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ABSTRACT
This paper is concerned with reachable set computation for
non-linear systems using hybridization. The essence of hy-
bridization is to approximate a non-linear vector field by a
simpler (such as affine) vector field. This is done by par-
titioning the state space into small regions within each of
which a simpler vector field is defined. This approach re-
lies on the availability of methods for function approxima-
tion and for handling the resulting dynamical systems. Con-
cerning function approximation using interpolation, the ac-
curacy depends on the shapes and sizes of the regions which
can compromise as well the speed of reachability compu-
tation since it may generate spurious classes of trajectories.
In this paper we study the relationship between the region
geometry and reachable set accuracy and propose a method
for constructing hybridization regions using tighter interpo-
lation error bounds. In addition, our construction exploits
the dynamics of the system to adapt the orientation of the
regions, in order to achieve better time-efficiency. We also
present some experimental results on a high-dimensional bi-
ological system, to demonstrate the performance improve-
ment.

1. INTRODUCTION
Reachable set computation has been a problem of par-

ticular interest in hybrid systems research, which can
be observed by numerous techniques developed over a
decade (for example, [12, 2, 17, 5, 19, 16, 7, 15, 14,
11]). Linear dynamical systems admit nice properties
that facilitate their analysis by various approaches. In
particular they admit efficient methods for computing
reachable states, such as the recent results published in
[10, 15, 1, 11], which can serve for verification of very
high-dimensional systems. The real challenge, however,
in many application domains is the treatment of more
complex systems whose dynamics are not linear. Hy-
bridization is the process of transforming a non-linear
dynamical system

ẋ = f(x)

into a kind of a hybrid automaton, a piecewise-linear
∗Research supported by ANR project VEDECY.

system with bounded input which over-approximates
the original system in the sense of inclusion of trajecto-
ries. The idea, first proposed for the purpose of simula-
tion [8] and later applied to verification [3, 4, 6] is rather
simple: decompose the state space into linearization do-
mains and in each domain ∆ compute an affine function
A and an error set U which satisfy the following con-
dition, which we call the condition for approximation
conservativeness:

∀x ∈ ∆ ∃u ∈ U s.t. f(x) = Ax + u. (1)

Then it follows that inside ∆, the differential inclusion

ẋ ∈ Ax⊕ U,

where⊕ denotes the Minkowski sum, over-approximates
ẋ = f(x).

The original hybridization techniques consisted of par-
titioning the state space into simplices. This had the
advantages of having the matrix A associated with every
domain uniquely determined from interpolation for the
values of f on the vertices of the simplex. However to
facilitate the implementation of a reachability algorithm
for the approximating hybrid automaton, especially the
intersection with the boundary between adjacent do-
mains, this scheme has been replaced by a partition
into hyper rectangles.

Recently in [6] we have proposed to replace this static,
partition-based hybridization scheme with a dynamic
one. Rather than intersecting the reachable set with
the boundary between a linearization domain ∆ and its
adjacent domains, we build a new linearization domain
∆′ around the last reachable set which is fully contained
in ∆. Unlike in static hybridization, the domains ∆ and
∆′ may overlap and the intersection operation, which
contributes significantly to the complexity and approxi-
mation error of hybridization is avoided and this allowed
us to analyze non-linear systems of higher dimensional-
ity. This dynamic scheme gives us more freedom in the
choice of the size and shape of hybridization domains,
freedom that we exploit in the current paper.

The core problem we investigate in this paper is the
following: given a convex polytope P representing the
reachable set at some iteration of the reachability com-
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putation algorithm, find a domain ∆, an affine function
Ax+b and an error set U which satisfy the above condi-
tion for approximation convervativeness (1) and, in ad-
dition, are good with respect to the following efficiency
and accuracy criteria which are partially-conflicting:

1. The size of the error set U is small;

2. The affine function Ax + u (where u ∈ U) and the
error set U can be efficiently computed;

3. The system’s evolution remains in ∆ as long as
possible.

The first optimization criterion is important not only
for the approximation accuracy but also for the com-
putation time-efficiency. Let us give an intuitive expla-
nation of this. Non-linear systems often behave in a
much less predictable manner than linear systems. A
linear system preserves convexity and therefore explor-
ing its behavior starting from a finite number of “ex-
tremal” points (for example, the vertices of a convex
polytope) is sufficient to construct the set of trajecto-
ries from all the points in that set. This is no longer
true for most non-linear systems since the boundary of
a reachable set can originate from some “non-extremal”
points. Hence, the effect of error accumulation in the
analysis of non-linear systems is more significant. For
example, when the error part contains some points that
generate completely different behavior patterns (for ex-
ample, a significant change in the evolution direction),
these spurious behaviors may consume a lot of compu-
tation time.

The main novelty of this paper is that we exploit new
tighter error bounds for linear interpolation in order to
improve both the accuracy and efficiency of reachability
computations. These tighter bounds allow using large
domains for the same desired accuracy and thus the
linearization procedure is invoked less often.

The third criterion also aims at reducing the frequency
of constructing new domains. As we will show, the er-
ror bound requirement leaves some freedom in choosing
the position and orientation of the domains, which is
used to address this criterion.

The rest of the paper is organized as follows. We first
recall the basic principles hybridization and introduce
necessary notation and definitions. We then describe
the error bound for linear interpolation that we will use
in this work and compare it with the (larger) bounds
used in our previous work [3, 4]. We then present a
method for building simplicial approximation domains
that satisfy this error bound while taking into account
the above efficiency and accuracy criteria. We finally
demonstrate this new method on a biological system
with 12 continuous variables, that is x ∈ R12.

2. BASIC DEFINITIONS

2.1 Hybridization: Basic Ideas
We consider a non-linear system

ẋ(t) = f(x(t)), x ∈ X ⊆ Rn. (2)

where the function f is Lipschitz over the state space X .

The basic idea of hybridization is to approximate the
system (2) with another system that is easier to analyze:

ẋ(t) = g(x(t)), x ∈ X ⊆ Rn. (3)

In order to capture all the behaviors of the original
system (2), an input is introduced in the system (3) in
order to account for the approximation error.

Let µ be the bound of ||g − f ||, i.e. for all x ∈ X

||g(x)− f(x)|| ≤ µ

where || · || is some norm on Rn. In this work we will
consider the norm || · ||∞ which is defined as

||x||∞ = max(|x1|, . . . , |xn|).

The approximate system with input is written as:{
ẋ(t) = s(x(t), u(t)) = g(x(t)) + u(t),
u(·) ∈ Uµ

(4)

where Uµ is the set of admissible inputs which con-
sists of piecewise continuous functions u of the form
u : R+ → U where U contains all points u ∈ Rn such
that such that ||u(·)|| ≤ µ.

The system (4) is an overapproximation of the orig-
inal system (2) in the sense that all trajectories of (2)
are contained in the set of trajectories of (4) [4]. From
now on, we call (4) “approximate system”.

The construction of such an approximate system con-
sists of two main steps:

• Inside a zone of interest that contains the current
reachable set, we compute an approximation do-
main of size %max. Then, an approximate vector
field is assigned to that domain. When the sys-
tem’s trajectories leave the current approximation
domain, a new domain is created. If the approxi-
mate vector field in each domain is affine, the re-
sulting system f is piecewise affine over the whole
state space. The use of such approximate systems
is motivated by a large choice of available meth-
ods for the verification of piecewise affine systems
(see for instance [2, 5, 16, 15, 11]). However, other
classes of functions can be used, such as constant
or multi-affine.

• To construct the error set U , we estimate the error
bound µ which depends on the domain size %max.
We assume that the chosen function f satisfies the
following property: µ tends to 0 when %max tends
to 0. Suppose that we can find an upper bound of
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µ, denoted by µ. Then, we can choose the input
value set U to be the ball (i.e. a hypercube for the
infinity norm) that is centered at the origin and
has radius µ.

In this work, we focus on the problem of approximat-
ing the reachable set of the system (2). Some notation
related to the reachable sets is needed. Let Φs(t, x, u(·))
be the trajectory starting from x of the system (4) un-
der input u(·) ∈ U . The reachable sets of the sys-
tem (4) from a set of initial points X0 ⊆ X during
the interval [0, t] is defined as: Reachs(t, X0) = { y =
Φs(τ, x, u(·)) | τ ∈ [0, t], x ∈ X0, u(·) ∈ Uµ }. The reach-
able set of the original system can be defined similarly.

The following theorem shows the convergence of the
reachable set of the approximate system to that of the
original system [3].

Theorem 1. Let L be the Lispchitz constant of the
vector field f of the system (2) on X . Then

dH (Reachf (T,X0), Reachs(T,X0)) ≤
2µ

L
(eLT − 1)

where dH denotes the Hausdorff distance associated with
the chosen norm || · ||.
This theorem shows the importance of the magnitude of
µ since the error in the reachable set approximation de-
pends linearly on µ. This is a motivation for our search
for better error bounds, especially for linear interpola-
tion which is an efficient method for affine hybridization
that we explain in the next section.

2.2 Affine Hybridization
We will now focus on the hybridization that uses affine

functions for each approximation domain, which is a
simplex. We recall that a simplex in Rn is the convex
hull of (n + 1) affinely independent points in Rn.

Suppose that we start with some initial set which is a
polytope P0. Around P0, we construct an approxima-
tion, around P0 which contains P0. In our first work [3,
4], each domain is a cell in a simplicial mesh. Inside
each cell the approximate vector field is defined using
linear interpolation of f over the vertices of the cell. As
mentioned earlier, the inconvenience of this hybridiza-
tion (which we call static hybridization since the mesh
is defined a-priori) is it requires expensive intersection
operations when handling the transition of the system
from one cell to its adjacent cells. To remedy this, rect-
angular mesh was then proposed. Nevertheless, interpo-
lating over the rectangle vertices results in multi-affine
functions which are harder to analyze.

In our recent paper [6], we proposed dynamic hy-
bridization, in which a new domain is constructed only
when the system is about to leave the current domain.
Since intersection is no longer required, we can use a
larger choice of approximation domain types for func-
tion approximations. In this work, we use again linear

interpolation on simplices which is an efficient function
approximation method. In addition, we exploit new
better error bounds to investigate how the approxima-
tion quality of a simplex depends on its shape, size and
orientation, in order to significantly improve the func-
tion approximation accuracy.

In the remainder of this section, we recall the linear
interpolation on the vertices of a simplex. We denote
by Pv the set of the vertices of a simplex ∆. We define
l as an affine map of the form: l(x) = Ax + b (A is a
matrix of size n×n and b ∈ Rn) such that l interpolates
the function f at the vertices of ∆. More precisely,

∀p ∈ Pv : f(p) = l(p).

An important advantage of this approximation method
is that using the vertices of each simplex, the affine in-
terpolant l is uniquely determined, since each simplex
has exactly (n + 1) vertices.

Let us now define an input set U so that l is a conser-
vative approximation of the original vector field f . To
this end, we define the interpolation error as:

µ = sup
x∈∆

||f(x)− l(x)||.

Note that the real distance between the original func-
tion f and the approximating function l is key to the
approximation quality, however this distance is hard to
estimate precisely. It is easy to see the importance of
the tightness of error bounds, since this directly impacts
the error between the solutions of the two systems. In
our previous work we used the following bounds on µ
for two cases: the vector field f is Lipschitz and f is a
C2 function.

• If f is Lipschitz and L is its Lipschitz constant,
then

µ ≤ %max
2n L

n + 1
= µ(%max).

where %max is the maximal edge length of the sim-
plex.

• If f is C2 on ∆ with bounded second order deriva-
tives then

µ ≤ Kn2

2(n + 1)2
%2

max = µ(%max) (5)

where K is a bound on the second derivatives of f
where

K = max
i∈{1,...,n}

sup
x∈∆

p1=n∑
p1=1

p2=n∑
p2=1

∣∣∣∣ ∂2f i(x)
∂xp1∂xp2

∣∣∣∣ .

We write the above error bounds as a function of %max

to emphasize that it depends on the maximal simplex
edge length %max.
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3. TIGHTER ERROR BOUNDS
In this section, we describe better error bounds on

the interpolation over a simplex ∆ in Rn. The class of
systems we consider are assumed to satify some smooth-
ness conditions. To explain this, we need the notion of
curvature.

From now on we write f = (f1, f2, . . . , fn) as a vec-
tor of n functions fi : Rn → R. We first define the
Hessian matrix associated with the function fi with
i ∈ {1, . . . , n} as:

Hi(x) =



∂2fi

∂x2
1

∂2fi

∂x1x2
. . .

∂2fi

∂x1xn

∂2fi

∂x1x2

∂2fi

∂x2
2

. . .
∂2fi

∂x2xn

. . .
∂2fi

∂x1xn

∂2fi

∂x2xn
. . .

∂2fi

∂x2
n


. (6)

For any unit directional vector d, the directional cur-
vature of fi is defined as

∂fi(x, d) = dT Hi(x)d.

Given a set X ⊆ X , if f satisfies the following condi-
tion for all unit vector d ∈ Rn

∀i ∈ {1, . . . , n} ∀x ∈ X : max |∂fi(x, d)| ≤ γX , (7)

the value γX is called the maximal curvature of f in X.
In other words, the above means that all the eigenvalues
of Hi are in [−γX , γX ].

The following theorem gives a bound on the interpo-
lation error [21].

Theorem 2. Let l be the affine function that inter-
polates the functions f over a simplex ∆. Then, for all
x ∈ ∆

||f(x)− l(x)|| ≤ γ∆
r2
c (∆)
2

.

where γ∆ is the maximal curvature of f in ∆, and rc(∆)
is the radius of the smallest ball containing the simplex
∆.

For short, we say “the smallest containment ball” to
refer to the smallest ball that contains the simplex ∆.
Figure 1 illustrates this notion in two dimensions where
simplices are triangles.

Compared to the error bound in (5), this error bound
is tighter due to the relation between the maximal edge
length of a simplex and the radius of its smallest con-
tainnement ball. This will be discussed in more detail
later (especially in Lemma 2).

We can see that within a ball of radius rc, if the curva-
ture is constant, the simplices with the largest volume
that guarantee the interpolation error bound γ∆

r2
c(∆)
2

rc

Smallest containment circle Circumcircle

Figure 1: The smallest containment circle of the
same triangle (shown on the left), which should
not be confused with its circumcirle (shown on
the right).

of Theorem 2 are equilateral (i.e. all the edges have the
same length). However, this error bound is appropriate
only when the directional curvatures are not much dif-
ferent in every direction. There are functions where the
largest curvature in one direction greatly exceeds the
largest curvature in another, and in these cases it is pos-
sible to achieve the same accuracy with non-equilateral
simplices. Intuitively, we can stretch an equilateral sim-
plex along a direction in which the curvature is small in
order to obtain a new simplex with larger size.

A better way to judge the approximation quality of a
simplex is to map it to an “isotropic” space where the
curvature bounds are isotropic (that is identical in each
direction). Indeed it is possible to derive an error bound
similar to the one in Theorem 2 but with the radius of
the smallest containment ball in this “isotropic” space
[18]. To explain this, we define:

C = ΩΞΩT

where Ω = [ω1ω2 . . . ωn] and

Ξ =


ξ1 0 . . . 0
0 ξ2 . . . 0

. . .
0 0 . . . ξn

 .

The vectors ωi and values ξi are the eigenvectors and
eigenvalues of a symmetric positive-definite matrix C,
defined in the following.

We assume the boundedness of directional curvature
of f . Given a subset X of X and a symmetric positive-
definite matrix C(X), if for any unit vector d ∈ Rn,

∀i{1, . . . , n} ∀x ∈ ∆ : max |dT Hi(x)d| ≤ dT C(X)d,

we say that in the set X the directional curvature of f
is bounded by C and we call C is a curvature tensor
matrix of f in X.

Let ξmax and ξmin be the largest and smallest eigen-
values of C(∆). The curvature matrix C(∆) can be
specified using an estimate of the Hessian matrices Hi.
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This will be discussed in more detail in Section 4.3.

We now define a matrix T which maps a point in
the original space (that is, the domain over which the
functions f are defined) to an isotropic space:

T = Ω


√

ξ1/ξmax 0 . . . 0
0

√
ξ2/ξmax . . . 0

. . .

0 . . .
√

ξn/ξmax

 ΩT .

(8)
Given a set X ⊆ Rn, let X̂ denote the set resulting

from applying the linear transformation specified by the
matrix T to X, that is, X̂ = {Tx | x ∈ X}. Geometri-
cally, the transformation T “shortens” a set along the
directions in which f has high curvatures. An illustra-
tion of this transformation is depicted in Figure 2, where
the application of the transformation T to an ellipsoid
produces a circle. When applying T to the triangle in-
scribed the ellipsoid shown on the left, the result is a
regular triangle shown on the right.

T

Figure 2: Illustration of the transformation to
the isotropic space.

Theorem 3. Let l be the affine function that inter-
polates the functions f over the simplex ∆. Then, for
all x ∈ ∆

||f(x)− l(x)|| ≤ γ∆
r2
c (∆̂)
2

= µ̄new(rc).

where γ∆ is the maximal curvature in ∆ and rc(∆̂) is
the radius of the smallest containement of the trans-
formed simplex ∆̂.

Proof. The idea of the proof is as follows. Let

φ(x) = f(T−1x)

be the function defined over the isotropic space. Simi-
larly, for the linear interpolating function l, we define

λ(x) = l(T−1x).

Note that f̂(x̂) = f(x). So the range of φ over the
domain ∆̂ is the same as the range of f over the domain
∆. The curvature of φ has a bound that is independent

of direction. Let Gi(x) denote the Hessian matrix of
φ(x). Indeed,

∂φi(x, d) = dT Gi(x)d
= (T−1d)T Hi(x)(T−1d)

It then follows from the definition of the curvature ten-
sor matrix C(∆), we have

∂φi(x, d) ≤ dT T−1C(∆)T−1d

≤ γ∆

We thus see that γb∆ = γ∆. Using Theorem 2, the

maximum of ||φ(x)−λ(x)|| over ∆̂ is γb∆ r2
c (∆̂)
2

= γ∆
r2
c (∆̂)
2

.
By the above definitions of the functions φ and λ, we
have f(x) = φ(x̂) and l(x) = λ(x̂) we have

max
x∈∆

||f(x)− l(x)|| = max
x∈b∆ ||φ(x)− λ(x)||.

It then follows that

||f(x)− l(x)|| ≤ γ∆
r2
c (∆̂)
2

.

To show the interest of this error bound, we first show
that using transformation T the smallest containment
ball radius is reduced or at worst unchanged; hence we
can use larger simplices for the same error bound.

Lemma 1. Given a simplex ∆ ⊆ Rn, the radius of
the smallest contrainment ball of ∆̂ is not larger than
the radius of the smallest contrainment ball of ∆, that
is rc(∆̂) ≤ rc(∆).

The proof can be directly established from the con-
struction of the transformation matrix T . The error
bound of Theorem 3 is at least as good as that of The-
orem 2. For a “thin” simplex whose longer edges are
along the directions of the eigenvectors associated with

smaller eigenvalues, the ratio
rc(∆̂)
rc(∆)

can be as small

as
√

ξmin/ξmax. In the worst case, when the simplex
is “parallel” to an eigenvector associated with largest
eigenvalue, this ratio is 1.

Furthemore, we compare the new error bounds with the
ones shown in (5) which were used in the previous work.
We first notice that the bound K in (5) must be larger
than γ∆. To see this, we notice that any matrix norm is
always larger than the maximum of the absolute values
of the eigenvalues. It is however not easy to relate the
smallest containment ball with the simplex size. For
comparison purposes, we can use the following result.

Lemma 2. Let ∆ be a simplex in Rn with the max-
imal edge length %max. Then, the radius rc(∆) of its
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smallest containment sphere satisfies

rc(∆) ≤ %max

√
n

2(n + 1)

where n is the dimension of the system.

The proof of this inequality can be found, for exam-
ple, in [9]. Indeed, the equality is achieved when the
smallest containment ball of a simplex is also its cir-
cumscribed ball.

A direct consequence of this result is the following
ratio between the old and new error bounds for any
simplex.

Theorem 4. For any simplex ∆ with the maximal
edge length %max, the ratio between the new error bound
µ̄new of Theorem 3 and the old error bound µ̄ in (5)
satisfies the following inequality:

µ̄new(rc(∆̂))
µ̄(%max)

≤ n + 1
2n

.

In two dimensions, compared to the old error bound,
the new error bound is reduced at least by the factor

4/3. The reduction factor
2n

n + 1
grows when the di-

mension n increases and approaches 2 when n tends to
infinity.

This reduction is very useful especially in high dimen-
sions because when dividing a simplex in order to satisfy
some edge length bound, the number of resulting sub-
sets grows exponentially with the dimension. Moreover,
as in the above discussion of Lemma 1, by choosing an
appropriate orientation we can reduce this ratio further
by

√
ξmin/ξmax.

4. CONSTRUCTION OF SIMPLICIAL DO-
MAINS

We consider the problem of constructing a simplex
around a polytope P (which is for example the reach-
able set in the current iteration) with the objective of
achieving a good approximation quality when perform-
ing analysis on the approximate system to yield the re-
sult for the original system.

4.1 Simplex Size and Shape
We first consider the accuracy criterion. More pre-

cisely, we want to guarantee that the linear function
that interpolates f satisfies a given desired error bound,
say ρ. Let γ be the maximal curvature within a region
of interest around the initial set, and for short we write
it without specifying the simplex.

Theorem 3 indicates that the interpolation error vari-
ation depends on the radius rc(∆̂). In order to exploit

this result, we first transform the polytope P to P̂ = TP
in the isotropic space. Let B be the ball of radius√

2ρ/γ the centroid of which coincides with that of the
polytope P̂ . We assume that P̂ is entirely included in
B. If this is not the case, the polytope P should be split.
The problem of finding a good splitting method is not
addressed in this paper. In the current implementation
the splitting direction is perpendicular to the direction
along which the polytope is most stretched out.

Let E = T−1(B) be the ellipsoid resulting from ap-
plying the inverse transformation T−1 to the ball B.
Then, according to Theorem 3 the interpolation error
associated with any simplex inside the ellipsoid E is
guaranteed to be smaller than or equal to ρ.

Since there are many simplices that can be fit inside a
ball, we proceed with the problem of choosing a simplex
that is good with respect to other optimization criteria,
namely the simplex volume and the time of evolution
within the simplex.

Lemma 3. Let ∆r be an equilateral simplex that is
circumscribed by the ball B. Then, T−1(∆r) is a largest
volume simplex inscribed in the ellipsoid E = T−1B.

The proof of this result relies on two standard results.
First, the linear transformation preserves the volume
ratio between two measurable bodies. Second, the sim-
plices inside a ball with the largest volume are equilat-
eral.

It follows from the lemma that we only need to consider
the simplices resulting from applying T−1 to the largest
equilateral simplices inscribing in the ball B. Any such
simplex is guaranteed to be inscribed in the ellipsoid E
and to have the largest volume.

4.2 Simplex Orientation
It remains to select one of the above simplices to meet

the staying time requirement. To this end, we use the
following heuristics. We sample trajectories starting at
a number of points inside and around the polytope P
and then determine an average evolution direction e for
a given time interval. We then want the simplex to be
“aligned” with this direction e, as shown in Figure 3.

Note that we are considering only the equilateral sim-
plices inscribed in B. We now first pick an equilateral
simplex ∆r aligned with an axis, say x1, as shown in
Figure 4. This equilateral simplex can be efficiently con-
structed since, due to its alignment, the construction
can be done by recursively reducing to lower dimen-
sions. Without loss of generality, we can assume that
the simplex has a vertex p on this axis x1. We now want
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P

Figure 3: Illustration of the average evolution
direction e.

to compute the linear transformation M which rotates
it to align with −e. To do so, we compute its inverse
tranformation as follows. Choosing a simplex vertex p
as a “pivot” vertex, we define its associated median axis
as the line passing through p and perpendicular to the
hyperplane containing the corresponding base. Let q
be the vector representing this median axis, as shown
in Figure 4.

q x1

x2

Figure 4: Illustration of a simplex median axis.

We want to compute a transformation R which aligns
q with −e. This transformation is decomposed into
(n− 1) successive rotations, each of which is on a two-
dimensional plane defined by two coordinate axes.

These rotations are illustrated with a 3-dimensional
example in Figure 5. The median axis q of the simplex
lies on the axis x1. The bold line segment represents
the vector −e to rotate. After the first rotation by angle
θ1 around the axis x1, the new vector is on the plane
(x1, x2). The second rotation by angle θ2 is around
axis x3 to finally align the vector with q. The required
transformation M is then obtained by computing the
inverse of R, that is M = R−1.

4.3 Curvature Estimation
The curvature tensor matrix is needed to define the

transformation T .

We first consider the case where the Hessian matrices
are constant, as is the case with quadratic functions.

θ2

X2 X2 X2

X3

X1

X3

−e

θ1 θ1

X1 X1

Figure 5: Successive rotations needed to align a
vector with the axis x1.

To compute a curvature tensor matrix, we first define
a matrix Ci as the matrix with the same eigenvectors
and eigenvalues as Hi, except that each negative eigen-
value ξ of Hi is replaced with the positive eigenvalue
−ξ. Note that we can, in this case, omit the simplex in
the notation of the curvature tensor matrix. Hence, Ci

is guaranteed to be positive definite. If any eigenvalue
of Hi is zero, we substitute it with some small positive
value. That is, for each matrix Hi, we define

Ci(∆) = [ωi
1 . . . ωi

n]


|ξi

1| 0 . . . 0
0 |ξi

2| . . . 0
. . .

0 0 . . . |ξi
n|

 [ωi
1 . . . ωi

n]T

where ωi
j (with j ∈ {1, . . . , n}) are the eigenvectors of

Hi. We denote by ξi
max the eigenvalue with the largest

absolute magnitude of Ci. Among the matrices Ci we
can choose the one with the largest absolute eigenvalue
to be a curvature tensor matrix.

For more general classes of functions where the Hes-
sian matrices are not constant, we can estimate the cur-
vature tensor matrix using optimization. This optimiza-
tion can be done a-priori for the whole state space or it
can be done locally each time we construct a new ap-
proximation domain. The transformation matrix T can
then be computed using (8).

4.4 Simplex Construction Algorithm
Before continuing, the developments so far is summa-

rized in Algorithm 1 for computing a simplicial domain
around a polytope P . Let rc be the radius of the small-
est containement ball in the isotropic space that satisfies
a given desired error bound.

Note that if the Hessian matrices are constant, we
can reuse the curvature tensor matrix and the trans-
formation matrix T for the new domain construction if
invoked in the next iterations.

5. EXPERIMENTAL RESULT: A BIOLOG-
ICAL SYSTEM

We implemented the above algorithm using the al-
gorithm in [2] for reachability computation for affine

7



Algorithm 1 Simplex construction
Input: Polytope P
Output: Simplex ∆

Compute the transformation matrix T
P̂ = TP
Compute a ball B around P̂
Choose ∆r as an equilateral simplex inscribed in B
such that an median axis q of ∆r is aligned with the
axis x1.
Compute the average trajectory direction e (by sam-
pling trajectories from P )
ê = Te
Orientate the simplex ∆r so that the median axis q
is aligned with the direction −ê
∆ = T−1∆̂
Return ∆

approximate systems and the scheme of [6] for dynamic
hybridization. As a testbench for the algorithm we have
chosen the biochemical network described in [13]. This
is a system of quadratic differential equations with 12
state variables which models the loosening of the extra-
cellular matrix around blood vessels, a crucial process
in ongiogenesis the sprouting of new blood vessels as
a reaction to signals that indicate need for additional
oxygen in certain tissues. Interfering with ongiogenesis
is considered a promising direction for fighting cancer
tumors by cutting their blood supply.

The vector field of this system is quadratic (see equa-
tions and parameters in the appendix) and therefore its
Hessian matrices are constant. Its directional curvature
varies a lot depending on the directions.

The application of new simplex construction allowed
to not only obtain a smaller approximate reachable set
(due to a smaller error bound used in the input set) and
more over significantly reduce the computation time
by roughly 2.5 for the same time horizon, compared
to the method described in [6], which uses boxes as
linearization domains and where the approximation is
based on the Jacobian. Figure 6 shows the projection
of the reachable set evolution on the first three vari-
ables, namely mt1 and m2. The initial set is a small
set around the origin. We observe that the variables
converge towards some steady values (inside the dense
part of the reachable set shown in the figure). The com-
putation time was 40 seconds for 30 iterations.

6. CONCLUSION
In this paper we continued to work toward estab-

lishing hybridization as a powerful and general-purpose
technique for reachability computation for nonlinear sys-
tems. The focus of the current paper was to improve
and automate the process of choosing new linearization
domains and computing the approximation system and

Figure 6: Projection of the reachable set on the
first three variables mt1, m2 and t2.

the related error bounds. We presented a new method
for computing a simplex which has a good approxima-
tion quality expressed in terms of accuracy and time-
efficiency. We demonstrated the effectiveness of this
new method on a high-dimensional biological system
which, to the best of our knowledge, is much larger
than any nonlinear system treated by reachability tech-
niques. Future work directions include splitting meth-
ods which are necessary when the reachable polytopes
become larger than the containment balls that guaran-
tee a desired accuracy. Finding a more efficient esti-
mation of curvature tensor matrices is also part of our
future work.
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8. APPENDIX

The differential equations of the system are:

ṁt1 = P mt1− kshed eff mt12

− kon mt1t2 mt1 t2

+ kon mt1t2 ki mt1t2 mt1 t2

ṁ2 = kact eff m2 mt1 mt1 t2 m2p

− kon m2t2 m2 t2

+ koff m2t2 m2 t2− kon m2c1 m2 c1

+ koff m2c1 m2 c1 + kcat m2c1 m2 c1

−D m2 m2

ṫ2 = P t2− kon m2t2 m2 t2

+ koff m2t2 m2 t2− kon mt1t2 mt1 t2

+ kon mt1t2 ki mt1t2 mt1 t2−D t2 t2
˙mt1 t2 = kon mt1t2 mt1 t2

− kon mt1t2 ki mt1t2 mt1 t2

− kon mt1t2m2p mt1 t2 m2p

+ koff mt1t2m2p mt1 t2 m2p
˙mt1 t2 m2p = kon mt1t2m2p mt1 t2 m2p

− koff mt1t2m2p mt1 t2 m2p

− kact eff m2 mt1 mt1 t2 m2p
˙m2p = P m2p− kon mt1t2m2p mt1 t2 m2p

+ koff mt1t2m2p mt1 t2 m2p
˙m2 t2 = kon m2t2 m2 t2

− koff m2t2 m2 t2

− kiso m2t2 m2 t2

+ k iso m2t2 m2 t2 star
˙m2 t2 star = kiso m2t2 m2 t2

− k iso m2t2 m2 t2 star

−D m2t2star m2 t2 star

ċ1 = P c1− kon m2c1 m2 c1

+ koff m2c1 m2 c1−
kcat mt1c1/km mt1c1 mt1 c1

˙m2 c1 = kon m2c1 m2 c1−
koff m2c1 m2 c1− kcat m2c1 m2 c1

˙c1dmt1 = kcat mt1c1/km mt1c1 mt1 c1
˙c1dm2 = kcat m2c1 m2 c1

The numerical values of the parameters of the biological
system in Section 5 are given in the following.

Name Value
kshed eff 2.8 103

kon mt1t2 3.54 106

ki mt1t2 4.9 10−9

kon mt1t2m2p 0.14 106

koff mt1t2m2p 4.7 10−3

kact eff m2 3.62 103

kon m2t2 5.9 106

koff m2t2 6.3
kiso m2t2 33
k iso m2t2 2 10−8

kon m2c1 2.6 103

koff m2c1 2.1 10−3

kcat m2c1 4.5 10−3

kcat mt1c1 1.97 10−3

km mt1c1 2.9 10−6

P mt1 10 10−10

P t2 16 10−10

P m2p 8 10−10
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Name Value
P c1 5 10−10

D m2t2star 0.01
D m2 0.01
D t2 0.01
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