvers that can answer whether there is an assignment of values
to the decision variables which satisfies a set of constraints. It is well known, in the
single-criterium case, that such solvers can be used for optimization by searching the
space of feasible costs and asking queries of the form: is there a solution which satisfies
the problem constraints and its cost is not larger than some constant? Asking such
questions with different constants we obtain both positive (sat) and negative (unsar)
answers. Taking the minimal cost x among the sat points and the maximal cost 4y among
the unsat points we obtain both an approximate solution = and an upper bound z — y
on its distance from the optimum, that is, on the quality of the approximation.

In this work we extend the idea to multi-criteria optimization problems. Our goal
is to use the sar points as an approximation of the Pareto front of the problem, use
the unsat points to guarantee computable bounds on the distance between these points
and the actual Pareto front and to direct the search toward parts of the cost space so as
to reduce this distance. To this end we define an appropriate metric on the cost space
as well as efficient ways to recompute it incrementally as more sat and unsat points
accumulate. A prototype implementation of our algorithm demonstrates the quality and
efficiency of our approach on numerous Pareto fronts.

The rest of the paper is organized as follows. Section 2 defines the problem set-
ting including the notions of distance between the sar and unsat points which guides
our search algorithm. In Section 3 we describe some fundamental properties of spe-
cial points on the boundary of the unsat set (knee points) which play a special role in
computing the distance to the sat points, and show how they admit a natural tree struc-
ture. In Section 4 we describe our exploration algorithm and the way it updates the
distance after each query. Section 5 reports our implementation and experimental re-
sults on some purely-synthetic benchmarks of varying dimension and accuracy as well
as some scheduling problems where we show the trade-offs between execution time and
power consumption. Conclusions and suggestions for future work close the paper.

2 Preliminary Definition

Constrained optimization (we use minimization henceforth) problems are often speci-
fied as
min ¢(x) s.t. p(x)

where x is a vector of decision variables, ¢ is a set of constraints on the variables
that define which solution is considered feasible and c is a cost function defined over
the decision variables. We prefer to reformulate the problem by moving costs to the
constraint side, that is, letting p(z, ¢) denote the fact that x is a feasible solution whose
cost is c. Hence the optimum is

min{c : 3z p(x,c)}.

Moving to multi-criteria optimization, ¢ becomes a d-dimensional vector (cy,...cq)
that we assume, without loss of generality,? to range over the bounded hypercube C' =
[0, 1], that we call the cost space. We use notation r for (r,...,7).
We assume that the maximal cost 1 is feasible and that any cost with some ¢; = 0
is infeasible. This is expressed as an initial set of unsat points {0;};—1.4 where 0; is a
point with ¢; = 0 and ¢; = 1 for every j # 4. The set C is a lattice with a partial-order
relation defined as:
s<s =Vis; <s €]

Pairs of points such that s £ s’ and s’ £ s are said to be incomparable, denoted by
s||s’. The strict version of < is

s<s' =s<s NFjs; <5)

meaning that s strictly improves upon s’ in at least one dimension without being worse
on the others. In this case we say that s dominates s’. We will make an assumption that
if cost s is feasible so is any cost s’ > s (one can add a slack variable to the cost). The
meet and join on C' are defined as

sMs' = (min{s1, s} },. .., min{sq, s4})
sUs" = (max{s1,s1},...,max{sq, s;})

We say that a point in the cost space s is an i-extension of a point s if s, > s; and
s = s; forevery i # j.

A point s in a subset S C C'is minimal if it is not dominated by any other point in
S, and is maximal if it does not dominate any point in S. We denote the sets of minimal
and maximal elements of S by S and S, respectively. We say that a set S of points is
domination-free if all pairs of elements s, s’ € S are incomparable, which is true by
definition for S and S. The domination relation associates with a point s two rectan-
gular cones BT (s) and B~ (s) consisting of points dominated by (resp. dominating)
s:

B (s)={s€C,s <s} and Bt (s) ={s' € C,s < s'}.

These notions are illustrated in Figure 1. Note that both B~ (s) U {s} and BT (s) U {s}
are closed sets. If cost s is feasible it is of no use to look for solutions with costs in
B+(s) because they are not Pareto solutions. Likewise, if s is infeasible, we will not
find solutions in B~ (s).* We let B~ (S) and B*(S) denote the union of the respective
cones of the elements of .S and observe that B*(S) = B*(S) and B~ (S) = B~ (S).
Suppose that we have performed several queries and the solver has provided us
with the sets Sy, and S of unsat and sat points, respectively. Our state of knowledge
is summarized by the two sets K3 = B (S;) and Ky = B~ (Sp). We know that K
contains no Pareto points and K, contains no solutions. The domain for which Sy and
S, give us no informationis K = (C — Ko)N(C — K). We use bd(K() and bd(K) to

% One can normalize the cost functions accordingly.

3 Note that the query is formulated as ¢ < s and if the problem is discrete and there is no solution
whose cost is exactly s, the solver would provide a solution with ¢ = s’ < s if such a solution
exists.

s||s’ s < s’

Bt (s)

s/ <s slls’

Fig. 1. A point s and its backward and forward cones.

Ky = BT (1)

Ko = B~ (Sp)

- [] A‘

(a) (b)

Fig. 2. (a) Sets So and Sy represented by their extremal points So and S,; (b) The gaps in our
knowledge at this point as captured by Ko, K1 and K. The actual Pareto front is contained in the
closure of K.

=

T4
4£_I

Ko = B~ (S0) |

[==

*—

(54
-

@ ®

Fig. 3. (a) Knee points, denoted by circles; (b) Knee points viewed as the minimal points of
C — Ko.

denote the boundaries between K and K| o and K, respectively. It is the “size” of K or
the distance between the boundaries bd(K) and bd(K;) which determines the quality
of our current approximation, see Figure 2. Put another way, if .S is our approximation
of the Pareto surface, the boundary of K defines the limits of potential improvement of
the approximation, because no solutions can be found beyond it. This can be formalized
as an appropriate (directed) distance between S; and K. Note that no point in .S can
dominate a point in Kj.

Definition 1 (Directed Distance between Points and Sets). The directed distance
p(s, s") between two points is defined as

p(s,8") = max{s; ~s; :i =1..d},

where x —y = x — y when x > y and 0 otherwise. The distance between a point s and
a set S’ is the distance between s to the closest point in S':

p(s,S8") = min{p(s,s") : s’ € S'}.

The Hausdorff directed distance between two sets S and S’
p(S,S8") = max{p(s,S’) : s € S}.

In all these definitions we assume s’ £ s forany s € S and s' € S’.

In other words
S, S’) = max min max s, = s;.
p(5,5) s€S s'€S i=l.d © '

Definition 2 (e-Approximation). A set of points S is an e-approximation* of a Pareto
front P if p(P,S) <e

Since the Pareto surface is bounded from below by bd(K) we have:

Observation 1 Consider an optimization problem such that Sy is included in the set of
infeasible solutions, with Ko = B~ (Sp). Then any set Sy of solutions which satisfies
p(bd(Ky), S1) < € is an e-approximation of the Pareto set P.

Our goal is to obtain an e-approximation of P by submitting as few queries as
possible to the solver. To this end we will study the structure of the involved sets and
their distances. We are not going to prove new complexity results because the upper and
lower bounds on the number of required queries are almost tight:

Observation 2 (Bounds)

1. One can find an e-approximation of any Pareto front P C C using (1/€)¢ queries;
2. Some Pareto fronts cannot be approximated by less than (1/¢)%~" points.

“ This definition is similar to that of [8] except for the fact that their definition requires that for
every p € P there exists s € .S such that s < p + ep and ours requires that s < p + e.

Proof. For (1), similarly to [8], define an e-grid over C, ask queries for each grid point
and put them in Sy and S; according to the answer. Then take S; as the approxima-
tion whose distance from bd(Sp) is at most 1/¢ by construction. For (2), consider a
“diagonal” surface

d
P:{(sl,...,sd):z.ﬂ:l}

which has dimension d — 1. o

Remark: The lower bound holds for continuous Pareto surfaces. In discrete problems
where the solutions are sparse in the cost space one may hope to approximate P with
less than (1/¢)? points, maybe with a measure related to the actual number of Pareto
solutions. However since we do not work directly with P but rather with Sy, it is not
clear whether this fact can be exploited. Of course, even for continuous surfaces the
lower bound is rarely obtained: as the orientation of the surface deviates from the di-
agonal, the number of needed points decreases. A surface which is almost axes-parallel
can be approximated by few points.

Updating the distance p(bd(Ky), S1) as more sat and unsat points accumulate is
the major activity of our algorithm hence we pay a special attention to its efficient
implementation. It turns out that it is sufficient to compute the distance p(G, S1) where
G is a finite set of special points associated with any set of the from B~ (S).

3 Knee Points

Definition 3 (Knee Points). A point s in bd(Ky) is called a knee point if by subtracting
a positive number from any of its coordinates we obtain a point in the interior of K.
The set of all such points is denoted by G.

In other words the knee points, illustrated in Figure 3-(a), represent the most unexplored
corners of the cost space where the maximal potential improvement resides. This is
perhaps best viewed if we consider an alternative definition of G as the minimal set
such that C' — Ky = BT (G), see Figure 3-(b). Since p(s, s’) can only increase as s
moves down along the boundary we have:

Observation 3 (Distance and Knee Points) p(bd(Ky),S1)) = p(G,S1).

Our algorithm keeps track of the evolution of the knee points as additional unsat
points accumulate. Before giving formal definitions, let us illustrate their evolution us-
ing an example in dimension 2. Figure 4-(a) shows a knee point g generated by two
unsat points s' and s2. The effect of a new unsat point s on g depends, of course, on
the relative position of s. Figure 4-(b) shows the case where s % g: here knee g is not
affected at all and the new knees generated are extensions of other knees. Figure 4-
(c) shows two unsat points dominated by g: point s° induces two extensions of g and
point s® which does not. The general rule is illustrated in Figure 4-(d): s will create
an extension of g in direction 7 iff s; < h; where h; is the extent to which the hyper-
plane perpendicular to ¢ can be translated forward without eliminating the knee, that is,
without taking the intersection of the d hyperplanes outside K.

(a)

(©) (d)

Fig. 4. (a) A knee g generated by s' and s2. It is the intersection of the two hyperplanes f; and
f2 (dashed lines); (b) new unsat points s> and s* which are not dominated by g and have no
influence on it; (c) new unsat points s° and s® which are dominated by g and hence eliminate
it as a knee point. Point s° generates new knees as “extensions” of g while the knees generated
by s® are not related to g; (d) point s” generates an extension of g in direction 2 and point 5%
generates an extension in direction 1. These are the directions ¢ where the coordinates of the unsat

points are strictly smaller than h; (dotted lines).

st !,71+l"1
****** o -u (g +rh)u(® +r%)
;
|
|
! 2 2
r---t----m9 tr
| | |
glg o |
I
| -
o5’
I
|
e ‘

Fig. 5. Two knees ¢g' and g2 and their respective nearest points s' and s2. Points outside the
upper dashed square will not improve the distance to g* and those outside the lower square will
not improve the distance to g°. Points outside the enclosing dotted rectangle can improve neither

of the distances.

Let S be a set of incomparable points and let {s', ..., 5%} C S be a set of d points

- . . y 1 d .
such that for every i and every j # i s! < s]. The ordered meet of s',. .., s is

[sh,..., 8% = (s1,82,...,5%). 3)

Note that this definition coincides with the usual meet operation on partially-ordered
sets, but our notation is ordered, insisting that s’ attains the minimum in dimension 4.
The knee points of S are maximal elements of the set of points thus obtained. With every
knee g € G we associate a vector h defined as b = (s',s2,...,s%) = (hq,..., ha)
with h; = m;n s] for every i, characterizing the extendability of s in direction .
VE

Proposition 1 (Knee Generation). Let S be a set of unsat points with a set of knees
G, let s be a new unsat point and let G' be the new set of knees associated with S U
{s}. Then the following holds for every g € G such that g = [s',...,5% and h =
(s',82,...,5%)

1. Knee giskeptinG'iffg £ s

2. If g € G — @, then for every i such that s; < h;, G’ contains a new knee ¢, the

i-descendant of g, defined as g’ = [s*,...,s, ..., s%, extending g in direction i.

Before describing the tree data structure we use to represent the knee points let us
make another observation concerning the potential contribution of a new sat point in
improving the minimal distance to a knee or a set of knees.

Observation 4 (Distance Relevance) Let g, g' and g° be knee points with p(g, S) =
r, p(g*, S) = rt and p(g*, S) = r? and let s be a new sat point. Then

1. The distance p(g,s) <riffs€ B~ (g+r);
2. Point s cannot improve the distance to any of {g*, g} if it is outside the cone
B~((g" +rh) U (g +1?)).

Note that for the second condition, being in that cone is necessary but not sufficient.
The sufficient condition for improving the distance of at least one of the knees is s €
B~ ((g" + r') U (g2 + r?)) as illustrated in Figure 5.

We represent G as a tree whose nodes are either leaf nodes that stand for current
knee points, or other nodes which represent points which were knees in the past and
currently have descendant knees that extend them. A node is a tuple

N =(g,[s',...,s", h, (ut, ..., pu"%), 7 b)
where g is the point, [s!, ..., s*] are its unsat generators and h is the vector of its
extension bounds. For each dimension %, u’ points to the i-descendant of N (if such
exists) and the set of all direct descendants of IV is denoted by p. For leaf nodes N.r =
p(N.g,S1) is just the distance from the knee to Sy while for a non-leaf node N.r =
maxn/en., N ’.r, the maximal distance to S; over all its descendants. Likewise N.b
for a leaf node is the maximal point such that any sar point in the interior of its back
cone improves the distance to N.g. For a non leaf node N.b = | |y, ¢y u N'.b, the join
of the bounds associated with its descendants.

4 The Algorithm

The following iterative algorithm submits queries to the solver in order to decrease the
distance between S; and G.

Algorithm 1 (Approximate Pareto Surface)
initialize
repeat
select(s)
query(s) % ask whether there is a solution with cost < s
if sat
update-sat(s)
else
update-unsat(s)
until p(G, S1) < €

The initialization procedure lets Sog = {01,...,04}, S1 = {(1,...,1)} and hence
initially G = {¢°} with ¢° = [04,...,04] = (0,...,0) and h = (0y,...,04) =
(1,...,1). The initial distance is p(G, S1) = 1. The update-sat and update-unsat pro-
cedures recompute distances according to the newly observed point by propagating s
through the knee tree. In the case of a sat point, the goal is to track the knee points
g such that p(g, s) < p(g,S1), namely points whose distance has decreased due to s.
When s is an unsat point, we have to update G (removing dominated knees, adding
new ones), compute the distance from the new knees to S; as well as the new maximal
distance. The algorithm stops when the distance is reduced beyond e. Note that since
p(G, S1) is maintained throughout the algorithm, even an impatient user who aborts
the program before termination will have an approximation guarantee for the obtained
solution.

The propagation of a new sat point s is done via a call to the recursive procedure
prop-sat(Ng, s) where N is the root of the tree.

Algorithm 2 (Prop-Sat)
proc prop-sat(N, s)

ifs<Nb % s may reduce the distance to N.g or its descendants
r:=0 % temporary distance over all descendants
b:=0 % temporary bound on relevant sat points
it N.u#0 % anon-leaf node
for everyis.t. N = N.u' #A0do % for every descendant
prop-sat(N', s)
r:= max{r, N'.r}
b:=bnN'D
else % leaf node
r:=min{N.r,p(N.g,8)} % improveif s is closer
b:=N.g+r
Nor:=r
Nb:=1b

The propagation of a new unsat point s, which is more involved, is done by invoking
the recursive procedure prop-unsat(Ng, s). The procedure returns a bit ex indicating
whether the node still exists after the update (is a knee or has descendants).

Algorithm 3 (Prop-Unsat)
proc prop-unsat(N, s)

er:=1
if Ng<s % kneeisinfluenced
ex:=0 % temporary existence bit
r:=0 % temporary distance over all descendants
b:=0 % temporary relevance bound
it N.u#0 % anon-leaf node
for everyist. NN = N.u' #A0do % for every descendant
ex’ :=prop-unsat(N', s)

ifexr' =0
N.ut:=0 % node N'is removed

else
exr:=1
r:= max{r, N'.r}
b:=bUN"'D

else % leafnode
fori=1..ddo

if s; < N.h; % knee can extend in direction i

er:=1

create a new node N' = N.ji* with
N'.g=[N.s',s,...,N.s¥]
N'.h=(N.s',... s,...,N.s"
N'.r =p(N'.g,51)
N'b=N'.g+ N'r
N'.ut = 0 for every i

r := max{r, N'.r}

b:=bUN'D
N :=r
Nb:=b
return(ex)

The prop-unsat procedure has to routinely solve the following sub problem: given
a knee point g and a set of non-dominating sat points S, find a point s € S nearest to g
and hence compute p(g, S). The distance has to be non negative so there is at least one
dimension ¢ such that g; < s;. Hence a lower bound on the distance is

p(g,S) > min{s; —g;: (i=1.d)A(s € S)AN(s; > gi)},
and an upper bound is:

p(g,8) <max{s; —g;: (i=1..d)A(s € S)}.

We now present an algorithm and a supporting data structure for computing this dis-
tance. Let (L;, <;) be the linearly-ordered set obtained by projecting S U {g} on di-
mension i. For every v € L; let ©;(v) denote all the points in S whose ' coordinate
is v. Let o%(s) be the successor of s; according to <;, that is, the smallest s} such
that s; < s}. Our goal is to find the minimal value v in some L; such that for every
s € ©;(v), s; defines the maximal distance to g, that is, s; — g; > s; — g; for every
The algorithm keeps a frontier F' = {f1,..., fa} of candidates for this role. Ini-
tially, for every i, f; = o*(g;), the value next to g; and the candidate distances are kept
in A={d1,...,0q} with §; = f; — g;. The algorithm is simple: each time we pick the
minimal ¢; € A. If for some s € ©;(f;) and for every j # ¢ we have s; — g; < s; — ¢;
then we are done and found a nearest point s with distance ;. Otherwise, if every
s € O(f;) admits some j such that s; — g; > s; — g; we conclude that the distance
should be greater than &;. We then let f; = o%(f;), update &; accordingly, take the next
minimal element of A and so on. This procedure is illustrated in Figure 6. The projected
order relations are realized using an auxiliary structure consisting of d linked lists.

Ly — & o & ————

Lo e 92 ’E Py ° .

Fig. 6. Finding the nearest neighbor of g: the first candidate for the minimal distance is v*, the
nearest projection which is on dimension 2 , but the point associated with it has a larger distance
on dimension 3; The next candidate is v2, the closest in dimension 3 but the corresponding point
also has larger coordinates. Finally, the point associated with v3, the next value on L3, has all its
distances in other dimensions smaller and hence it is the closest point which defines the distance
(dashed line).

Selecting the next query to ask is an important ingredient in any heuristic search
algorithm, including ours. We currently employ the following simple rule. Let g and s
be a knee and a sat point whose distance p(g, s) is maximal and equal to r = s; — g;
for some . The next point for which we ask a query is s’ = s 4+ r/2. If ¢’ turns out
to be a sat point, then the distance from g to S; is reduced by half. If s’ is an unsat
point then g is eliminated and is replaced by zero or more new knees, each of which is
r-closer to .S7 in one dimension. For the moment we do not know to compute an upper
bound on the worst-case number of queries needed to reach distance e except for some
hand-waving arguments based on a discretized version of the algorithm where queries

are restricted to the e-grid. Empirically, as reported below, the number of queries was
significantly smaller than the upper bound.

S Experimentation

We have implemented Algorithm 1 and tested it on numerous Pareto fronts produced as
follows. We generated artificial Pareto surfaces by properly intersecting several convex
and concave halfspaces generated randomly. Then we sampled 10, 000 points in this
surface, defined the Pareto front as the boundary of the forward cone of these points
and run our algorithm for different values of €. Figure 7 shows how the approximate
solutions and the set of queries vary with € on a 2-dimensional example. One can see
that indeed, our algorithm concentrates its efforts on the neighborhood of the front.
Table 1 shows some preliminary results obtained as follows. For every dimension d we
generate several fronts, run the algorithm with several values of €, compute the average
number of queries and compare it with the upper bound (1/¢)?. As one can see the
number of queries is only a small fraction of the upper bound. Note that in this class
of experiments we do not use a constraint solver, only an oracle for the feasibility of
points in the cost space based on the generated surface.

d|no tests € (1/¢)¥min no queries|avg no queries|max no queries
2 401(0.050 400 5 11 27
0.025 1600 6 36 111

0.001}| 1000000 21 788 2494

3 40(0.050 8000 5 124 607
0.025 64000 6 813 3811
20(0.002{|125000000 9 30554 208078

4 40(0.050 160000 5 1091 5970
0.025]| 2560000 10 11560 46906

Table 1. The average number of queries for surfaces of various dimensions and values of e.

We also have some preliminary results on the following problem which triggered
this research: given an application expressed as a task-data graph (a partially-ordered
set of tasks with task duration and inter-task communication volume) and a heteroge-
nous multi-processor architecture (a set of processors with varying speeds and energy
consumptions, and a communication topology), find a mapping of tasks to processors
and a schedule so as to optimize some performance criteria. In [6] we have used the
SMT solver Yices [2] to solve the single-criterium problem of finding the cheapest (in
terms of energy) configuration on which such a task graph can be scheduled while meet-
ing a given deadline. We applied our algorithm to solve a multi-criteria version of the
problem, namely to show trade offs between energy cost and execution time. We were
able to find 0.05-approximations of the Pareto front for problem with up to 30 tasks on
an architecture with 8 processors of 3 different speeds and costs. The behavior of our al-
gorithm is illustrated in Figure 8 where both execution time and energy are normalized

1 T T T T T T T
x pareto
* xR nsat X
09 09 b x unsat
08 o8|
x x
07t 07|
06 06|
o5 os|
04l o4l
03t o3|
02 02|
x x
01 o1
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1
1 1
parcto X parcio
“ x st o L\ st o
ool X unsal x sl X wnsat x
x x
o8 o8|
x x
07 07|
06 o6
os | os|
04t 04
03t 03l
02 02|
x
01 . . 01
02 03 04 02 03 04 05 06 07 08 09 1

Fig. 7. The results of our algorithm for the same front for e = 0.05,0.125,0.001, 0.0005.

6.63 sat * 0.63 Tpprowination ¥
unsat X
x % approxination ¥
0.6 « 0.6
X xX *
0.5 ox 0.55 x
X x
x
o5 X xx + 0.5
x
X X «
6,45 x % 0,45
x T *
0.4 + 0.1
* *
X
% ®
6.3 X + 0.35
%
o, *
0.3 x 6.3
x +
= *
X RR KX KKK KKK KKK KKK KKK KKK KK KKK KK
0.5 KK R K R K K KKK KX 0.5
x x x x
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Fig. 8. Scheduling a task-data graph of 20 tasks on an architecture with 8 processors with 3
different levels of speed/consumption: (a) the queries asked; (b) the final front approximation
(makespan is horizontal and energy cost is vertical).

to [0, 1]. For reasons discussed in the sequel, it is premature to report the computational
cost of the algorithm on these examples.

6 Conclusions

We have presented a novel approach for approximating the Pareto front. The difficulty
of the problem decomposes into two parts which can, at least to some extent, be de-
coupled. The first is related to the hardness of the underlying constraint satisfaction
problem, which can be as easy as linear programming or as hard as combinatorial or
nonlinear optimization. The second part is less domain specific: approximate the bound-
ary between two mutually-exclusive subsets of the cost space which are not known a
priori, based on adaptive sampling of these sets, using the constraint solver as an ora-
cle. We have proposed an algorithm, based on a careful study of the geometry of the
cost space, which unlike some other approaches, provides objective guarantees for the
quality of the solutions in terms of a bound on the approximation error. Our algorithm
has been shown to behave well on numerous examples.

The knee tree data structure represents effectively the state of the algorithm and
reduces significantly the number of distance calculations per query. We speculate that
this structure and further geometrical insights can be useful as well to other approaches
for solving this problem. We have investigated additional efficiency enhancing tricks,
most notably, lazy updates of the knee tree: if it can be deduced that a knee g does not
maximize the distance p(Sp, S1), then its distance to it p(g, S1) need not be updated in
every step. Many other such improvement are on our agenda.

In the future we intend to investigate specializations and adaptations of our general
methodology to different classes of problems. For example, in convex linear problems
the Pareto front resides on the surface of the feasible set and its approximation may
benefit from convexity and admit some symbolic representation via inequalities. More
urgently, for hard combinatorial and mixed problems, such as mapping and scheduling,
where computation time grows drastically as one approaches the Pareto front, we have
to cope with computations that practically do not terminate. We are developing a variant
of our algorithm with a limited time budget per query where in addition to sat and
unsat, the solver may respond with a time-out. Such an algorithm will produce an e-
approximation of the best approximation obtainable with that time budget per query.
Adding this feature will increase the size of mapping and scheduling problems that
can be robustly handled by our algorithm. To conclude, we believe that the enormous
progress made during the last decade in SAT and SMT solvers will have a strong impact
on the optimization domain [7] and we hope that this work can be seen as an important
step in this direction.

References

1. K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, 2001.

2. B. Dutertre and L.M. de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV, pages
81-94, 2006.

3. M. Ehrgott. Multicriteria optimization. Springer Verlag, 2005.

11.

12.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective com-
binatorial optimization. OR Spectrum, 22(4):425-460, 2000.

. J. Figueira, S. Greco, and M. Ehrgott. Multiple criteria decision analysis: state of the art

surveys. Springer Verlag, 2005.

. J. Legriel and O. Maler. Meeting deadlines cheaply. Technical Report 2010-1, VERIMAG,

January 2010.

. R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization Problems. In

A. Biere and C. P. Gomes, editors, 9th International Conference on Theory and Applications
of Satisfiability Testing, SAT’06, volume 4121 of Lecture Notes in Computer Science, pages
156-169. Springer, 2006.

. C.H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal

access of web sources. In FOCS, pages 86-92, 2000.
V. Pareto. Manuel d’économie politique. Bull. Amer. Math. Soc., 18:462-474, 1912.

. R.E. Steuer. Multiple criteria optimization: Theory, computation, and application. John

Wiley & Sons, 1986.

E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. [EEE transactions on Evolutionary Computation,
3(4):257-271, 1999.

E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Performance as-
sessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evo-
lutionary Computation, 7(2):117-132, 2003.

