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Abstract. We propose a declarative measurement specification language
for quantitative performance evaluation of hybrid (discrete-continuous)
systems based on simulation traces. We use timed regular expressions
with events to specify patterns that define segments of simulation traces
over which measurements are to be taken. In addition, we associate mea-
sure specifications over these patterns to describe a particular type of per-
formance evaluation (maximization, average, etc.) to be done over the
matched signal segments. The resulting language enables expressive and
versatile specification of measurement objectives. We develop an algo-
rithm for our measurement framework, implement it in a prototype tool,
and apply it in a case study of an automotive communication protocol.
Our experiments demonstrate that the proposed technique is usable with
very low overhead to a typical (computationally intensive) simulation.

1 Introduction

Verification consists in checking whether system behaviors, sequences of states
and events, satisfy some specifications. These specifications are expressed in a
formalism, for example temporal logic, with well-defined semantics such that
the satisfaction or violation of a property ϕ by a behavior w can be computed
based on ϕ and w. To perform exhaustive formal verification, property ϕ is
typically converted into an automaton A¬ϕ that accepts only violating sequences
which is later composed with the system model and checked for emptiness. Such
specifications are also used in a more lightweight and scalable form of verification
(known as runtime verification in software and assertion checking in hardware)
where individual behaviors are checked for property satisfaction. In this context,
the formal specification language can be used to automatically derive property
monitors rather than inspect execution traces manually or program monitors by
hand. The specification formalism allows us to focus on the observable properties
of the system we are interested in and write them in a declarative way, separated
from their implementation. It is this concept that we export from the qualitative
to the quantitative world.

Properties offer a purely qualitative way to evaluate systems and their be-
haviors: correct or incorrect. There are many contexts, however, where we want
also to associate quantitative measures with systems and their executions. Con-
sider for example a real-time system with both safety-critical and non-critical
aspects, evaluated according to the temporal distance between pairs of request



and service events. Its safety-critical part will be evaluated according to whether
some distance goes beyond a hard deadline. In contrast, its non-critical part is
typically evaluated based on quality-of-service performance measures which are
numerical in nature, such as the average response time or throughput.

Quantitative measures are used heavily in the design of cyber-physical sys-
tems involving heterogeneous components of computational and physical na-
tures. Such systems exhibit continuous and hybrid behaviors and are often de-
signed using modeling languages such as Simulink, Modelica or hardware de-
scription languages. These models are analyzed using a combination of numer-
ical and discrete-event simulation, producing traces from which performance
measures are extracted to evaluate design quality. Measures are computed by
applying various operations such as summation/integration, arithmetical opera-
tions, max-min, etc. to certain segments of the simulation trace. The boundaries
of these segments are defined according to the occurrence of certain events and
patterns in the trace. When the measures are simple they are realized by in-
serting additional observer blocks to the system model but when they are more
complex, they are extracted using manually-written (and error prone) procedural
scripts that perform computations over the traces.
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Fig. 1. Stopping distance measurement for anti-lock brake systems.

We illustrate how measurements can be used to compare two correct im-
plementations of an anti-lock brake system (ABS), which prevents wheels from
locking during heavy braking or on slippery roads. Figure 1 depicts braking con-
trol signals b1 and b2 and velocity signals v1 and v2 for two controller models C1

and C2. The driver starts to brake fully at t = r and then the ABS takes control
at t = s and applies rapid pulsation to prevent locking. Both controllers C1

and C2 satisfy the anti-lock property but we also want to compare the distance
covered during their respective breaking periods. These periods are identified as
those where signal b matches some braking pattern, and are the intervals (r, t1)
for C1 and (r, t2) for C2. Integrating vi over respective intervals (r, ti) for i = 1..2
we get a numerical measure and conclude that C1 performs better.



In this paper we propose a declarative and formal measure specification lan-
guage for automatically extracting measures from hybrid discrete-continuous
traces. The patterns that define the scope of measurements are expressed using
a variant of the timed regular expressions (tre) of [3, 2], specially adapted for
this purpose by adding preconditions, postconditions and events. An additional
language layer is used to define the particular measures applied to the matching
segments. The actual extraction of the measures takes advantage of the recent
pattern matching procedure introduced in [19] for computing the set of segments
of a Boolean signal that match a timed regular expression. In the general case,
the number of such matches can be uncountable and the procedure of [19] repre-
sents them as a finite union of zones. In our language, where pattern boundaries
are punctual events, we obtain a finite number of matches.

The resulting framework provides a step toward making the common prac-
tice of quantitative measurement extraction more rigorous, bridging the gap
between qualitative verification and quantitative performance evaluation. We
demonstrate the applicability of our approach using the Distributed System In-
terface (DSI3) standard protocol [15] developed by the automotive industry. We
formalize in our language measurements of some features described in the stan-
dard, extract them from simulation traces and report the performance of our
prototype implementation.

Related Work

The approach proposed in this paper builds upon the timed regular expressions
introduced in [3, 2] and shown there to be equivalent in expressive power to timed
automata. We omit the renaming operator used for this expressivity theoretical
result and enrich the formalism with other features that lead to a pattern lan-
guage dedicated to measurements, which we call conditional tre. Precondition
and postcondition constraints allow us to express zero-duration events such as
rising and falling edges of dense-time Boolean signals. Focusing on patterns that
start and end with an event, the pattern matching algorithm of [19] returns a
finite number of matching segments.

Our approach differs in several respects from monitoring procedures based
on real-time temporal logics and their extensions to real-valued signals such as
STL [16]. In a nutshell here is the difference between satisfaction in temporal
logic and matching in regular expression. For any temporal logic with future
operators, satisfaction of ϕ by a behavior w is defined as (w, 0) |= ϕ. To compute
this satisfaction value of ϕ at 0 we need to compute (w, t) |= ψ for some sub-
formulas ψ of ϕ and some time t ≥ 0, in other words determine whether some
suffix of w satisfies ψ. This can be achieved by associating with every formula ϕ
a satisfaction signal relative to w which is true for every t such that (w, t) |= ϕ.
On the other hand, the matching of a regular expression ϕ in w is not defined
relative to a single time point but to a pair of points (t, t′) such that the segment
of w between t and t′ satisfies the expression. This property of regular expressions
makes them ideal for defining intervals that match patterns.



The recent work on assertion-based features [7] is similar in spirit to ours.
The authors propose an approach for quantitative evaluation of mixed-signal
design properties expressed as regular expressions. In contrast to our work, the
regular expressions are extended with local variables, which are used to explicitly
store values of interest, such as the beginning and the end time of a matched
pattern. This work addresses the problem of measuring properties (features) of
hybrid automata models using formal methods. We also mention the extension
to tre proposed in [13] that combines specification of real-time events and states
occurring in continuous-time signals. Their syntax and primitive constructs are
inspired by and extend industrial standards PSL [10] and SVA [20]. This work
focuses on a translation from tre to timed automata acceptors, but does not
address the problem of pattern matching an expression on a concrete trace.

In the context of modeling resource-constrained computations, quantitative
languages [6] were studied as generalizations of formal languages in which traces
are associated with a real number rather than a Boolean value. The authors use
weighted automata to define several classes of quantitative languages and de-
termine the trace values by computing maximum, limsup, liminf, limit average
and discounted sum over a (possibly infinite) trace. The ideas of quantitative
languages are further extended in [14], by defining the model measuring prob-
lem. The model checking problems of TCTL and LTL are extended in [21, 11, 1]
to a model measuring paradigm by parameterizing the bounds of the temporal
operators. The authors propose algorithms for identifying minimum and max-
imum parameter values for which the model satisfies the temporal formula. A
similar extension is proposed in [4] for signal temporal logic (STL), where both
the temporal bounds and real-valued thresholds are written as parameters and
inferred from signals. Robust interpretation of temporal logic specifications [12,
9, 8] is another way to associate numbers with traces according to how strongly
they satisfy or violate a property.

Hardware designers and others who use block diagrams for control and signal
processing often realize measurement using additional observer blocks, but these
are restricted to online measurements. As a result commercial circuit simulation
suites offer scripting languages or built-in functions dedicated to measurement
extraction, such as the .measure (Synopsys) and .extract (Mentor Graphics)
libraries. The former is structured according to the notion of trigger and tar-
get events, the measurement being performed on the segment(s) of the trace
in between. This is particularly suited for timing analysis such as rise-time or
propagation time. The latter is more general but relies mostly on functional com-
position. Absolute time of events in the trace can be found by threshold crossing
functions, and then passed on as parameters to other measurement primitives to
apply an aggregating function over suitable time intervals. In the approach we
propose, one gains the expressiveness of the language of timed regular expres-
sion, that allow to detect complex sequences of events and states in the trace.
This facilitates repeated measurements over a sequence of specified patterns, by
clearly separating the behavior description from the measure itself.



2 Timed Regular Expression Patterns

In this section, we first recall the definition of the timed regular expressions (tre)
from [19]. Such expressions were defined over Boolean signals and in order to use
them for real-valued signals we add predicates on real values to derive Boolean
signals. This straightforward extension is still not entirely suitable for defining
measurement segments, for the simple reason that an arbitrary regular expres-
sion may have infinitely many matches. For example an atomic proposition p is
matched by all sub-segments of a dense-time Boolean signal where p continu-
ously holds. Consequently in the second part of this section, we propose a novel
extension that we call conditional timed regular expressions (ctre). This exten-
sion enables to condition the match of a tre to a prefix and suffix, and allows
defining events of zero duration. We define a restriction to ctre, that we call
event-bounded timed regular expressions (e-tre), which guarantees that the set
of patterns matching a e-tre is always finite. Thanks to this finiteness prop-
erty, we will use e-tre as the main building block in defining our measurement
specification language.

2.1 Timed Regular Expressions

Let X and B be sets of real and propositional variables and w : [0, d]→ Rm×Bn,
wherem = |X| and n = |B|, a multi-dimensional signal of length d. For a variable
v ∈ X ∪B we denote by πv(w) the projection of w on its component v.
A propositional variable b ∈ B admits a negation ¬b, which value at time t is
the opposite of that of b. For θ a concrete predicate R → B we may create a
propositional symbol θ(x) which interpretation at time t will be given by the
evaluation of θ on the value of real variable x at time t. We define the projection
of w on ¬b by letting π¬b(w)[t] = 1 − πb(w)[t], and the projection of w on
θ(x) by letting πθ(x)(w)[t] = θ(πx(w)[t]). A proposition p is taken to be either a
variable b ∈ B, a predicate θ(x) over some real variable x, or their negation ¬b
and ¬θ(x) respectively. We assume a given set of real predicates and take P the
set of propositions derived from real and propositional variables as described. A
signal is said to have finite variability if for every proposition p ∈ P the set of
discontinuities of πp(w) is finite.

We now define the syntax of timed regular expressions according to the fol-
lowing grammar:

ϕ := ε | p | ϕ1 · ϕ2 | ϕ1 ∪ ϕ2 | ϕ1 ∩ ϕ2 | ϕ∗ | 〈ϕ〉I

where p is a proposition of P , and I is an interval of R+.

The semantics of a timed regular expression ϕ with respect to a signal w
and times t ≤ t′ in [0, d] is given in terms of a satisfaction relation (w, t, t′) |= ϕ



inductively defined as follows:

(w, t, t′) |= ε ↔ t = t′

(w, t, t′) |= p ↔ t < t′ and ∀ t < t′′ < t′, πp(w)[t′′] = 1
(w, t, t′) |= ϕ1 · ϕ2 ↔ ∃ t ≤ t′′ ≤ t′, (w, t, t′′) |= ϕ1 and (w, t′′, t′) |= ϕ2

(w, t, t′) |= ϕ1 ∪ ϕ2 ↔ (w, t, t′) |= ϕ1 or (w, t, t′) |= ϕ2

(w, t, t′) |= ϕ1 ∩ ϕ2 ↔ (w, t, t′) |= ϕ1 and (w, t, t′) |= ϕ2

(w, t, t′) |= ϕ∗ ↔ (w, t, t′) |= ε or (w, t, t′) |= ϕ · ϕ∗
(w, t, t′) |= 〈ϕ〉I ↔ t′ − t ∈ I and (w, t, t′) |= ϕ

Following the definitions in [19], we characterize the set of segments of w
that match an expression ϕ by their match set. The match set of expression ϕ
over w is the set of all pairs (t, t′) such that the segment of w between t and t′

matches ϕ.

Definition 1 (Match Set). For any signal w and expression ϕ, we define their
match set as

M(ϕ,w) := {(t, t′) ∈ R2 | (w, t, t′) |= ϕ}

We recall that a match set is a subset of [0, d] × [0, d] confined to the upper
triangle defined by t ≤ t′ taking t, t′ the first and second coordinates of R2.
It has been established that such a set can always be represented as a finite
union of zones. In Rn, zones are a special class of convex polytopes definable by
intersections of inequalities of the form xi ≥ ai, xi ≤ bi and xi − xj ≤ ci,j or
corresponding strict inequalities. We say that a zone is punctual when the value
of each variable is uniquely defined, with for instance ai = bi for all i = 1..n. We
use zones in R2 to describe the relation between t and t′ in a match set.

Theorem 1 ([19]). For any finite variability signal w and tre ϕ, the set
M(ϕ,w) is a finite union of zones.

2.2 Conditional TRE

We propose in the sequel conditional timed regular expressions (ctre) that ex-
tend tre. This extension enables to condition the match of a tre to a prefix
or a suffix. We introduce in the syntax of ctre two new binary operators, “?”
for preconditions, and “!” for postconditions. For some expressions ϕ1 and ϕ2

a trace w matches the expression ϕ1 ?ϕ2 at (t, t′) if it matches ϕ2 and there
is an interval ending at t where w matches ϕ1. Symmetrically w matches the
expression ϕ1 !ϕ2 at (t, t′) if it matches ϕ1 and there is an interval beginning at
t′ where w matches ϕ2. We define formally the semantics of these operators for
ϕ1, ϕ2 arbitrary ctre and w an arbitrary signal as follows:

(w, t, t′) |= ϕ1 ?ϕ2 ↔ (w, t, t′) |= ϕ2 and ∃t′′ ≤ t, (w, t′′, t) |= ϕ1

(w, t, t′) |= ϕ1 !ϕ2 ↔ (w, t, t′) |= ϕ1 and ∃t′′ ≥ t′, (w, t′, t′′) |= ϕ2

A precondition ϕ1 and a postcondition ϕ3 can be associated to an expression ϕ2

independently as we have ϕ1 ?(ϕ2 !ϕ3) ≡ (ϕ1 ?ϕ2) !ϕ3 so that such expressions



may be noted ϕ1 ?ϕ2 !ϕ3 without ambiguity. Associating several conditions can
form a sequential condition as with (ϕ1 ?ϕ2) ?ϕ3 ≡ (ϕ1 · ϕ2) ?ϕ3, or conjoint
conditions as with ϕ1 ?(ϕ2 ?ϕ3) ≡ (ϕ1 ?ϕ3) ∩ (ϕ2 ?ϕ3). There are further rela-
tionships with respect to other tre operators, which we will not detail.

2.3 TRE with Events

Another important aspect of ctre is that they enable defining rise and fall
events of zero duration associated to propositional terms. The rise edge ↑ p associ-
ated to the propositional term p is obtained by syntactic sugar as ↑ p := ¬p ? ε ! p,
while the fall edge ↓ p corresponds to ↓ p := ↑¬p. We now define a restriction of
ctre that we call tre with events. This sub-class of ctre consists of restricting
the use of conditional operators to the definition of events. The introduction of
events in tre still guarantees the finite representation of their match set.

Corollary 1 (of Theorem 1). For any finite variability signal w and tre with
events ϕ, the set M(ϕ,w) is a finite union of zones.

Proof. By induction on the expression structure. For expressions of the form
ϕ = ↑ p, the match set M(ϕ,w) is of the form {(t, t) : t ∈ R}. By finite
variability hypothesis R is finite as contained in the set of discontinuities of p,
and in particularM(ϕ,w) is a finite union of punctual zones. All other operators
are part of the grammar of timed regular expressions, and the proof of Theorem 1
grants us the property.

In what follows we consider events to be part of the syntax of timed regular
expressions, and will just write tre instead of tre with events.

Remark Our support for events is minimal as compared to the real-time regu-
lar expressions of [13] where the authors use special operators ##0 and ##1 for
event concatenation. Their work extends discrete-time specification languages,
which have the supplementary notion of clocks noted @(↑ c) with c a Boolean
variable, and the implicit notion of clock context. A clock @(↑ c) can then be
used in conjunction with a proposition p to form a clocked event noted @(↑ c) p.
Such an event allows to probe the value of p at the exact times where ↑ c occurs,
which we did not consider. Assuming we dispose of atomic expressions @(↑ c) p
holding punctually at times such that ↑ c occurs and p is true, the event con-
catenation ##1 can be emulated by @(↑ c) p ##1 @(↑ d) q ≡ @(↑ c) p·d∗ ·¬d · @(↑ d) q.

We now say that a tre is event-bounded when of the form ↑ p, ψ1 · ϕ · ψ2,
ψ1 ∪ ψ2, or ψ1 ∩ ϕ with p a proposition, and ψ1, ψ2 event-bounded tre. Such
expressions, that we call e-tre for short, have an important “well-behaving”
property as follows. Given an arbitrary finitely variable signal w, an e-tre can
be matched in w only a finite number of times. In the following lemma, we
demonstrate that the match set for arbitrary finite signal w and e-tre ψ consists
of a finite number of points (t, t′) with t an occurrence of a begin event and t′

an occurrence of an end event.



Lemma 1. Given an e-tre ψ and a signal w, their associated match setM(ψ,w)
is finite.

Proof. By induction on the expression structure. Consider an arbitrary signal w
and an event ↑ p; by finite variability assumption there are finitely many time
points in w where ↑ p occurs, so that its match set relatively to w is finite. Now
let ψ be an e-tre of the form ψ = ψ1 · ϕ · ψ2. The signal w matches ψ on the
segment (t, t′) if and only if there exists some times s and s′ such that w matches
ψ1 on (t, s) and matches ψ2 on (s′, t′). By induction hypothesis there are finitely
many such times t, t′, s and s′ so that ψ itself has a finite number of matches.
One can easily see that the finiteness of the match set is also preserved by unions
and intersections ψ1 ∪ ψ2 and ψ1 ∩ ϕ, which concludes our proof.

3 Measuring with Conditional TRE

In this section, we propose a language for describing mixed-signal measures, and
a procedure to compute such measures. In our approach, we will use measure
patterns based on timed regular expressions to specify signal segments of interest.
More precisely, a measure pattern consists of three parts: (1) the main pattern;
(2) the precondition; and (3) the postcondition. The main pattern is an e-tre
that specifies the portion of the signal over which the measure is taken. Using
e-tre to express main patterns ensures the finiteness of signal segments, while
pre- and post- conditions expressed as general tre allow to define additional
constraints. We formally define measure patterns as follows.

Definition 2 (Measure Pattern). A measure pattern ϕ is a ctre of the form
α ?ψ !β, where α and β are tre, while ψ is an e-tre

Note that preconditions and postconditions can be made optional by using ε as
we have ε ?ϕ ≡ ϕ and ϕ ! ε ≡ ϕ. In what follows we may use simpler formulas to
express their semantic equivalent, for instance writing ϕ to refer to the measure
pattern ε ?ϕ ! ε.

According to previous definitions, the match set of a measure pattern α ?ψ !β
gives us the set of all segments of the signal, represented as couples (t, t′), such
that (w, t, t′) |= ψ, and w satisfies both the precondition α before t and the
postcondition β after t′.

Proposition 1. For any signal w and a pattern ϕ = α ?ψ !β, their associated
match set set is given by

M(ϕ,w) = {(t, t′) : ∃s ≤ t ≤ t′ ≤ s′, (w, s, t) |= α
and (w, t, t′) |= ψ
and (w, t′, s′) |= β }

Theorem 2 (Match set Finiteness). For any signal w and measure pattern
ϕ = α ?ψ !β, their associated match set M(ϕ,w) is finite.



Proof. This is a direct consequence of Lemma 1. The setM(ϕ,w) is included in
M(ψ,w), which makes it finite.

The match set of a measure pattern may be obtained by selecting the punc-
tual zones ofM(ψ,w) that meet a zone ofM(α,w) at the beginning, and a zone
of M(β,w) at the end. Match sets of arbitrary tre are computable following
the proof of Theorem 1. The overall procedure to compute the match set of a
measure pattern appears as Algorithm 1. It uses the procedure zones(ϕ,w) as
appearing in [19] which returns a set of zones whose union is equal to M(ϕ,w)
for any timed regular expression ϕ and signal w. For a zone z we denote by π1(z)
and π2(z) projections on its first and second coordinates respectively.

Algorithm 1 Computation of the match set M(ϕ,w).

Require: measure pattern ϕ = α ?ψ !β, signal w
Ensure: M(ϕ,w)
1: M(ϕ,w)← ∅
2: Zα ← zones(α,w)
3: Zβ ← zones(β,w)
4: Zψ ← zones(ψ,w)
5: for all {(t, t′)} ∈ Zψ do
6: for all z ∈ Zα, z′ ∈ Zβ do
7: if t ∈ π2(z) and t′ ∈ π1(z′) then
8: M(ϕ,w)←M(ϕ,w) ∪ {(t, t′)}
9: end if

10: end for
11: end for
12: return M(ϕ,w)

The computation of a match set for a measure pattern ϕ and a signal w
enables powerful pattern-driven performance evaluation of hybrid or continuous
systems. Once the associated match setM(ϕ,w) is computed, we propose a two
stage analysis of signals.

In the first step, we compute a scalar value for each segment of w that
matches ϕ, either from absolute times of that match, or from the values of a
real signal x in w during that match. A measure is then written with the syntax
op(ϕ) with op ∈ {time, valuex, duration, infx, supx, integralx, averagex} being some
sampling or aggregating operator. The semantics [[ ]]w of these operators is given
in Table 1; it associates to a measure op(ϕ) and trace w a multiset containing
the scalar values computed over each matched interval.1

In the second step, we reduce the multiset of scalar values computed over
the signal matched intervals in M(ϕ,w) to a single scalar. Typically, given the
multiset A = [[op(ϕ)]]w of scalar values associated with these signal segments, this

1 We use multiset semantics as several patterns may have exactly the same measured
value, in which case set semantics would not record its number of occurrences.



Table 1. Standard measure operators.

[[time(↑ p)]]w = {t : (t, t) ∈M(↑ p, w)}
[[valuex(↑ p)]]w = {πx(w)[t] : (t, t) ∈M(↑ p, w)}
[[duration(ϕ)]]w = {t′ − t : (t, t′) ∈M(ϕ,w)}
[[infx(ϕ)]]w = {mint≤τ≤t′ πx(w)(τ) : (t, t′) ∈M(ϕ,w)}
[[supx(ϕ)]]w = {maxt≤τ≤t′ πx(w)(τ) : (t, t′) ∈M(ϕ,w)}
[[integralx(ϕ)]]w = {

∫ t′
t
πx(w)(τ)dτ : (t, t′) ∈M(ϕ,w)}

[[averagex(ϕ)]]w = { 1
t′−t

∫ t′
t
πx(w)(τ)dτ : (t, t′) ∈M(ϕ,w)}

phase consists in computing standard statistical indicators over A, such as the
average, maximum, minimum or standard deviation. This final step is optional,
the set of basic measurements sometimes provides sufficient information.

Anti-lock Brake System Example We now refer back to our first example
from Figure 1 and propose measure pattern formalization to evaluate perfor-
mance of the controller. We first formalize the pattern of a brake control signal
b under a (heavy) braking situation. The main pattern ψ starts with a rise event
on b and a braking period with the duration in I, continues with one or more
pulses with duration in J , and ends with a fall event on b:

ψ := ↑ b · 〈b〉I · 〈¬b · b〉+J · ↓ b

We also need to ensure that the speed should be zero at the end of braking
situation, with the postcondition β := (v ≤ 0). Finally, we can measure the
stopping distance using the expression

integralv(ψ !β)

integrating v over intervals matching the measure pattern.

4 Case Study

4.1 Distributed Systems Interface

Distributed systems interface (DSI3) is a flexible and powerful bus standard [15]
developed by the automotive industry. It is designed to interconnect multiple
remote sensor and actuator devices to a controller. The controller interacts with
the sensor devices via so-called voltage and current lines. In this paper we focus
on two phases of the DSI3 protocol:

– the initialization phase called the discovery mode;

– one of the stationary phases called the command and response mode.



In the discovery mode, prior to any interaction the power is turned on, resulting
in a voltage ramp from 0V to Vhigh. The communication is initiated by the
controller that probes the presence/absence of sensors by emitting analog pulses
on the voltage line. Connected sensor devices respond in turn with another pulse
sent over the current line. At the end of this interaction, a final short pulse is
sent to the sensors interfaces, marking the end of the discovery mode.
In the command and response mode, the controller sends a command to the
sensor as a series of pulses (or pulse train) on the voltage line, which transmits
its response by another pulse train on the current line. For power-demanding
applications the command-response pairs are followed by a power pulse, which
goes above Vhigh. This allows the sensor to load a capacitor used for powering
its internal operation.

The DSI3 standard provides a number of ordering and timing requirements
that determine correct communication between the controller and the sensor de-
vices: (1) minimal time between the power turned on and first discovery pulse;
(2) maximal duration of discovery mode; (3) expected time between two con-
secutive discovery pulses; (4) expected time between command and response.
Figure 2 illustrates the discovery mode in the DSI3 protocol and provides a
high-level overview of its ordering and timing requirements. In this example, the
controller probes five sensor interfaces.

(1) (4) (3)

(2)

Discovery response

Power ramp Discovery pulse End discovery pulse

0

Vlow

Vhigh

0

I2resp

Iresp

v

i

Fig. 2. DSI3 discovery mode – overview.

The correctness of a DSI3 protocol implementation in an automotive airbag
system was studied in [17]. The above requirements were formalized as assertions
expressed in signal temporal logic (STL) and the monitoring tool AMT [18] was
used to evaluate the simulation traces. In this paper we do more than checking
correctness, but evaluate the performance of a controller and sensor implemen-
tation. We use measure patterns to specify signal segments of interest and define
several measures within the framework introduced in Section 3. We study two
specific measures: (1) the time between consecutive discovery pulses; and (2) the
amount of energy transmitted to the sensor through power pulses.



In order to generate simulation traces, we model our system as follows: the
controller is a voltage-source, and the sensor is a current-source in parallel with a
resistive-capacitive load. The schematic is shown in Figure 3. During the discov-
ery phase the load is disabled; the voltage source generates randomized pulses in
which the time between two discovery pulses has a Gaussian distribution with
a mean of 250µs and a standard deviation of 3.65µs. During the power pulses
of the command and response mode, the load is enabled and randomized, with
C = 120nF and R uniformly distributed in the range [25Ω, 35Ω]. Threshold
levels are 4.6V low, 7.8V high, 8.3V power, and 11.5V idle.

e(t) a(t)

R

C

Controler Sensor

i

v

Fig. 3. Electrical model of the system.

4.2 Measurements

Time between consecutive discovery pulses In order to characterize a
discovery pulse, we first define three regions of interest – when the voltage v is
(1) below Vlow; (2) between Vlow and Vhigh; and (3) above Vhigh. We specify these
regions with the following predicates:

vl ≡ v ≤ Vlow
vb ≡ Vlow ≤ v ≤ Vhigh
vh ≡ v ≥ Vhigh

Next, we describe the shape of a discovery pulse. Such a pulse starts at the
moment when the signal v moves from vh to vb. The signal then must go into vl,
vb and finally come back to vh. In addition to its shape, the DSI3 specification
requires the discovery pulse to have a certain duration between some dmin and
dmax. This timing requirement allows distinguishing a discovery pulse from other
pulses, such as the end-of-discovery pulse. We illustrate the requirements for a
discovery pulse in Figure 4-a and formalize it with the following e-tre:

ψdp ≡ ↓ (vh) · 〈vb · vl · vb〉[dmin,dmax]· ↑ (vh)



In order to measure the time between consecutive discovery pulses, we need
to characterize signal segments that we want to measure. The associated pattern
shall start at the beginning of a discovery pulse and end at the beginning of the
next one, as depicted by the ψ region in Figure 4-a. It consists of a discovery
pulse ψdp, followed by the voltage signal being in the vh region, and terminating
when the voltage leaves vh. This description is not sufficient – we also need to
ensure that this segment is effectively followed by another discovery pulse. Hence
we add a postcondition that specifies this additional constraint. The measure
pattern ϕ1 ≡ α1 ?ψ1 !β1 is formalized as follows.

α1 ≡ ε
ψ1 ≡ ψdp · vh· ↓ (vh)
β1 ≡ ψdp

Finally, we evaluate the measure expression µ1 := duration(ϕ1) over signal w.

time between 2 consecutive pulses

∈ [dmin, dmax]

ψ β

↓ (vh)

Vlow

Vhigh

vb vbvl

vhṙdp ṙdp

↓ (vh) ↑ (vh)

(a)

Power Phase

i

Vpwr

Vidle

(b)

Fig. 4. (a) Consecutive discovery pulses with timing; (b) Power pulse and flow.

Energy transfer from controller to sensor In the DSI3 protocol, the dis-
covery mode can be followed by a stationary command and respond mode. A
command and respond mode sequence is a pulse train that consists of a command
subsequence in the form of potential pulses between Vhigh and Vlow, a response
subsequence by means of current pulses between 0 and Iresp, and finishes by a
power pulse rising to potential Vidle in which a large current can be drawn by
the sensor. We first characterize the power pulse as depicted in Figure 4-b. It
occurs when the voltage goes from below Vpwr to above Vidle, and back under
Vpwr. The three regions of interest are specified with the following predicates.

vh ≡ v ≥ Vpwr

vt ≡ Vpwr ≤ v ≤ Vidle
vp ≡ v ≥ Vidle

Hence the pattern specifying a power pulse is expressed as

ψ2 ≡ ↑(vh) · vt · vp · vt · ↓(vh)



The measure pattern does not have pre- or post-conditions as all other commu-
nications occur with v below Vidle, hence α2 = β2 = ε. The measure pattern ϕ2

is equivalent to its main pattern ψ2. Given v the voltage and i the current on
the communication line, the energy transfered to the sensor is given by the area
under the signal v × i between the start and end of power pulse. We assume
that such a signal is given in the simulation trace w, and evaluate the measure
expression µ2 := integralv×i(ψ2) over signal w.

4.3 Experimental Results

We extended the prototype tool developed in [19] with algorithms for matching
zero-duration events and conditional tre as appearing in measure patterns, and
with the support of measure operations introduced in Section 3. The implemen-
tation was done in Python and uses the C library from IF [5] for computing
operations on zones. For our experiment we apply a scenario according to which
our electrical model is switched on/off 100 times in sequence to stress the discov-
ery mode of DSI3. The set of traces we generate conform to the discovery, and
command-and-response modes of the protocol. We then compute match sets
for properties presented in Section 4.2 over these simulation traces using our
prototype implementation. In Figure 5, we depict measurement results using
histograms. The distribution of the times between two discovery pulses follows a
normal distribution according to the timing parameters used to generate it. The
energy transfered to the sensor through power pulses has a flatter distribution
as the result of a uniformly distributed load resistance value.
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Fig. 5. (a) Distribution of µ1, the time between two consecutive discovery pulses; (b)
Distribution of µ2, the energy transmitted per power pulse.



We then compared the execution times to compute measurements, using a
periodic sampling with different sampling rates – note that our method supports
variable step sampling without extra cost. The computation times are given in
Table 2 with the detailed computation time needed for predicate evaluation (Tp),
match set computation (Tm), measure aggregation (Ta) and total computation
time (T ). Computation of match sets does not depend on the number of samples
but on the number of uniform intervals of atomic propositions; evaluation of real
predicates by linear interpolation, and computing measures like integration can
be done in time linear in the number of samples.

Table 2. Computation times (s)

Measure µ1 Measure µ2

# samples Tp Tm Ta T Tp Tm Ta T

1M 0.047 0.617 0.000 0.664 0.009 0.004 0.011 0.024
5M 0.197 0.612 0.000 0.809 0.050 0.005 0.047 0.103
10M 0.386 0.606 0.000 0.992 0.101 0.005 0.100 0.216
20M 0.759 0.609 0.000 1.368 0.203 0.005 0.260 0.468

5 Conclusion and Future Work

We presented a formal measurement specification language that can be used
for evaluating cyber-physical systems based on their simulation traces. Starting
from a declarative specification of the patterns that should be matched in the
segments to be measured, we apply a pattern matching algorithm for timed
regular expressions to find out the scope of measurements. The applicability of
our framework was demonstrated on a standard mixed-signal communication
protocol from the automotive domain.

In the future, we plan to develop an online extension of the presented pattern
matching and measurement procedure. It will enable the application of measure-
ments during the simulation process as well as performing measurements on real
cyber-physical systems during their execution. We believe that the extension of
regular expressions that we introduced is sufficiently expressive to capture com-
mon mixed signal properties, and could be used in other application domains,
something that we intend to explore further.
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