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Abstract. In this paper we propose a complete chain for synthesizing controllers
from high-level specifications. From real-time properties expressed inthe logic
MTL we generate, under bounded-variability assumptions,deterministictimed
automata to which we apply safety synthesis algorithms to derive a controllerthat
satisfies the properties by construction. Some preliminary experimental results
are reported.

1 Introduction

The problem of synthesizing controllers automatically from high-level specifications
has been posed by Church [Chu63] and solved theoretically byBüchi and Landwe-
ber [BL69,TB73]. Although the topic has been subject to further, more modern, in-
vestigations, synthesis has not enjoyed the passage from theory to practice as did the
similar and simpler problem of verification, mostly due to the practical complexity of
the proposed algorithms. Recently some improvements have been made for untimed
[PPS06,PP06] and timed [CDF+05] systems, that led to the synthesis of some non triv-
ial controllers. This work is a further step in this direction which attempts to give a
general feasible solution for the following problem:

Given a bounded-response temporal propertyϕ defined over two distinct action
alphabetsA andB (encoded using mutually-disjoint sets of propositional variables),
build a finite-state transducer (controller) fromAω to Bω such that all of its behaviors
satisfyϕ at all positions.

The controller in question is realized by an automaton that observes what the envi-
ronment does (somea ∈ A), changes its state accordingly and outputs someb ∈ B. The
whole situation can be viewed as a two-player zero-sum game between the controller
and its environment where one seeks a winning strategy for the controller (see [M07]
for a unified game-theoretic model). Unlike other approaches, for example those used in
the control of discrete event systems [RW89] or our previous work [MPS95,AMP95],
we do not start with a given “plant” or “arena” in a form of a transition system and an
acceptance/winning condition expressed in terms of its states. Our starting point, like in
[PR89], is a temporal logic formula which specifies constraints on the behaviors of the



players as well as desired properties of their interaction.Hence the first step in the syn-
thesis procedure is to derive the automatonfrom the formulaand then apply synthesis
algorithms to this automaton.

A major difficulty in such a procedure stems for the fact that synthesis algorithms
are more naturally defined overinput-deterministicautomata, or, to be more precise,
over automata where each non-deterministic choice can beunambiguouslyattributed to
one of the two players. In such automata each joint choice of the two players induces
only one transition from every state.4 In contrast, the commonly-used procedures for
translating temporal logic formulae go through non-deterministic automata whose de-
terminization leads to automata of prohibitively-large size. Another obstacle toward the
efficient realization of synthesis algorithms is the fact that the acceptance conditions in
the generated automata require a complicated fixed-point computation in order to find
the winning states and strategies.

In this work we avoid some of these problems by restricting our attention tobounded-
responseproperties which are known to be equivalent to safety properties. These prop-
erties represent a large part of what users are interested in(especially in hard real-time
systems) and lead to automata with simpler acceptance conditions (just avoid bad states)
and hence to a simpler synthesis procedure. Concerning the limited scope of bounded-
response properties compared to more generallivenessproperties, we can make the fol-
lowing comments. Liveness properties typically specify something that should “eventu-
ally” happen without specifying an upper bound on the time toelapse between now and
that eventuality. Obviously, liveness properties can be viewed as an abstraction of the
real specification which requires not only that some response is eventually forthcoming
(which is often useless by itself), but also provides anupper boundon the maximal
delay on the arrival of the response. In some cases, the use ofsuch abstractions may
be justified on various grounds. However, we hope to convincethe reader that, in many
other cases, the synthesis from bounded-response properties is very relevant and prefer-
able and can be carried out efficiently for non-trivial problems. For such cases, why
settle for an abstraction when you can work directly with theprecise specification?

The main contribution of this paper is an efficient machinerythat allows one to
synthesize controllers automatically from specificationsexpressed using the real-time
temporal logic MTL [Koy90], often interpreted of the time domainR+. Our first contri-
bution is a transformation of such formulae, underbounded variability assumptionsto
deterministictimed automata. This detrminization is of particular interest as it is based
on transforming the formula into apastformula and then applying the ideas presented
in [MNP05]. The obtained automaton is then interpreted as a timed game automaton
[MPS95,AMP95] to which we apply a synthesis algorithm to derive the controller.

The rest of the paper is organized as follows: Section 2 presents the syntax and se-
mantics of the bounded-response fragment ofMTL . Section 3 shows how to translate
future boundedMTL formulae into past formulae and deterministic timed automata.
Section 4 reports some preliminary experiments in synthesizing an arbiter from its spec-

4 A notable exception is the case where the controller has limited observability and thus, after
observing a sequence of adversary actions it may find itself in one of several states and its
chosen action should be good with respect toall these states. In this case, the nondeterminism
plays in favor of the adversary.



ifications, while Section 5 mentions ongoing and future efforts to improve the perfor-
mance.

2 Signals and their Bounded Temporal Logic

Timed behaviors can be described using eithertime-event sequencesconsisting of in-
stantaneous events separated by time durations or discrete-valuedsignalswhich are
functions from time to some discrete domain. In this work we use Boolean signals as
the semantic domain, but the extension of the results to time-event sequences (which
are equivalent to the timed traces of [AD94]) need not be a difficult exercise.

Let the time domainT be the setR≥0 of non-negative real numbers and letB =
{0, 1}. An n-dimensional Boolean signalξ is a partial functionξ : T → B

n whose
domain of definition is an intervalI = [0, r), r ∈ N ∪ {∞}. We say that the length of
the signal isr and denote this fact by|ξ| = r and letξ[t] stand for the value of the signal
at timet. We uset⊕ [a, b] to denote[t+a, t+b), that is, the Minkowski sum of{t} and
[a, b], andtª [a, b] = [t− b, t−a)∩T for the inverse operation with saturation at zero.
In the sequel we will restrict our attention to well-behaving signals whose variability is
bounded.

Definition 1 (Bounded Variability). A signalξ is of (∆, k)-bounded variability if for
every interval of the form[t, t + ∆] the number of changes in the value ofξ is at most
k. A bounded-variability signal is a signal for which such∆ > 0 and finitek exist.

Proposition 1 (Preservation of Bounded Variability). Let ξ1 and ξ2 be two infinite
bounded variability signals characterized, respectively, by(∆, k1) and(∆, k2), and let
ξ = ξ1 op ξ2 be a signal obtained by applying the Boolean operationop to ξ1 andξ2.
Then,ξ is of (∆, k1 + k2)-bounded variability.

This fact, which follows from the observation that forξ to switch at timet, at least
one ofξ1 andξ2 should switch, implies that if we assume bounded variability of the
propositional signals, we will also have bounded variability for the signals that indicate
the truth values of subformulae. Hence we can build the automaton corresponding to
the formula in an inductive and compositional manner based on the temporal testers
introduced in [KP05] for discrete time and extended in [MNP05,MNP06] for dense
time. In this construction bounded variability will be guaranteed at all levels.

We define the logicMTL -B as a bounded-horizon variant of the real-time temporal
logic MTL [Koy90], such thatall future temporal modalities are restricted to intervals
of the form[a, b] with 0 ≤ a ≤ b anda, b ∈ N, but allow the unbounded past operator
S (since) which is not really unbounded. Note that unlikeMITL [AFH96], we allow
“punctual” modalities witha = b and in this case we will usea as a shorthand for[a, a].
Another deviation fromMTL is the introduction of an additional past operatorprecedes
(P) which is roughly the boundeduntil operator from the point of view of theendof
the relevant segment of the signal. This operator isnot proposed for user-friendliness
purposes, but rather to facilitate the translation from future to past. The basic formulae
of MTL -B are defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U [a,b]ϕ2| ϕ2 S [a,b]ϕ1| ϕ2 Sϕ1| ϕ1P[a,b]ϕ2



wherep belongs to a setP = {p1, . . . , pn} of propositions corresponding naturally to
the coordinates of then-dimensional Boolean signal considered. Thefuture fragment
of MTL -B uses only theU [a,b] modality while thepast fragmentuses only theS [a,b],
S andP[a,b] modalities. The satisfaction relation(ξ, t) |= ϕ, indicating that signalξ
satisfiesϕ at positiont, is defined inductively below. We usep[t] to denote the projection
of ξ[t] on the dimension that corresponds to variablep.

(ξ, t) |= p ↔ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) 6|= ϕ

(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1 U [a,b]ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (s, t′′) |= ϕ1

(ξ, t) |= ϕ2 S [a,b]ϕ1 ↔ ∃t′ ∈ t ª [a, b] (ξ, t′) |= ϕ1 and
∀t′′ ∈ [t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ2 Sϕ1 ↔ ∃t′ ∈ [0, t] (ξ, t′) |= ϕ1 and
∀t′′ ∈ (t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1P[a,b]ϕ2 ↔ ∃t′ ∈ t ª [0, b − a] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t′ − b, t′] (ξ, t′′) |= ϕ1

It is important to note the difference between the future andthe past operators (see
Figure 1): theuntil operator points from timet toward the future, while thesinceand
precedesoperators point fromt backwards. On the other hand, theuntil andprecedes
operators differ from thesinceoperators as they speak on the intervalbeforethe event
that should be observed within a bounded time interval, while the latter refers to the
interval immediatelyafter its occurrence.

ϕ2

ϕ1

t − b t′ t − a t

ϕ1

ϕ2

ϕ1 U [a,b]ϕ2

t + bt′t + at

ϕ1P[a,b]ϕ2

ϕ1

ϕ2

tt′t − b

ϕ2 S [a,b]ϕ1

t − (b − a)

Fig. 1.The semantic definitions ofuntil, precedesandsince.

From basicMTL -B operators one can derive other standard Boolean and temporal
operators, in particular the time-constrainedsometime in the past, always in the past,
eventually in the futureandalways in the futureoperators whose semantics is defined



as
(ξ, t) |=

�
[a,b] ϕ ↔ ∃t′ ∈ t ª [a, b] (ξ, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t ª [a, b] (ξ, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∃t′ ∈ t ⊕ [a, b] (s, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ

Note that our definition of the semantics of the timeduntil andsinceoperators differs
slightly from their conventional definition since it requires a time instantt′ whereboth
(ξ, t′) |= ϕ2 and(ξ, t′) |= ϕ1. For the untimedsinceoperator we retain the standard
semantics.

Each futureMTL -B formula ϕ admits a numberD(ϕ) which indicates itstempo-
ral depth. Roughly speaking, to determine the satisfaction ofϕ by a signalξ from any
positiont, it suffices to observe the value ofξ in the interval[t, t + D(ϕ)]. This prop-
erty is evident from the semantics of the (bounded) temporaloperators and admits the
following recursive definition:

D(p) = 0
D(¬ϕ) = D(ϕ)
D(ϕ1 ∨ ϕ2) = max{D(ϕ1),D(ϕ2)}
D(ϕ1 U [a,b]ϕ2) = b + max{D(ϕ1),D(ϕ2)}

Note thatD is a syntax-dependentupper boundon the actual depth: the satisfiability
of a formulaϕ may be determined according to segments ofξ shorted thanD(ϕ). For
example,D( � [a,b] T) = b, but the formula requires no part ofξ for its satisfiability to
be determined. At the end of the day we are interested in properties of the form� ϕ

whereϕ is any (future, past or mixed)MTL -B formula. These properties are interpreted
over infinite-duration signals and require that all segments of ξ of lengthD(ϕ) satisfy
ϕ.

3 From MTL -B to Deterministic Timed Automata

In [MP04,MNP05] we have studied the relation between real-time temporal logics and
deterministic timed automata. It turns out that the non-determinism associated with
real-time logics has two ratherindependentsources described below.

– Acausality: the semantics of future temporal logics is acausal in the sense that the
satisfiability of a formula at positiont may depend on the value of the sequence
or signal at timet′ > t. If the automaton has to output this value at timet, it has
no choice but to “guess” at timet and abort later at timet′ the computations that
correspond to wrong predictions (see more detailed explanation in [MNP06]). This
bounded non determinism is harmless and in the untimed case,that is, for LTL ,
it can be determinized away. We conjecture that such a detrminization procedure
exists also for the timed case, but so far none has been reported. This problem does
not exist forpasttemporal logic whose semantics is causal and hence it translates
naturally into deterministic automata.



– Unbounded variability: when there is no bound on the variability of input signals,
the automaton needs to remember the occurrence times of an unbounded number of
events and use an unbounded number of clocks. All the pathological examples con-
cerning non-determinizability and non-closure under complementation for timed
automata [AD94] are based on this phenomenon.

In [MNP05] we have shown that the determinism of pastMITL , compared to the
non-determinism of futureMITL , is a result of a syntactic accident which somehow
imposes bounded variability (or indifference to small fluctuations) for the former but
not the latter. The punctual version, pastMTL , remains non deterministic (and of infi-
nite memory) because the operator

�
a realizes an ideal delay element which requires

unbounded memory.
The approach taken in this work in order to get rid of both sources of non determin-

ism is the following: we use fullMTL , that is, allow punctual modalities, but assume
that we are dealing with signals of(∆, k)-bounded variability, hence we can dispense
with the severe form of non determinism.5 We then transform futureMTL -B formulae to
pastMTL -B formula which, under the bounded variability assumption, can be translated
to deterministic timed automata. This part of the result is an extension of what we have
shown in [MNP05] for the (non-punctual)sinceoperator.

The key idea of the transformation is to change the time direction from future to
past and hence eliminate the “predictive” aspect of the semantics. We will present an
operatorΠ which takes as an argument a future formulaϕ and a displacementd, and
transforms it to an “equivalent” past formulaψ such thatϕ is satisfied by a signal from
positiont iff ψ is satisfied by the same signal fromt + d.

Definition 2 (Pastify Operator). The operatorΠ on futureMTL -B formulaeϕ and a
displacementd ≥ D(ϕ) is defined recursively as:

Π(p, d) =
�

d p

Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨ Π(ϕ2, d)
Π(ϕ1U[a,b]ϕ2, d) = Π(ϕ1, d − b)P[a,b]Π(ϕ2, d − b)

Note that according the this definitionΠ( � [a,b] ϕ, d) =
�

[0,b−a] Π(ϕ, d − b).

Proposition 2 (Relation betweenϕ and Π(ϕ, d)). Letϕ be a bounded future formula
and letψ = Π(ϕ, d) with d ≥ D(ϕ). Then for everyξ andt ≥ 0 we have:

(ξ, t) |= ϕ iff (ξ, t + d) |= ψ (1)

Proof: We proceed by induction on the structure of the formula. Thebase case, the
atomic propositions, satisfy (1) trivially. Proceeding tothe inductive case, we show
that if (1) holds for formulae with complexity (nesting of operators)m, it holds as
well for formulae of complexitym + 1. For Boolean operators this is straightforward.

5 It is worth noting that the procedure of [T02] for subset construction on-the-fly, that is, deter-
minization with respect to agiven(and hence of bounded variability) input, works due to the
same reasons.



Assume now thatϕ1 andϕ2 satisfy (1) and we will show that so doesϕ = ϕ1 U [a,b]ϕ2.
Note that by definition, ifD(ϕ) = d thenD(ϕ1) ≤ d − b andD(ϕ2) ≤ d − b. Let
ψ1 = Π(ϕ1, d − b) andψ1 = Π(ϕ1, d − b). The fact the(ξ, t) |= ϕ amounts to

∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 ∧ ∀t′′ ∈ [0, t′] (ξ, t′′) |= ϕ1.

According to the inductive hypothesis we have that for sucht′ andt′′

(ξ, t′ + d − b) |= ψ2 and (ξ, t′′ + d − b) |= ψ1.

By lettingr′ = t′ + d− b andr′′ = t′′ + d− b and substituting the constraints ont′ and
t′′ we obtain

∃r′ ∈ t + d ª [0, b − a] (ξ, r) |= ψ2 ∧ ∀r′′ ∈ [t + d − b, r] (ξ, r′′) |= ψ1,

which is exactly the definition of(ξ, t + d) |= ψ1P[a,b]ψ2.
For the other direction assume(ξ, t + d) |= ψ1P[a,b]ψ2 which means that

∃r′ ∈ t + d ª [0, (b − a)] (ξ, r′) |= ψ2 ∧ ∀r′′ ∈ [t + d − b, r′](ξ, r′′) |= ψ1.

By the inductive hypothesis suchr′ andr′′ satisfy

(ξ, r′ − (d − b)) |= ϕ1 and (ξ, r′′ − (d − b)) |= ϕ1.

Letting t′ = r′ − (d − b) andt′′ = r′′ − (d − b) and substituting the constraints onr′

andr′′ we obtain

∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′] (ξ, t′′) |= ϕ1

which means that(ξ, t) |= ϕ1 U [a,b]ϕ2.

Corollary 1 (Equisatifaction of � ϕ and � ψ). An infinite signalξ satisfies� ϕ iff
it satisfies� ψ whereψ = Π(ϕ,D(ϕ)).

We now proceed to the construction of a deterministic timed automaton accepting
exactly signals satisfying a pastMTL -B formulaψ under a bounded-variability assump-
tion. The construction, inspired by [KP05], is compositional in the sense that it yields
a network of deterministic signal transducers (testers), each corresponding to a subfor-
mula ofψ. The output of every tester forψ′ at timet equals to the satisfaction ofψ′

from t. A more formal description of this framework can be found in [MNP05,MNP06].
We first present a generic automaton, theevent recorderwhich was first introduced in
[MNP05] for the purpose of showing that the operator

�
[a,b] admits a deterministic

timed automaton.
The automaton depicted in Figure 2 accepts signals satisfying

�
[a,b] ϕ by simply

memorizing at any time instantt the value ofϕ in the past temporal window[t − b, t].
Assuming thatϕ is of bounded variability and cannot change more than2m times in an
interval of lengthb, the states of the automaton,{0, 01, . . . , (01)m0}, correspond to the
qualitative form of the value ofϕ in that time interval. Each clockxi (respectively,yi)
measures the time elapsed since theith rising (respectively, falling) ofϕ in the temporal
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ϕ/x2 := 0

ϕ/x3 := 0

Fig. 2. An event recorder, an automaton which hasϕ as input and
�

[a,b] ϕ as output. The input
labels and staying conditions are written on the bottom of each state. Transitions are decorated
by the input labels of the target states and by clock resets. The clock shiftoperator is denoted by
the symbols. The automaton outputs1 wheneverx1 ≥ a.

p1

p3

p2

p

Fig. 3. Splittingp into p1 ∨ p2 ∨ p3.



window. Whenϕ first becomes true, automaton moves from0 to01 and resetsx1. When
ϕ becomes false it moves to010 while resettingy1 and so on. When clocky1 > b,
the first01-episode ofϕ becomes irrelevant for the satisfaction of

�
[a,b] ϕ and can

be forgotten. This is achieved by the “vertical” transitions which are accompanied by
“shifting” the clocks values, that is, applying the operationsxi := xi+1 andyi := yi+1

for all i. This allows us to use only a finite number of clocks.
The following proposition, first observed in [MN04], simplifies the construction of

the automaton. It follows from the fact that if a bounded-variability signal is true at two
close points, it has to be true throughout the interval between them.

Proposition 3. If p is a signal of(a, 1)-bounded variability then

– (ξ, t) |= pU [a,b]q iff (ξ, t) |= p ∧ � [a,b](p ∧ q)

– (ξ, t) |= pP[a,b]q iff (ξ, t) |=
�

b p ∧
�

[0,b−a](p ∧ q)

Hence for a signalp satisfying this property, the automaton forP[a,b] can be constructed
from the event recorder by means of simple Boolean composition. Suppose now thatp is
of (a, k)-bounded variability withk > 1. We can decompose it intok signalsp1, . . . , pk

such thatp = p1 ∨ p2 · · · pk, pi ∧ pj is always false for everyi 6= j and eachpi is of
(a, 1)-bounded variability. This is achieved by lettingpi rise and fall only on thejth

rising and falling ofp, wherej = i mod k, as is illustrated, fork = 3, in Figure 3. It
is not hard to see that for suchpi’s we have

(ξ, t) |= pU [a,b]q iff (ξ, t) |=

k∨

i=1

pi U [a,b]q

and

(ξ, t) |= pP[a,b]q iff (ξ, t) |=
k∨

i=1

piP[a,b]q.

The splitting ofp can be done trivially using an automaton realizing a countermodulo
k.

Corollary 2 ( MTL -B to Deterministic Timed Automata). Any MITL -B formulae can
be transformed, under bounded-variability assumptions, into equivalent deterministic
timed automata.

4 Application to Synthesis

4.1 Discrete and Dense-Time Tools

What remains to be done is to transform the automaton into a timed game automaton
by distinguishing controllable and uncontrollable actions and applying the synthesis
algorithm. There are currently several choices for timed synthesis tools divided into
two major families depending one whether discrete or dense time tools are used.6

6 Contrary to commonly-held beliefs, the important point of timed automata is not the density
of time but thesymbolictreatment of timing constraints using addition and inequalities rather
than state enumeration.



– Discrete time: the logic and the automata are interpreted over the time domainN. A
major advantage of this approach is that the automaton becomes finite state and can
be subject to symbolic verification and synthesis using BDDs, which is very useful
when the discrete state space is large. On the other hand, thesensitivity of discrete
time analysis to the size of the constants is much higher and will lead to explosion
when they are large. Discrete-time synthesis of scheduler for fairly-large systems
has been reported in [KY03].

– Dense time: here we have the opposite problem, namely there is a compactsym-
bolic representation of subsets of the clock space, but the discrete states are enu-
merated. Several implementations of synthesis algorithmsbased on [MPS95] exist.
One is the toolSynthKro included in the standard distribution of Kronos and
described in [AT02], which works by standard fixpoint computation. Another al-
ternative, which restricts the algorithm to work only on thereachable part of the
state space is the toolFlySynth which refines the reachability graph of the game
automaton according to the time-abstract bisimulation relation [TY01] yielding a
finite quotient to whichuntimedsynthesis algorithms can be applied [TA99]. Fi-
nally, the toolUppaal-Tiga improves upon these ideas by combining forward
and backward search, resulting in the most “on-the-fly” algorithm for timed syn-
thesis [CDF+05] and probably the most effective existing tool for timed synthesis.

We have conducted our first experiments in discrete time using a synthesis algo-
rithm implemented on top of the tool TLV, while working on theimplementation of an
improved dense time algorithm combining ideas from [TY01] and [CDF+05].

4.2 Example: Deriving an Arbiter

To demonstrate our approach we present a bounded-future specification of anarbiter
module whose architectural layout is shown in Figure 4-(a).The arbiter is expected
to allocate a single resource amongn clients. The clients post theirrequestsfor the
resource on the input portsr1, . . . , rn and receive notification of theirgrantson the
arbiter’s output portsg1, . . . , gn. The protocol of communication between each client
and the arbiter follows the cyclic behavior described in Figure 4-(b,c).

ri gi

ri gi ri gi

ri gi

d2 d1 d3

r

g

(b) (c)(a)

· · · · · ·Arbiter
r1

rn

g1

gn

Fig. 4. (a) The architecture of an Arbiter; (b) The communication protocol between the arbiter
and clienti. Uncontrollable actions of the client (environment) are drawn as solid arrows, while
controllable actions which are performed by the arbiter (controller) drawn as dashed arrows; (c)
A typical interaction between the arbiter and a client.



In the initial state bothri andgi are low (0). Then, the client acts first by setting
ri to high (1) indicating a request to access the shared resource. Next, it is the turn of
the arbiter to respond by raising thegrant signalgi to high. Sometimes later, the client
terminates and indicates its readiness to relinquish the resource by loweringri. The
arbiter acknowledges the release of the resource by lowering down the grant signalgi.

We structure the specification into subformulaeIE , IC , SE , SC , LE andLC de-
noting, respectively, the initial condition, safety component, and (bounded) liveness
components of the environment (client) and the controller (arbiter). They are given by

IE :
∧

i ri

IC :
∧

i gi

SE :
∧

i ri =⇒ riS(ri ∧ gi)) ∧
∧

i(ri =⇒ ri B(ri ∧ gi))
SC :

∧
i(gi =⇒ giS(ri ∧ gi)) ∧

∧
i(gi =⇒ gi B(ri ∧ gi))

LE :
∧

i(gi =⇒ � [0,d1]
ri)

LC :
∧

i(ri =⇒ � [0,d2]
gi) ∧

∧
i(ri =⇒ � [0,d3]

gi)

The initial-condition requirementsIE and IC state that initially all variables are
low. The safety requirementsSE andSC ensure that the environment and arbiter con-
form to the protocol as described in Figure 4-(b). In the untimed case, this is usually
specified using the next-time operator� but in dense time specify these properties us-
ing the the untimed pastS andB operators.Thus, the requirement(ri =⇒ riS(ri ∧ gi))
states that ifri is currently high, it must have been continuously high sincea preceding
state in which bothri andgi were low. The reader can verify that the combination of
the safety properties enforces the protocol.

The (bounded) liveness propertygi =⇒ � [0,d1]
ri requires that ifgi holds then

within b time units, clientCi should release the resource by loweringri. The property
(ri =⇒ � [0,d2]

gi) specifies quality of service by saying that every client getsthe
resource at mostd2 time after requesting it. Finally, propertyri =⇒ � [0,d3]

gi

requires that the arbiter senses the release of the resourcewithin d3 time and considers
it available for further allocations. Note that the required response delays for the various
properties employ different time constants. This is essential, because the specification
is realizable only ifd2, the time bound on raisingg, is at leastn(d1 + d3). This reflects
the “worst-case” situation that all clients request the resource at about the same time,
and the arbiter has to service each of them in turn, until it gets to the last one.

The various components are combined into a singleMTL -B formula by transforming
them to past formulae and requiring that the controller doesnot violate its requirements
as long as the environment does not violate hers:

(IE =⇒ IC) ∧ � ( � (Π(SE) ∧ Π(LE)) =⇒ (Π(SC) ∧ Π(LC))) (2)

Below we report some preliminary experiments in automatic synthesis of the arbiter.
Table 1 shows the results of applying the procedure to Equation (2) withd3 = 1 and
d1 (the upper bound on the execution time of the client) varyingbetween2 and 4.
TheN column indicates the number of clients, theSizecolumn indicate the number of
BDD nodes in the symbolic representation of the transition relation of the synthesized



automaton andTimeindicates the running time (in seconds) of the synthesis procedure.
As one can see, there is a natural exponential growth inN and also ind2 as expected
using discrete time.

N d1 d2 Size Time d1 d2 Size Time d1 d2 Size Time
2 2 4 466 0.00 3 5 654 0.01 4 6 946 0.02
3 2 8 1382 0.14 3 10 2432 0.34 4 12 4166 0.51
4 2 12 4323 0.63 3 15 7402 1.12 4 18 16469 2.33
5 2 16 13505 1.93 3 20 26801 4.77 4 24 50674 10.50
6 2 20 43366 8.16 3 25 84027 22.55 4 30 168944 64.38
7 2 24 13893744.38 3 30 297524204.56 4 36 7001261897.56

Table 1.Results ford1 = 2, 3, 4.

5 Conclusions and Future Work

We have made an important step toward making synthesis a usable technology by sug-
gestingMTL -B as a suitable formalism that can handle a variety of bounded response
properties encountered in the development of real-time systems. We have provided a
novel translation form real-time temporal logic to deterministic timed automata via
transformation to past formulae and using the reasonable bounded-variability assump-
tion. We have demonstrated the viability of this approach byderiving a non-trivial ar-
biter from specifications.

In the future we intend to focus on efficient symbolic algorithms in the spirit of
[CDF+05] and conduct further experiments in order to characterize the relative merits
of discrete and dense-time algorithms. We also intend to apply the synthesis algorithm
to more complex specifications of real-time scheduling problems.
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