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Abstract

In this paper we describe reachability computation for continuous and hy-
brid systems and its potential contribution to the process of building and
debugging biological models. We summarize the state-of-the-art for linear
systems and then develop a novel algorithm for computing reachable states
for nonlinear systems. We report experimental results obtained using a pro-
totype implementation applied to several biological models. We believe these
results constitute a promising contribution to the analysis of complex models
of biological systems.

Keywords:

1. Introduction

The development of modeling formalisms and analysis techniques for the
study of biological systems is a central topic in systems biology. The for-
malisms proposed for representing biological processes are very diverse, dif-
fering at the levels of abstraction, time scales and types of dynamics. The
formalism chosen depends naturally on the level of detail needed to answer
the specific biological question and on the granularity of available experi-
ments. The contribution of this work is at the level of abstraction of ordinary
differential equations (ODEs), a widely used modeling formalism. Biological
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systems, for instance metabolic networks consisting of sets of reactions, can
be viewed as continuous dynamical systems with state variables denoting
concentrations. The resulting differential equations are derived, for exam-
ple, from mass action rules or enzyme kinetics and are, more often than not,
nonlinear. Such equations can be numerically simulated from a given initial
condition provided that the exact values of the parameters and the external
environmental conditions are known. In certain restricted cases it is possible
to determine global properties analytically.

Though widely used, ODEs suffer from several limitations. First, the
passage from a finite number of molecules to real-valued concentration is
not always justified, especially when the number of molecules is small [22].
Secondly, many biological phenomena, for example gene activation, are more
naturally modeled as transitions between discrete states. Pure ODEs can-
not easily accommodate this mixture of continuous evolutions and discrete
events. Alternatively, purely discrete formalisms, based on transition sys-
tems expressed in various syntactic forms, suffer from a similar reciprocal
limitation in the sense of not being amenable to quantitative reasoning.

Second, the lack of quantitative information concerning molecular concen-
trations, reaction rates and other parameters is the rule, not the exception,
in Biology. Consequently the utility of predictions obtained using numerical
ODEs models, where the values of the parameters are “guessed” or “tuned”,
is severely limited. Moreover, the validation of models based on ODEs with
poorly-known parameters is difficult if not impossible because we are never
sure to have covered all the qualitative behaviors compatible with a model by
performing only a finite number of simulations, each with a different choice
of parameters. This fact limits the applicability of such models for testing
biological hypotheses.

To deal with this problem, qualitative approaches, notably based on qual-
itative versions of differential equations, have been proposed for represent-
ing genetic regulatory networks, molecular interaction networks or metabolic
pathways [17, 44]. In these models only the direction of influence between
variables is encoded (e.g. activation vs. inhibition) and much of the quan-
titative information is absent. As a consequence of such under-constrained
descriptions, purely-qualitative approaches often lead to overly-conservative
results in the sense of admitting many spurious behaviors. We propose a
technique that can be used to analyze in a systematic manner quantitative
models admitting this kind of uncertainty whose nature is set-theoretic rather
than stochastic.



The analysis techniques that we use and extend originate from the study
of hybrid dynamical systems, a domain situated in the intersection of control
theory and computer science and are based on reachability analysis of hybrid
automata. As their name suggests, hybrid automata are the result of marry-
ing automata with differential equations. Each discrete state (mode) of the
automaton is associated with one set of differential equations according to
which the continuous variables evolve while being in that mode. When the
variables satisfy certain conditions (transition guards) the automaton may
switch to another mode where another set of equations will govern the evolu-
tion of the continuous variables. While hybrid automata allow us to express
piecewise-continuous processes and can underlie numerical simulation, much
of the analytic reasoning available for purely-continuous systems (especially
for linear ones) is lost due to switching. In the last couple of years new tech-
niques have been developed for the algorithmic analysis of hybrid systems,
which open as well new opportunities for the analysis of purely-continuous
systems subject to uncertainties. These techniques combine ideas from con-
trol theory, numerical analysis, graph algorithms and computational geome-
try in order to export algorithmic verification, also known as model checking,
to the continuous and hybrid domains.

The principles of algorithmic verification can be summarized as follows.
The system in question is modeled as an automaton whose transitions are
labeled by input events. These inputs represent interactions of the automa-
ton with its external environment (users, other systems). Each sequence of
input events induces one behavior of the automaton, a trajectory over its
state space. Simulation is the process of stimulating the automaton progres-
sively with one input sequence and observing the behavior that this sequence
induces starting from a given initial state. The problem is that the number
of such sequences is prohibitively large. Verification is based, instead, on
computing with sets of states: starting from an initial set of states Py, one
computes all the one-step successors of Py (under all possible inputs) to ob-
tain the set P;, to which the same procedure is applied until all the states
reachable from Py under any admissible input are computed.! Showing, for
example, that some “bad” set of states is never reached (a “safety” property)
amounts to checking whether the reachable set thus computed intersects the

'More precisely, the computation is guaranteed to converge for finite-state systems. In
continuous domains we are currently satisfied with a bounded time horizon [38].



bad set. This computation replaces an infinite (or just huge) number of sim-
ulations. More complex properties that specify some temporal patterns of
events can be specified and verified as well using similar methods.

The adaptation of this idea to continuous systems works as follows. Con-
sider a differential equation of the form @ = f(z,v) where x is a vector of
state variables and v represents external disturbances and parameter uncer-
tainties which are not known exactly but are always taken from a bounded
convex set V. Given a subset P, of the state space (in a form of, say, a
polytope) and a time step 7, one can compute another polytope P;, which
contains all the points reachable from P, within the time interval [0, 7] under
any admissible value of v during that interval. Repeating this process we
can obtain an over-approximation of all the reachable states for any desired
time horizon. To give a concrete example, one can compute all the possi-
ble evolutions of a reaction under all possible concentrations of a signalling
molecule which are typically not precisely known, but which remain in a
known interval. The principal contribution of this paper is in developing a
new technique for conducting this type of analysis for nonlinear systems and
in demonstrating its applicability on several biological models.

The rest of the paper is organized as follows. In Section 2 we give a brief
introduction to the state-of-the-art in reachability computation for linear
systems and explain why it cannot be applied in a straightforward manner
to nonlinear systems. We then describe the hybridization approach [5] for
handling nonlinear systems. Hybridization is based on over-approximating a
nonlinear system by a piecewise-affine system, a restricted type of a hybrid
automaton without discontinuous jumps. Although, in principle, hybridiza-
tion provides for the application of linear techniques to nonlinear systems,
it suffers from inherent limitations that restrict its applicability to very low-
dimensional systems. Section 3 describes our major contribution, a new
dynamic hybridization scheme in which linearization is not based on a fixed
partition of the state space and thus avoids much of the associated state ex-
plosion. For this algorithm we provide in Section 4 compelling experimental
results, analyzing complex nonlinear systems of 6, 9 and 10 variables taken
from systems biology. We conclude with a discussion of future work. Al-
though we have tried to maintain the paper as self contained as possible,
some readers might want to consult books like [47, 43, 30, 42] for some no-
tions of geometry, linear algebra and dynamical systems or expository articles
such as [38, 39] which discuss similarities and differences between transition
systems and continuous dynamical systems.



2. Reachability: Linear and Nonlinear Systems

Computing the states reachable by all trajectories of a dynamical system
subject to disturbances and parameter variations emerged as a new research
topic from the interaction between computer science and control. Reach-
ability computation can be seen as a peculiar way to conduct exhaustive
simulation which can be useful for the analysis of control systems, the verifi-
cation of analog circuits, the debugging of biological models and, in fact, any
other activity based on dynamical systems models. After a decade of inten-
sive research, [2, 25, 11, 15, 26, 6, 33, 41, 10, 4, 12, 34] it is fair to say that
a satisfactory solution has been provided for time-invariant linear systems.
Existing algorithms manage to produce, within seconds, high-quality ap-
proximations of the reachable states of linear systems with hundreds of state
variables, for time horizons of thousands of integration steps [35, 24, 37, 36].
Notwithstanding these achievements, the real challenge in almost any appli-
cation domain, Biology included, is the treatment of nonlinear systems, a
challenge that we address in the present paper.

Let us recall the rules of the game. Given a dynamical system S defined
by a differential equation & = f(x,v) with v ranging over some bounded
set V', a set P of initial states and some time horizon h, we would like to
compute the set of states reachable from points in P by trajectories of S
within some ¢ € [0, h]. Fixing some time discretization step r, the reachable
set is approximated by the union of the sets in a sequence Fy, Py, ... where F,
contains all states reachable from P within ¢ € [0,r]| and each P;;; includes
states reachable from P; within r time. Actual computations often work first
in discrete time where P;.; is reachable from P; in one time step and then
some error terms are added to bloat P;;; and compensate with respect to
continuous time.

Reachability computation of linear systems is relatively easy. Consider
first a discrete-time autonomous linear system defined by z;.; = Ax; and a
set P which admits a finite representation, for example, a polytope repre-
sented by its vertices or supporting halfspaces, an ellipsoid represented by
its center and deformation matrix or a zonotope represented by its center
and generators. Then the linear transformation “commutes” with the set

representation. For example, if P = conv(P), meaning a polytope P being

the convex hull of its finite set of vertices P, then

AP = A conv(P) = conv(AP), (1)



that is, the vertices of the polytope obtained by applying A to the whole set
P are the result of applying A to the vertices of P.

The extension of this idea to systems with under-specified input, that is,
i1 = Ax;+v; where v; ranges over a bounded convex set V| is more involved.
The set of one-step successors of a set P under such a dynamics is captured
by the Minkowski sum P’ = AP & V', which yields a polytope P’ with more
vertices than P. This repeated growth in the size of the representation of P;
makes it impractical to iterate for a long time horizon because the number
of points on which A has to be evaluated becomes huge. Two approaches are
commonly used to alleviate this problem:

1. For ellipsoids as well as polytopes represented by their supporting
halfspaces, optimization techniques can be used to obtain an over-
approximation of AP @V whose representation size is not much larger
than that of P [45, 13]. For dense time, these techniques are based on
the maximum principle;

2. The modified recurrence scheme of [35, 36] keeps the number of points
to which the linear transformation is applied fixed. Its implementation
using zonotopes [23, 24], a subclass of polytopes which are closed under
Minkowski sum, provides a very efficient solution which is, practically,
exact for discrete time. The same goes for its implementation using
support functions [37].

The technique that we present in this paper is invariant under the choice
among these two approaches so we express it in terms of an abstract successor
operator ¢ which, given a set P, an affine differential inclusion (see below)
of the form & € Az @V and a time step r, it produces the set o(P, A, V,r)
containing all points reachable after exactly r time from points in P by
trajectories of the affine dynamics. The generic linear reachability algorithm
can then be written as:

Algorithm 1 (Linear Reachability).
PD = R[O,r]<P)
repeat 1 =1,2,...
P i=o(Pi-1, A V,r)
until i =k

The set R[O,r](P>7 the over-approximation of the states reachable from P
within the time interval [0, r], can be computed, for example, by bloating the
convex hull of PU (P, A, V,r) as in [6], [5] or [36].
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Moving to nonlinear systems of the form z;; = f(z;) for arbitrary f
one observes that “convexity” properties such as (1) do not hold and new
ideas are needed. In principle, it is possible to evaluate f on some represen-
tative finite sample P C P and then use the resulting points to construct a
set which over-approximates f(P). However, the approximation can be very
coarse and will require a costly optimization procedure to be refined, some-
thing that cannot be afforded as part of the inner loop of the reachability
algorithm. The “hybridization” technique of [5], first proposed in the context
of simulation [18], suggests a good tunable compromise between the quality
of the approximation, the difficulty of the computation and the frequency in
which it is invoked. Before explaining the idea, let us give some necessary
definitions.

We consider a state space X, a bounded subset of R" equipped with a
metric p. Given two bounded closed subsets Y and Y’ of X, the Hausdorff
distance between them (the lifting of p to sets) is

YY) = i / i N,
p(Y,Y') max{?gy,ﬂggp(y,y),;peaigsrz}lelgp(%y)}

The trajectories of a dynamical system are viewed as signals over X.

Definition 1 (Signals). A signal over X is a partial continuous function §
from T =[0,00) to X whose domain of definition is T or a prefix [0, 7] of it.
In the latter case we say that & is finite with duration r. The concatenation
of a finite signal & defined over [0,r] and a signal £ satisfying £'(0) = &(r) is
defined in the obvious way and is denoted by & - &'.

The continuous equivalent of a non-deterministic automaton is the relational
vector field, also known as differential inclusion [7].

Definition 2 (Relational Vector Fields). A relational vector field over
X is a function f : X — 2% — {0} which is assumed to be K-Lipschitz,
satisfying

p({z},{z'}) <a = p(f(z), f(z') < Ka.

When f is a (deterministic) function we write f(z) = y rather than f(x) =

{y}

Definition 3 (Dynamical Systems, Trajectories, Reachable Sets). A
(continuous) dynamical system is a pair S = (X, f) where X is a state space



&€ Ap-x® Vo T€An - r®Vn

T > dy
79 !
| 01 1 < dy 11
I
d Xoi | Xy
e e o Ty > dy Ty < dy Ty Sdy| T2 > dy
I
|
I
Xoo  X1o o 7 < dy
dy 00 s d 10
&€ Ay ® Vo T € A-xd Vi

Figure 1: Hybridization: a nonlinear system is over-approximated by a hybrid automaton
with an affine dynamics in each state. The transition guards indicate the conditions for
switching between neighboring linearizations.

and f is a vector field. A trajectory of S starting from x is a signal & over
X with £(0) = x and for every t in the domain of definition of £, {(t) € X
and d&(t)/dt € f(&(t)). The set of all trajectories of S starting from any
x € P is denoted by L(S, P). The sets of states reachable from P within a
time interval [h, h'] is

R (P) = {&(t) : § € L(S, P) At € [h, W]}

Hybridization takes a nonlinear system S = (X, f) and produces another
dynamical system S = (X, f ) which over-approximates S, that is, £(S, P) C
C(g , P) for every P, and then computes the reachable states of S. A formal
definition of S as a hybrid automaton can be found in [5]. Since our algorithm
does not use hybrid automata explicitly we only give an informal explanation,
see also Figure 1.

Consider a partition of X into hyper rectangles (we use the term box
hereafter). For each box X, one can compute a linear function A, and an
error polytope V, such that for every x € X, f(x) € A,x & V,. In other
words, A, is a local linearization of f with maximal error over X, bounded
in V,. Thus the vector field f is defined as f(z) € Az @V, iff z € X,. To
perform reachability computation on S one applies linear reachability using
A, and V, as long as the reachable states remain within box X,. Whenever
some F; crosses the boundary between X, and X, it is intersected with
the switching surface (the transition guard, in the terminology of hybrid
automata) and the obtained result is used as an initial set for reachability
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computation in ¢ using A, and Vj, as illustrated in Figure 2-(a,b). The
main advantage of hybridization is that the costly procedure of finding a
good linear approximation and computing the error bounds is not invoked
in every step, only in the passage between boxes. This clean and general
approximation scheme suffers however from some serious difficulties on the
way to realization:

e Although the intersection of the actual set of reachable states inside
a box with a facet may be a simple, sometimes even convex, set, its
computation can be inefficient and inaccurate. To see why, consider a
subsequence of sets Pj, ..., P, computed using some linear technique,
each intersecting the boundary G as illustrated in Figure 3-(a). In
this case we have two possibilities: we can spawn several computations
with the dynamics of the subsequent box, each starting with some
P, NG (Figure 3-(b)), but this may create a combinatorial explosion.
Alternatively we can over-approximate | J, P, NG by a convex set, an
operation that may lead to a large over-approximation error (Figure 3-

(c))-

e The size of the partition of the state space is, of course, exponential in
the dimension, hence care should be taken in order to avoid state explo-
sion. As suggested in [5], the partition can be generated on-the-fly as
the reachability computation evolves, rather than being precomputed
for the whole state space in advance. However, even on-the-fly gen-
eration cannot cope with the fact that in high dimension, a tube of
reachable states will typically leave a box via many facets, as illus-
trated in Figure 4-(a). Since each of these parts of the reachable set
goes to a different box, they have to be handled separately (Figure 4-
(b)) even though they continue to evolve close to each other.? Merging
these sets when they converge to the same box is a tedious process and
a source of further approximation errors. This problem is particularly
severe because making the boxes smaller is the recommended recipe for
improving accuracy.

As a result of these problems, no application of hybridization-based reacha-
bility to systems with more than 3 dimensions has been reported.

2A similar phenomenon has been encountered in the analysis of timed automata [9].

10



Ay Ay

(a) (b)

Figure 2: Computing reachable states of the hybridization: (a) applying linear reachability
using A; until intersection with the boundary; (b) taking the intersection as an initial set
for linear reachability using As.

(a) (b) (©)

Figure 3: (a) the intersection with the boundary spans over several iterations; (b) contin-
uing with each intersection separately; (c) continuing with an approximation of the union
of intersections.

3. Dynamic Hybridization

In this section we describe our novel nonlinear reachability algorithm
which, unlike the scheme of [5], is not based on a fixed partitioning of the
state space but rather generates overlapping linearization domains around the
reachable states. An important ingredient of any hybridization methodology
is the linearization procedure that we first define formally.

Definition 4 (Linearization in a Domain). A linearization operator is a
function L which, for a given nonlinear function f and a convez set B (lin-
earization domain), produces a matriz A, a vector b and a convex polytope
V' such that for every x € B, f(z) € Az +bd V.

We use the notation L(f,B) = (A,b,V). In the sequel we describe our
method using boxes as linearization domains but other forms are possible.
In addition to the linearization operator L and the linear successor operator
o we assume a procedure 3 which takes as input a set P and produces a

11
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Figure 4: (a) the reachable set leaves a box through several boundaries; (b) the computa-
tion is continued separately for each intersection although the computed sets remain close
to each other and even go later to the same box.

linearization domain B = (3(P) which contains P. The form of B, the relation
between its size and the size of P as well as the position of P inside B are
important implementation details that may vary according to the system in
question and the desired accuracy. We first present in general terms the
algorithm for approximating the reachable states, prove its correctness and
then discuss a first implementation of L and (.

Algorithm 2 (Dynamic Hybridization).
Input: A nonlinear dynamical system S = (X, f) and an initial set P
Output: A sequence of sets Py, Py, ... P, whose union contains Rjgp(P)

B:=p(P)
(A,b,V) = L(f,B)
Py = Ry, (P)
1:=0
repeat
Py = U(Piv A, {b} eV, T‘)
it W CB
=1+ 1
else
B:= (P,
(A, b, V) :=L(f,B)
until i = k

The algorithm performs linear reachability in a linearization domain B as
long as the computed sets remain inside B. Once a newly-computed set P,
is not fully contained in B we backtrack to P; and construct a new domain

12



P :

Py Py

" a7
S N
Y [N

{ RN

|
|

(a) )

Figure 5: Dynamic hybridization: (a) Computing in some box until intersection with the
boundary; (b) Backtracking one step and computing in a new box.

B’ around P; along with its corresponding linearization which is used for
subsequent computations starting from P;, as illustrated in Figure 5. The
advantage of this approach is obvious: the linearization mesh is constructed
along the reachable set and thus we avoid artificial splitting of sets due to
the structure of the mesh. Needless to say, the intersection operation is
altogether avoided.

Theorem 1 (Correctness of Algorithm 2). Let Py, P, ... be a sequence
of sets produced by Algorithm 2. Then for every k < k', we have

k_/
Ry (P) € | P
i=k

Proof: The proof is by induction on the number of switchings between
linearization domains that the algorithm makes. The base case where no
switching occurs follows from the correctness of the linear reachability algo-
rithm and the fact that the linearized system over-approximates f. For the
inductive case, assume the claim holds for s switchings and consider a run
of the algorithm with s + 1 switchings, the last of which occurring after P;,
k < j < K. By the inductive hypothesis R[; ;,1(P) € P; and since P; serves
as the initial set for subsequent iterations inside a single linearization do-
main, the base case applies and Pj iy, ..., Py includes Ry(t1)r k) (P) which,
together with Py, ... P;, include the states reachable within [kr, k'r|. O

Algorithm 2 is implemented in C and uses the polytope-based algorithms
of d/dt [13]. Below we explain the novel technical aspects, namely the dy-
namic construction of the linearization domain and its respective lineariza-
tion.
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The difference between the function f and its linear approximation rel-
ative to a domain B is Ag(f, A,0) = {f(x) — (Az +0b) : x € B}. To
obtain a conservative approximation it is sufficient to find some V such
that Ag(f, A,b) C V but in order to obtain high-quality approximations,
we need to choose B, A and b that minimize ||Ag(f, A,b)|| = max{||z|| :
x € Ap(f,A,b)} which represents the error incurred by the linear over-
approximation. Clearly the smaller is B, the smaller is the error but then
the linearization procedure has to be invoked more frequently. The prob-
lem of finding good B and A can be formulated, in principle, as some sort
of a constrained optimization problem but this computation can be very
costly and we use instead the following easy-to-compute heuristic which turns
out to work in practice despite not being optimal. The first simplification
that we do with respect to an optimized solution is to decouple the choice
of the new domain B = [(P) from the computation of the linearization
(A, b, V) = L(B, f).

The operator [F(P) which produces a box containing P is realized as
follows. Based on f = (fi,...,fn), X and the desired accuracy we fix a
standard rectangular frame B of size dy X - - - X d,,. Given a polytope P we let
B(P) be a copy of B whose center coincides the centroid ¢(P), defined as the
average of the vertices of P. Once B is fixed we compute A, b and V. The
matrix A is obtained by evaluating (numerically) the Jacobian matrix of f
at the center y = ¢(B) of B. In other words, A = %(y) where A;; = g:{]
Then b = f(y) — Ay and abox V =V} x V5 x ... x V,,, guaranteed to contain
Ap(f, A,b), is computed as follows. For each dimension i we let V; be the
interval [l;, u;] where [; = min{m;(Ag(f, A))} and u; = max{m;(Ap(f, A,b))}
with m; denoting projection on ¢. These intervals are over-approximated
based on the Taylor expansion of f(z) — (Ax + b).

The quality of the approximation is measured by the distance between
the trajectories (and hence the reachable sets) of the original and approxi-
mating system. Since the linearization procedure is subject to ongoing im-
provements [16] we will not provide detailed error analysis in this paper, but
summarize the main results of [5] concerning static hybridization which hold
also in the dynamic case. Bounds on the distance between trajectories can
be derived from bounds on the distance between the vector fields, that is,
p = max{||Ag(f, A,b)||} over all B. This bound converges to zero as the
size of B gets smaller. The following theorem from [5] shows that the dis-
tance between original and approximate trajectories converges to zero with

14



the same rate as p.

Theorem 2. Let S = (X, f) be a dynamical system with f being K -Lipschitz
on X and let S = (){7 f) be an approximate systems produced by hybridization
such that Vx € X ||f(x) — f(z)|| < p. Then, the distance between a trajectory

€ of S and a trajectory & of S such that £(0) = £(0) satisfies:

Ve 2 0, [[6() — €@l < £ 1), (2)

Finally let us mention a problematic situation which occurs when the
reachable set P gets too large and cannot fit (either immediately or after
few steps) within the frame B. To prevent Algorithm 2 from getting stuck
in the else branch, we split P into two or more sets which are then treated
separately. In principle, this splitting may lead to state explosion but, in
this case, the explosion is due to intrinsic properties of the set of reachable
states and not due to an arbitrary choice of the coordinate system underlying
the mesh. This phenomenon will not occur too often while analyzing stable

systems having a contracting dynamics.

Figure 6: A set P and its bounding box B(P). The set is too large and is split in the
vertical dimension into P; and P,, around which the respective linearization domains By
and By are constructed.

By

By

To handle the splitting we first compute a tight bounding box B(P)
around P. This computation is performed by projecting the vertices on each
of the dimensions and taking the minimum and maximum. Let us denote by
e1 X -+ X e, the size of the obtained bounding box. If for every i, me; < d;,
where m > 1 is a fixed constant, then P is sufficiently small and no splitting
takes place. Otherwise we take the direction ¢ which maximizes the ratio
e;/d; and split P into two parts along this direction by intersecting it with
complementary halfspaces orthogonal to direction i (see Figure 6). We repeat

15



the process until the obtained sets are sufficiently small. We thus end up with

one or more polytopes around each of which we put a properly-centered copy
of B.

4. Experimental Results

To test the feasibility of our algorithm we applied it to several nonlinear
systems whose parameters and qualitative behaviors are documented in the
literature. We mention computation times of the analysis just to illustrate
feasibility. Due to the novelty of the technique it would be premature to
make a systematic performance study.

4.1. Lac Operon

The Lac Operon is a biochemical feedback mechanism through which the
bacterium F. Coli adapts to the lack of Glucose in its environment by switch-
ing to a Lactose diet. We use the model appearing in [32] where the behavior
of the system is described by the system of differential equations of Table 4.1
where the variables denote the concentrations of different reactants, such as
R, (active repressor) Oy (free operator), E (enzyme), M (mRNA), I; (inter-
nal inducer), and G (glucose). We studied the behavior of this system around
a quasi-steady state for the first 4 variables and the obtained results are con-
sistent with the simulation results obtained on a simplified 2-dimensional
model shown in [32], page 285. As a set of initial states we take a small box
where I; € [1.9,2] and G € [25.9,26]. When k_; = 2 the system exhibits
a stable focus and when k_; = 0.008 the system exhibits a limit cycle (see
Figure 7). Computation times where 3 and 5 minutes, respectively.

4.2. An Aging Model

Next we study a highly nonlinear model coming from the michotondrial
theory of aging that we describe below, based on [32]. Mitochondria not
only generate the majority of the cellular ATP but also produce reactive
oxygen species (ROS). The latter damage proteins, membranes and the mi-
tochondrial DNA (mtDNA). The theory is based on the fact that damage
to the mtDNA impairs the genes responsible for ATP production but not
those involved in the reproduction of mitochondria. Therefore ROS-induced
damage to the mitochondria could turn a symbiont into a parasite, lead-
ing to a progressive decline in the cellular energy supply. Experiments have
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% = T — (k_l + k_g)Ra - kgRaOf + k_Q(X - Of) - kgRa]iZ + kgRiGQ
G = —hraOp +kos(x = Oy)
% = Vk40f - k7E
% = Vk'40f — kﬁM
% = —2ksR,I? + 2k 3F) + ksI,M — k_s;M — kyILE
% = —2kgR;G* + 2k _gR, + ko, E
Table 1: The dynamics of E. Coli Lactose response system.
30
28
N G
20
0 1_i 8
2
1 1_i 10

Figure 7: Lac operon: (a) a stable focus, k_; = 2.0; (b) a limit cycle, k_; = 0.008.
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shown that in aging post-mitotic cells there is a clonal accumulation of defec-
tive mitochondria with time. To understand the mechanism of accumulating
energy-starved mutant mitochondria, a possible approach is based on the fact
that mitochondria have a certain turnover rate. It has been suggested that
damaged mitochondria accumulate because they have the slowest degrada-
tion rate. This hypothesis is called “survival of the slowest” (SOS) and we
model it as a system of 9 differential equations (Table 4.2) taken from [32],
page 252.

The mitochondrial population is divided into two major classes: intact
mitochondria with no damage to their DNA and defective organelles with
mtDNA damage. Their numbers are modeled by the variables M,;; and
Mpyr;. Both major classes are then divided into three additional groups
based on the level of membrane damage: minimal (M and Mpyq ), medium,
(Mo and Mpy2) and large (M3 and Mpyys). Variables Rady and Radpyy
stand for the radical concentrations in intact and damaged mitochondria.
Radical Rad,; can interact with the membranes of intact mitochondria with
a rate kj; and cause them to move to a higher membrane damage class. It
can also damage the mitochondrial DNA with a rate kp and convert intact
mitochondria into defective ones. Concerning mitochondria with DNA dam-
age, reactions with the radicals Radpy, can only increase membrane damage.
It can be shown that the radical levels Rady, and Radpy; are related by a
factor called RDF (radical difference factor). That is why the model includes
only one equation describing the evolution of RAD,;. The model also con-
tains a generic antioxidant species (AO,) that destroys radicals, otherwise
their number would increase beyond limits.

Starting from a rectangular initial set where My, My;o and M3 are
in [500,502], MDMl MDMQ, and MDMg are in [100, 102], AOw € [200, 202],
Rady; € [500,502] and ATP € [19,21], we run our algorithm with time
step 0.00001. Figure 8 shows the reachable set after 300 steps projected
on 3 variables, namely, the concentration of antioxidants (AQ,), of radicals
which suffer damages (RAdy), and of ATP. After 1000 steps we observe
convergence towards a steady state. The computation time for 1000 iterations
was 23.3 minutes.

4.3. Angiogenesis

Our third example is the bio-chemical network adapted from [46]. This
is a system of 10 differential equations which models the loosening of the
extra-cellular matrix, a crucial process in angiogenesis, the sprouting of new
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dMpry
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dMpr2 _
dt -
dMpyrs _
dt -
dMpay1
dt GDF
dMppy2
dt GDF
dMpms
dt GDF
dAOz  _ ATP
dat = (ATP+ATPo) 1+B —06- A0z
dRadys _ k3-(AOx-Radpr)
dt = kr
dATP _
dt -
where
S — ATP
B =

PAOI/(RCLdM . (MMl + My + MM;),) + RDF - Radyy - (]VfDMl + Mpuo + ZWDMB))

0.01 0.05 0.1 0.693 0.2 5.0 0.003 0.003 100.0
ko ks keny  kepp kec kg karp ATF, PAO,
100.0 7000.0 400.0 0.0008 1000000 900.0 1200.0 100.0 1.0

Table 2: The aging model and its parameters.
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Figure 8: Results obtained for the aging model.

blood vessels as a reaction to signals that indicate need for additional oxygen
in certain tissues. Interfering with angiogenesis is considered a promising
direction for fighting cancer tumors by cutting their blood supply. The model
in [46] focuses on the degradation of collagen C; by two enzymes MT; and
M. The latter has to be activated from its passive form MZ obtained by a
chain of reactions involving another protein T, which also plays the role of an
inhibitor for MT}, which leads to an overall complex system of interactions.

In [46], the authors considered a closed system with finite initial con-
centrations where all variables eventually converge to an equilibrium. Our
experiments were based on a model (see Table 4.3) augmented with con-
stant productions and self-degradation terms for key species (P, and d,,
parameters in the equations). We have computed reachable sets to verify
that the system still converges toward some equilibrium from a set of initial
concentrations.

We have analyzed this system using dynamic hybridization enhanced with
some optimization in the choice of linearization domains as described in [16].
Essentially, each linearization domain is a simplex whose dimensions and ori-
entation are selected to optimize the error and keep the reachable set inside
the domain for a longer period, based on curvature characteristics of the
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Variable Associated protein

MTy Membrane Type 1 Matrix MetalloProteinase (MT1MMP)
Ty Tissue Inhibitor of MetalloProteinases 2 (TIMP2)
MNT, The MTIMMP/TIMP2 complex
M, Matrix MetalloProteinase 2 (MMP2)
MY The proenzyme of MMP2
MTTyMYf | The MT1IMMP/T2/M2P complex
MyTs The MMP2/TIMP2 complex
M,Ty A stable isoform of the MMP2/TIMP2 complex
Ch Type 1 collagene
M,C, The MMP2/Collagene I complex
oy Collagene I degraded by MT1MMP
Cc1) Collagene I degraded by MMP2
n = Pun — kSLg MTy - MTy — k32 MTy - Ty + k2R 2 M T T
dty = k™2 MT, - MTYT,ME — k220, - Ty + kB2 M, Ty — k2 M, -
+km2 MOy 4 kB2 MLCy — Do Mo
dT:
- — Py — km220, - Ty + kW22 M, Ty — kB2 MT - Ty + kmU2Em U2 Ty Ty — D,y Ty
d]VI;;sz — k(1;1nt1t2j\/[T1 . T2 _ k(’ﬂf“?ki’m”?]\/lTng _ kclﬂlt]mep]valTZ]\/[é} + kgglt?me]\/[TlTQAf;
MM il VT Ty . MY — RS20 ATy Ty MY — k2 MT, - MTyT, MY
d]\;I?P — Pme _ kg;ltthmZPMTng . A45 + ]fg;fﬂmnﬂpﬁleTgﬂfg
ULty = ERP2M, - Ty — KNP MoTy — KZ22 My Ty + kit Mo Ty
ATy = K220, Ty — kP22 N TS — Dyoror Mo Ty
& = Pa— K32 My Gy + K MyCy — S5 MTy - Cy
ey = ERXIM, - O — kB My Cy — kB3t My Chy
MT mtlcl
2y — :E%Mﬂ el
My
e e
keg 4 kmtltZ kmtth kmt1t2m2p ki[§1t21[12p km% @ km2t2 kn%thZ km2t2 km2t2 kacl
shet on 1 on O "acte on "o 150 miso on
2100 4500 1970 2900000  1le-10 1.6e-9 8e-10 5e-10  0.01 0.01 0.01
kgg61 kg;%(:l k:-gttlcl kglltl(ﬂ Pmtl PtQ Pm?p Pcl Dn12t2* Dm2 Dt2
2800 3540000 4.9e9 1400000 4700 3620 5900000 6.3 33 2e8 2600

Table 3: The angiogenesis model and its parameters
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vector field. The angiogenesis system largely benefits from these optimiza-
tions as its vector field is quadratic and therefore its Hessian matrices are
constant. The directional curvature in this systems varies a lot depending
on the direction.

mt1

to

Figure 9: Results obtained for the angiogenesis model.

Figure 9 shows the projection of the reachable set evolution on the first
three variables, namely MT;, Ms, and T,. The initial set is a small set
around the origin, highlighted in the figure in bold line. We observe that the
variables converge towards the dense part of the reachable set shown in the
figure The computation time was 40 seconds for 30 iterations.

5. Discussion

We made progress toward a very ambitious goal: automatic reachabil-
ity analysis of nonlinear systems as a methodology for investigating under-
specified biological models. Let us mention other attempts to solve this
problem starting with methods that share with hybridization the idea of ap-
proximating the original systems by partitioning the continuous state space
and producing a hybrid automaton with a simpler dynamics in each state. In
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the extreme case where no continuous dynamics remains, the finite automa-
ton is the sole responsible for approximating the dynamics. This approach is
used, for example, in robotics planning and qualitative physics and has been
applied extensively to Biology [17, 27]. The technique of predicate abstrac-
tion applied to hybrid systems [3] is another elaboration of this idea where
partition boundaries are based on predicates appearing in specifications. A
more refined approach, incorporated into the tools HyTech [29] and PHAVer
[21] over-approximates the nonlinear system by hybrid automata where in
each state the dynamics is defined by a constant differential inclusion of the
form Az < c. Since in each state the derivative does not depend on the real
variables, it is easy to compute the reachable states exactly using linear al-
gebra, however the over-approximation with respect to the original system is
large (zero-order compared to first-order approximation in the hybridization
of [5]). The translation of continuous systems into timed automata [40] is an-
other instance of this approach. It should be noted that the idea of dynamic
hybridization is not restricted to linear approximating function and can be
applied to approximation by other function, simpler or more complex.

Other, more direct, approaches perform reachability on the original non-
linear systems without relying on convexity properties. For example, the
face lifting technique [25, 15, 26], which is based on computing the maximal
projections of f on all the normals of the facets of a polyhedron, may lead to
large over-approximation errors. Other approaches use more complex classes
of sets which are not necessarily convex. In [41] the evolution of the reach-
able states is transformed into a partial differential equation (PDE) where
the boundary of the set is represented as the set of zeros of a function de-
fined over the state space. The work of [14] uses Bezier simplices to represent
reachable states for systems defined by polynomial differential equations. Fi-
nally in [28, 1] dynamic linearization and computation of error bounds is
performed at every reachability step. None of these methods, to the best
of our knowledge, can cope with systems of the size and complexity of the
examples presented in this paper.

Let us also mention the whole domain of interval analysis [31], a branch of
numerical analysis motivated by producing rigorous numerical answers to di-
verse mathematical questions despite round-off errors. As its name suggests,
for the computation of a scalar function, the result is typically an interval
guaranteed to contain the correct answer. The generalization to many di-
mensions leads naturally to bounding boxes. Although the motivation is
different from ours as the uncertainty is due to the computation itself rather
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than the imperfection of the model, there are similarities between some of
the techniques and we foresee more future cross fertilization between the
domains.

Parameter uncertainty in biological models is a well-known problem that
has been subject to extensive work using various techniques. We mention
two recent attacks on the problem of parameter synthesis, namely, finding
or approximating the range of model parameters for which some qualitative
behavior is exhibited. The work of [8] takes a hybrid model (piecewise multi-
affine dynamics) with parameter uncertainty and abstracts it into a finite
automaton. When the property in question is violated by the automaton,
the domain of parameter values is refined, a new abstraction is created and
so on. A more direct and efficient way to explore the space of parameter
values is described in [19] based on adaptive sampling of the parameter space
and using ordinary numerical simulation. This technique uses numerical
sensitivity information [20] to guide the refinement of the parameter space.

To go beyond this proof of concept to a fully-automated methodology, the
following technical aspects should be improved. First we need to combine
dynamic hybridization with the new linear reachability algorithms of [24, 35,
36] which can treat linear systems an order of magnitude larger than those
treated in the present paper. Secondly, more sophisticated and accurate
linearization operators are needed, so that the reachable state will remain
for a longer time in each linearization domains, while accumulating small
approximation error. In [16] we recently developed such a scheme based
on simplices whose size and orientation are adapted to the properties, such
as curvature, of the vector field and applied it to the model described in
Scetion 4.3. As the reader might have noticed, we have focused in this paper
on systems where the uncertainty is restricted to the initial set or parameters
and we need to extend our linearization operator to nonlinear functions with
input, something that can be done using similar principles.

To conclude, we have demonstrated the feasibility of our approach by
computing reachable states for nonlinear systems of unprecedented size and
complexity. We intend to pursue this direction further and make reachabil-
ity computation a useful tool for analyzing complex biological systems. A
parallel effort should be invested in making modelers of biological systems
aware of the potential of this analysis technology.
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